

2013 ADSA – ASAS JAM July 8-12 Indianapolis, Indiana

Genetics of body energy status of Holstein cows predicted by mid-infrared spectrometry

Catherine Bastin^{1*}, D.P. Berry², N. Gengler¹, and S. McParland²

¹ Gembloux Agro-Bio Tech, University of Liège (GxABT, ULg), Animal Science Unit, Gembloux, Belgium
² Teagasc Moorepark Dairy Production Research Center, Fermoy, Co. Cork, Ireland

Energy balance (EB)

Energy balance = energy intake – energy requirements

 ✓ growth, activity, maintenance
 ✓ lactation

Negative EB in high-yielding cows in early lactation

Important factor impacting health and fertility

Butler & Smith, 1989, J. Dairy Sci. De Vries & Veerkamp, 2000, J. Dairy Sci. Collard et al., 2000, J. Dairy Sci.

Routine collection of EB data within milk recording schemes
 daily management decisions and breeding programs

Energy balance (EB)

- Direct measure of EB not feasible in commercial herds
- Potential of mid-infrared analysis of milk to predict body energy status (McParland et al., 2011, 2012, J. Dairy Sci.)
 - quick, easy, inexpensive
 - as a part of milk recording

 ✓ Direct energy balance (dEB; MJ/d) R_{cv} = 0.68 R_{ev} = 0.65

 ✓ Body energy content (EC; MJ) R_{cv} = 0.57 R_{ev} = 0.53

 ✓ Effective energy intake (EEI; MJ/d) R_{cv} = 0.80 R_{ev} = 0.78

 R_{cv} and R_{ev} = correlation coefficient of split-sample cross-validation and of external validation

McParland et al., 2012, J. Dairy Sci. Banos & Coffey, 2010, Anim.

Objectives

- Genetic parameters for body energy status traits predicted by mid-infrared spectrometry
 - Walloon Holstein cows, parity 1 to 3
- ✓ Genetic correlations with fertility

Data

- The equations obtained by McParland et al. (2011, 2012) were applied on the Walloon spectral database.
- Only dEB, EEI, and EC predictions that encompassed the variability represented in the calibration dataset retained

Trait	Ν	Mean	SD
Direct energy balance (dEB, MJ/d)	777,303	-1.30	11.48
Body energy content (EC, MJ)	791,502	6012	753
Effective energy intake (EEI, MJ/d)	791,502	172.07	56.67

Data – dEB over lactation

Data – EC over lactation

Data – EEI over lactation

Genetic parameters

Data after edits

- parity 1 to 3
- 336,142 dEB records from 36,694 cows in 580 herds
- 354,900 EC and EEI records from 38,531 cows in 607 herds

Single-trait 3-lactation random regression model

- fixed effects: herd x test day, lactation stage (classes of 5 days), gestation stage, age at calving x season of calving x lactation stage
- random effect: herd x year of calving, permanent environmental, additive genetic

→ regression curves modelled with 2nd order Legendre polynomials

Genetic parameters

Trait	dEB	EC	EEI
Heritability (averaged across DIM and parities)	0.43	0.21	0.20

Genetic correlation within traits across lactation > 0.85

Correlation with fertility

Data after edits

- 124,921 dEB, EC and EEI records
- 24,419 days open (DO) records for fertility
- 24,419 first-parity cows in 361 herds
- Bivariate model including random regressions for body energy status traits
 - dEB, EC, EEI: same model than above
 - DO:
 - fixed effects: year of calving x month of calving, season of calving x age at calving, herd
 - random effects: herd x year of calving, non-genetic animal, additive genetic

Correlation with fertility

Summary

Mid-infrared prediction of body energy status traits

- "indicator" of body energy status
- variability of the data should be represented in the calibration data set
- Heritable traits
 - h² from 0.10 to 0.55, dEB more heritable
 - h² higher in mid to late lactation
- Genetic correlation with DO
 - favorable, low to moderate

Mid-infrared prediction of body energy status traits could be considered in selection programs.

Corresponding author's email: catherine.bastin@ulg.ac.be

The authors acknowledge all RobustMilk partners involved in the development of the body energy status equations.

Study supported by:

- National Fund for Scientific Research (FNRS; project COMPOMILK 2.4604.11)
- European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 (project Robustmilk)

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.

www.robustmilk.eu