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Abstract This paper is dedicated to the structural

optimization of flexible components in mechanical sys-

tems modeled as multibody systems. While most of the

structural optimization developments have been con-

ducted under (quasi-)static loadings or vibration de-

sign criteria, the proposed approach aims at consider-

ing as precisely as possible the effects of dynamic load-

ing under service conditions. Solving this problem is

quite challenging and naive implementations may lead

to inaccurate and unstable results. To elaborate a ro-

bust and reliable approach, the optimization problem

formulation is investigated because it turns out that

it is a critical point. Different optimization algorithms

are also tested. To explain the efficiency of the various

solution approaches, the complex nature of the design

space is analyzed. Numerical applications considering

the optimization of a two-arm robot subject to a tra-

jectory tracking constraint and the optimization of a

slider-crank mechanism with a cyclic dynamic loading

are presented to illustrate the different concepts.
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1 Introduction

Since the early sixties, structural optimization tech-

niques have been in constant progress and their ma-

turity has reached a high level. Nowadays, sizing and

shape optimizations are used for industrial applications

while topology optimization is more employed as a pre-

design tool in the industry. Up to now, structural op-

timization has been generally applied to the design of

structural components under (quasi-)static or vibration

design criteria due to the difficulties of dealing with

dynamic response optimization. However, in topology

optimization problems, Bendsøe and Sigmund (2003)

pointed out that the optimal design may be very sen-

sitive to the supports and loading conditions so that

the precise representation of the dynamic interactions

between the component and the complete mechanical

system is a critical aspect in the present study.

Mechanical systems generally consist of components

interconnected by joints and force elements, which un-

dergo large displacements and rotations. For instance,

typical systems are space structures, vehicles, robots

and machine tools. With the development of virtual

prototypes in modern mechanical and aerospace engi-

neering, the analysis of the complete mechanical sys-

tem is realized using multibody system (MBS) simula-

tion tools which offer a system-level approach. However,

most of the multibody dynamics formalisms cannot be

easily extended to account for the full flexibility of the

components in an integrated way. Consequently, cycles

between MBS and finite element (FE) analyses are re-

quired for the stress analysis.

Historically, at the beginning of the optimization of

mechanical systems, the considered component to be

optimized was isolated from the system, then multi-

ple static configurations were selected for the optimiza-
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tion process (Saravanos and Lamancusa 1990). This ap-

proach is quite restrictive because the system dynam-

ics is only represented by a few configurations. More-

over, as the coupling between rigid and elastic mo-

tions is omitted, some parts of the loading are neglected

which leads to inaccuracies on the displacements and on

the stresses. Another point is that the multiple static

configurations do not account for the constraint time-

dependency and finally, the method selecting the static

postures is empirical.

Nowadays, a classical approach to carry out the

component dynamic optimization is to refer to the tech-

niques of static optimization that are well established.

The dynamic MBS problem is reformulated as a set of

static problems in a two-step approach. First, a MBS

simulation software precomputes the loads applied to

each component, and in a second step, each compo-

nent is optimized independently using a quasi-static

approach. The use of the MBS simulation leads to a

holistic approach. Several works have been realized us-

ing this two-step method (Oral and Kemal Ider 1997;

Häussler et al 2004; Kang et al 2005; Hong et al 2010).

Within this method, a set of static load cases have to

be defined in order to mimic the precomputed dynamic

loads and the most common method is the equivalent

static load approach introduced by Kang et al (2005).

Häussler et al (2001) showed that it is important to con-

sider the changes of the boundary conditions and also

the changes of the system behavior along the optimiza-

tion process since these ones are subject to significant

changes.

Concerning the equivalent static load method, one

can remark that it introduces a weak coupling between

the MBS simulation and the dynamic optimization. In-

deed, the equivalent static loads are assumed to be in-

dependent of the design variables, which induces an ar-

tificial decoupling between the simulation and the opti-

mization problem. In this method, the MBS simulation

can be based either on a low-accuracy model assuming

a rigid behavior of the moving bodies or on a more de-

tailed model with flexibility effects. Another remark is

that the optimization problem is formulated with static

criteria and it is difficult to employ criteria directly

based on the dynamic responses. Finally, the global vi-

bration behavior of the mechanism and the modeling of

high frequency loadings is limited.

Recently, a strong tendency to merge both finite

element analysis and MBS simulation into a unified

code has been followed. Integrated software tools re-

sulting from this tendency can account for the full flex-

ibility of the different components and allow analyzing

the deformations of mechanism undergoing fast joint

motions. An example of this type of software is Sam-

cef Mecano (http://www.lmsintl.com) which results

from the work of Géradin and Cardona (2001).

While in previous work, the component flexibility

in the MBS was accounted by a Component Mode Syn-

thesis approach (Kang et al 2005) or was simply ne-

glected for the MBS simulation part to reduce compu-

tation time for large-scale models (Hong et al 2010),

Brüls et al (2011) took advantages of the evolution of

numerical simulations and topology optimization codes

in order to design optimal truss structures loaded dur-

ing the MBS motion. They validated the approach and

showed that an optimization loop can be carried out

directly based on the dynamic response of the flexi-

ble multibody system to obtain a more integrated ap-

proach. Dynamic effects are then naturally taken into

account in the optimization criteria.

Brüls et al (2011) have pointed out that the opti-

mization problem must be carefully formulated to ob-

tain a stable and robust procedure. The optimization of

MBS is not a trivial extension of structural optimiza-

tion. Naive implementations generally lead to inaccu-

rate and unstable results. This may explain why only a

few results are available in the literature for the com-

ponent optimization based on MBS analysis. Therefore,

our research aims at establishing efficient strategies for

the optimal design of flexible MBS. Coupled vibrations

and interactions between components generally result

in complex design problems and in convergence diffi-

culties. This indicates that specific formulations are re-

quired and need to be developed for this extended class

of optimization problems.

The present paper continues along this fully inte-

grated method and focuses on the study of the opti-

mization problem formulations.

The first part of the paper describes the nonlin-

ear FE-based approach and its capacity to model the

flexible MBS dynamics (Géradin and Cardona 2001).

The generality of the solution procedure, the fidelity

of the model and therefore the accuracy of the results

are the main motivations to develop a multibody ap-

proach based on finite elements. The FE approach for

the MBS simulation allows taking into account the flex-

ibility of the model in an integrated way at the price of

an increase of the model size. The component flexibil-

ity in MBS is an important feature and must be mod-

eled at least for two important reasons. First, flexibil-

ity and inertia produce vibrations, which can influence

the precision of the machine and its control strategy.

Second, with FE modeling of components, accessing to

the strains and stresses in the material is direct and

these are needed for the optimal design of structural

components. Stress-based optimization is important as

reported by Tobias et al (2010) who used a similar ap-
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proach based directly on elastic multibody system sim-

ulation results without any post-processing to realize

durability-based structural optimization. Furthermore,

the FE approach enables to extend the field of dynamic

simulations to higher frequency ranges and to include

strong material and geometrical nonlinearities, while

keeping the possibility of classical MBS analyses.

The following part introduces the general frame-

work of optimization problems where the major part

is devoted to the introduction of different optimization

problem formulations in a general form. The formula-

tion is based on the dynamic responses coming directly

from the flexible MBS simulation. These are analyzed

in order to conduct robust and effective optimization

runs.

Our investigations are conducted on two numerical

applications considering optimal sizing and shape op-

timization. First, the academic test problem consisting

in optimizing the weight of the arms of a two-dof robot

with a trajectory tracking constraint (Ata 2007; Kang

et al 2005) is solved with different optimization algo-

rithms and the complex nature of the design space is

examined for different formulations. Second, the differ-

ent optimization problem formulations are investigated

on the optimization of a connecting rod in a reciprocat-

ing engine taking advantage that the dynamic loading

is cyclic. The influence of the formulations on the con-

vergence history is also illustrated. An attention is paid

to the optimization problem formulation accounting for

stress constraints.

The optimization strategy is developed using the

coupling of the flexible MBS code Samcef Mecano with

the code BOSS Quattro, an optimization task manager

(Radovcic and Remouchamps 2002).

2 Finite Element Approach of MBS

2.1 Equations of motion

The modeling of flexible MBS using a nonlinear finite

element formulation is based on an inertial frame de-

scription. The absolute nodal coordinates are employed

to represent the motion of each flexible body. The vec-

tor q contains the displacement and orientation of each

node of the FE mesh.

The motion of the system is subject to kinematic

constraints, denoted by Φ(q) = 0, which typically en-

sure the connection between the bodies at joints. They

impose nonlinear kinematic constraints between gener-

alized coordinates. The constrained dynamic problem

is formulated using an augmented Lagrangian approach

based on the kinetic and potential energies of the sys-

tem. The augmented Lagrangian approach introduces

a penalty term in the formulation of the constraint no-

tably for convergence reasons. After some developments

(see Géradin and Cardona (2001)), the motion of the

system is obtained by solving the following system of

differential-algebraic equations (DAE)

Mq̈ + ΦT
q (kλ+ pΦ) = g(q̇,q, t) (1)

kΦ(q) = 0 (2)

associated with the initial conditions

q(0) = q0 and q̇(0) = q̇0. (3)

In this system, M is the mass matrix, q̈, q̇ and q are

the accelerations, the velocities and the displacements

respectively, while g gathers the internal and external

forces, k is a scaling factor, p is a penalty factor, λ are

the Lagrange multipliers and the subscript q denotes

the derivative with respect to q.

2.2 Time integration

Géradin and Cardona (2001) suggested that the set of

nonlinear differential-algebraic equations can be solved

using the generalized-α integration time scheme devel-

oped by Chung and Hulbert (1993). Arnold and Brüls

(2007) demonstrated that despite the presence of al-

gebraic constraints and the non-constant character of

the mass matrix, this integration scheme leads to accu-

rate and reliable results if a small amount of numerical

damping is present.

At time step n + 1, the numerical variables q̈n+1,

q̇n+1, qn+1 and λn+1 have to satisfy the system of equa-

tions (1-2). According to the generalized-α method, a

vector a of acceleration-like variables is defined by the

following recurrence relation

(1− αm) an+1 + αman = (1− αf ) q̈n+1 + αf q̈n (4)

with a0 = q̈0. The integration scheme is obtained by

employing a in the Newmark integration formulae:

qn+1 = qn + hq̇n + h2
(

1

2
− β

)
an + h2βan+1 (5)

q̇n+1 = q̇n + h (1− γ) an + hγan+1 (6)

where h denotes the time step. If the parameters αf ,

αm, β and γ are properly chosen according to Chung

and Hulbert (1993), second-order accuracy and linear

unconditional stability are guaranteed. Going one time

step further requires to solve iteratively the dynamic

equilibrium at time tn+1. This is performed by using

the linearized form (7-8) of equations (1-2) and by em-

ploying the Newton-Raphson method. The iterations
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try to bring the residual r = Mq̈ + ΦT
q (kλ + pΦ) − g

and Φ to zero using

M∆q̈ + Ct∆q̇ + Kt∆q + kΦT
q∆λ = ∆r (7)

kΦq∆q = ∆Φ (8)

where Ct = ∂r/∂q̇ and Kt = ∂r/∂q denote the tangent

damping and tangent stiffness matrices respectively.

3 Optimization Problem of MBS

3.1 General statement of the optimization problem

The general statement of an optimization problem is

given in (9) and consists in minimizing the objective

function f0 (x) subject to some constraints gj (x) which

typically insure the feasibility of the structural design.

The design variables are gathered in the vector x where

side-constraints limit the range of their values and gen-

erally reflect technological considerations.

minimize
x

f0 (x)

subject to gj (x) ≤ gj , j = 1, . . . ,m,

xi ≤ xi ≤ xi, i = 1, . . . , nv.

(9)

In our case, the functions f0 (x) and gj (x) are struc-

tural properties or structural responses like mass, dis-

placements (instantaneous, peak or mean value) and

stresses for instance. The design parameters xi can be

either sizing, shape or topology parameters.

When the optimization problem is casted into this

formulation, different optimization algorithms can be

used to solve the problem. This formulation provides a

general and robust framework to the solution procedure

and several non-specific algorithms can be used more or

less successfully.

3.2 Design variables

As in static structural problems, several kinds of de-

sign variables can be considered. In this paper, we only

consider parameters that modify the component itself

while the position of connections as well as the connec-

tivity of the members are preserved. Here, we focus on

two types of variables: sizing and shape. Concerning the

optimal sizing, design variables can be the plate thick-

ness, the cross section of bars and beams, the stiffness

and damping properties of joints, etc. For shape opti-

mization, we only consider shape parameters of CAD

entities which modify the geometry of the components.

3.3 Optimization algorithms

In the field of structural and applied mechanics, several

types of optimization algorithms have been developed

to solve optimization problems. According to the prob-

lem characteristics and the available information (ex-

istence of a gradient for instance), only one or several

methods can be selected.

In this paper, mathematical programming methods

as well as heuristic methods are employed to solve the

numerical applications and then, the different meth-

ods are compared. ConLin (Fleury and Braibant 1986),

GCM (Bruyneel et al 2002), SQP (Schittkowski 1986),

Genetic Algorithm (GA) (Coelho et al 2002) and Sur-

rogate Based Optimization (SBO) (Colson et al 2010)

are the different algorithms that are tested.

3.4 Sensitivity analysis

When gradient-based optimization methods are used,

a sensitivity analysis is necessary to compute the first

order derivatives of the structural responses and to pro-

vide them to the optimization algorithm so that it can

determine the search direction. When the number of

variables becomes huge, this computational problem

turns out to be crucial.

A first simple strategy to compute the sensitivities is

to employ a finite difference scheme. This method is no-

tably useful when no analytical or semi-analytical sen-

sitivity analysis is available in the analysis code. How-

ever, the sensitivity analysis requires one (or two for

central difference) additional simulation per perturbed

design variable. Despite its computational inefficiency

for large-scale problems, this method can be used to

carry out, for instance, a feasibility study.

When the simulation time and/or the number of de-

sign variables increase, this method becomes unadapted

and it is better to develop an analytical or a semi-

analytical sensitivity analysis for classical structural re-

sponses, because the computational effort is largely re-

duced in comparison with a finite difference scheme. A

semi-analytical approach for flexible MBS based on a

direct differentiation method has been investigated by

Brüls and Eberhard (2008).

In this paper, both strategies are employed following

the considered application and the chosen one is pointed

out before conducting the optimization process.

4 Optimization Problem Formulation

The solution of an optimization problem of flexible com-

ponents in MBS is challenging. Inertial effects, vibra-
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tions, design variables dependent-loading, time integra-

tion schemes, etc. make the problem extremely complex

and the convergence towards a solution is very diffi-

cult. Naive implementations of the optimization prob-

lem generally fail or turn to be not robust. The opti-

mization problem formulation is crucial for this type of

problem and moreover, the objective function and the

constraints have to be formulated in a way that reflects

the engineering approach of the design at best.

Inspired by topology optimization, in order to con-

sider the precision of the mechanism, a formulation

based on the maximization of the stiffness or the mini-

mization of the compliance under the dynamic loading

can be employed. Considering the compliance of com-

ponent b at time t, the mathematical expression is

Cb (x, t) =

∫
VE

εT (x, t) D ε (x, t) dV (10)

where ε denotes the strain tensor, D is the Hooke ten-

sor, VE is the volume of the considered component and

x represents the design variable vector. For mechani-

cal systems, Brüls et al (2011) used the averaged com-

pliance of all bodies estimated over a sufficiently long

integration time T

C (x) =
1

T

∫ T

0

∑
b

Cb (x, τ) dτ. (11)

The advantage of this compliance (energy) formulation

is that this measure is positive definite and therefore,

by minimizing the compliance, the deflections of the

mechanism are minimized. However, when the damping

is small, the number of necessary oscillations to come

to a stationary behavior can be very large so that the

reference time T must be taken very long.

Depending on the mechanism and on design con-

siderations, different formulations more specific to the

treated problem can be considered to reflect the engi-

neering approach of the problem better. When an ideal

behavior is known, the formulation can be a compari-

son between the actual behavior taking into account the

flexibility of the system, the imperfect actuators and

controllers of the system to the ideal behavior. In this

case, a function ∆l is introduced to measure the differ-

ence between the two behaviors. This function can be

considered as the objective function or can be treated

as a constraint

∆l (x, t) ≤ ∆lmax, ∀ t ∈ [0, T ] . (12)

After time discretization, the expression becomes

∆l (x, tn) ≤ ∆lmax, ∀ n = 1, . . . , tend (13)

where n is the index of the time step.

The definition of the function ∆l deserves further

comments. Imagine that the tip of a flexible robot has

to follow a desired trajectory. Two definitions are il-

lustrated in Fig. 1. On the left, the position distance

considers the deviation between the ideal and the ac-

tual trajectory at synchronized time steps while on the

right, the deviation between both curves is defined as

the normal distance between spatial curves. Basically,

the major differences are that only the position distance

includes a time component. The choice of the definition

influences the optimization process and their impact

needs to be investigated. In the numerical applications,

the most suitable choice will be discussed and the differ-

ences will be pointed out. In both cases, ∆l is a positive

quantity.
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Fig. 1 Two definitions of the distance between two different
trajectories: (a) Position distance, (b) Normal distance.

Generally, the mass steps in the optimization prob-

lem formulation. The mass is defined as

m =

∫
VE

ρ dV (14)

where ρ is the volumic mass. This definition generally

rises no difficulty.

When minimizing the compliance, the mass can be

introduced as a constraint. However, with the∆l formu-

lation, in an engineering approach, it is more classical

to try to reduce the mass while some criteria have to

be satisfied as in the following formulation

minimize
x

m (x)

subject to ∆l (x, t) ≤ ∆lmax, ∀t ∈ [0, T ] .
(15)

Considering a constraint on the function ∆l at each

time step, the number of constraints can become ex-

tremely large. These constraints can be denoted by lo-

cal constraints as these introduce a high accuracy on

the design control. However, mathematical treatments

enable to transform these local constraints into a global

constraint. Even though these global constraints offer

less control on the design, the number of constraints

managed by the optimizer is drastically reduced.
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A first possibility is to employ a Max function which

is often available in many commercial codes

∆l (x, t) ≤ ∆lmax ⇐⇒ max
t
∆l (x, t) ≤ ∆lmax. (16)

This formulation only provides the maximum value and

it is important to note that this function is non-smooth,

which is sometimes ignored by non-expert users.

A second possibility is to use an average function of

∆l over all the period T

1

T

∫ T

0

∆l (x, t) dt ≤ ∆lmax. (17)

This second formulation has been introduced by Brüls

et al (2011) and they showed that this average formu-

lation is more suitable than the compliance one for the

optimization of mechanical system. While this mean

formulation is interesting to force a tendency all along

the considered period of time, the control on the design

is loose since only a general constraint is considered and

this constraint only imposes an upper bound on the av-

erage value and not upon the actual dynamic response.

The effects of these mathematical treatments are stud-

ied in the next section.

The difference between the rigid and the actual tra-

jectory of a flexible mechanism can sometimes be rep-

resented by a signed distance defined as ∆f . Unlike ∆l,

the function ∆f can be either positive or negative. Con-

sidering each time step, one can resort to a set of local

distance criteria similar to the local stress criteria in

stress analysis. It results that one has to consider the

constraints

−∆fmin ≤ ∆f (x, t) ≤ ∆fmax, ∀t ∈ [0, T ] . (18)

In optimization problems with dynamic loading, the

consideration of stress constraints strongly increases the

number of restrictions. Indeed, considering the stresses

defined on elements, the number of stress constraints

is equal to the number of elements multiplied by the

number of time steps and it leads to the creation of

huge scale optimization problems

σ (x, Pe, tn) ≤ σmax,

∀ n = 1, . . . , tend and ∀ e = 1, . . . , ne.
(19)

where Pe is the eth mesh element and ne the number of

elements. To consider strength and life time prediction

as in automotive suspensions, it is necessary to consider

stresses and strains in the components.

All these different possibilities concerning the op-

timization problem formulation are investigated and

compared in the numerical applications. Both advan-

tages and drawbacks are going to be pointed out.

5 Numerical Applications

Two numerical applications are carried on. The first

one is an academic application of a 2-dof robot and

enables various investigations. Some of the presented

results concerning this first numerical application come

from Emonds-Alt (2010). The second application is re-

lated with an industrial problem where the robustness

and the stability of the method depending on the for-

mulation are studied.

5.1 Two degrees of freedom robot

The first application is based on a 2-dof robot made

of aluminum with a volumic mass of 2700 [kg/m3], a

Young modulus of E=72 [GPa] and a Poisson ratio of

ν=0.3, inspired from Oral and Kemal Ider (1997). The

length of each arm is 600 [mm] and a constant mass of

1 [kg] is attached at the tip (Fig. 2.a). The functions

θ1(t) and θ2(t) represent the angle variations at the

hinges during the robot motion. In Fig. 2.b, the ideal

trajectory of the tip is illustrated and the trajectory

equations are:

∆XTip(t) = 0.6 sin(
πt

2
) (20)

∆YTip(t) =
t

2
+

sin(2πt)

4
(21)

with t ∈ [0, 0.5] second.

A rigid-body kinematic model is used to compute

the functions θ1(t) and θ2(t) resulting from the de-

sired trajectory since rigid-body models prevent defor-

mations and vibrations. These functions will be later

applied as imposed rotations at the hinges of the flex-

ible robot. As the robot has an initial velocity, initial

velocity conditions consistent with the prescribed tra-

jectory are imposed to the MBS simulation.

(a)

m
l1

l2

θ1(t)

θ2(t) (b)

0 100 200 300 400 500
0

100

200

300

400

x [mm]

y 
[m

m
]

Tip trajectory

Fig. 2 The 2-dof robot and its prescribed trajectory.

Concerning the flexible model, plate elements are

considered. The components are linked with rigid hinge

elements. Since deformations and vibrations will ap-

pear during the motion of the flexible robot, the tip
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trajectory will not correspond to the ideal one. The

Chung-Hulbert scheme is used for the time integration

with a fixed time step of 0.01 [s]. Each arm is divided

into 3 parts which leads to 6 sizing design variables,

the thickness of each part (Fig. 3.a), and to 8 shape

design variables, the width of the arm at each change

of section as the shape is described by piecewise-linear

profiles (Fig. 3.b)

Concerning the sensitivity analysis, when it is re-

quired, a finite difference scheme is employed for this

academical example.

(a) (b)

Fig. 3 Introduction of the design variables: (a) Sizing design
variables, (b) Shape design variables.

5.1.1 Sizing optimization

This first application illustrates that the optimization

of a MBS is not a simple extension of a static opti-

mization problem and that naive implementations can

lead to the non-convergence of the optimization prob-

lem. In this introductory part concerning the MBS opti-
mization problem formulation, only one gradient-based

optimization algorithm is considered: GCM (Bruyneel

et al 2002) is adopted for its robustness.

The goal is to minimize the mass of the robot arms

while the deviation from the ideal trajectory has to be

kept under 10 [mm] when considering the position dis-

tance (Fig. 1.a). The design variables are the plate ele-

ment thicknesses. Each arm is divided into three equal

zones with constant thickness and thus, one design vari-

able is assigned to each zone leading to 6 design vari-

ables (Fig. 3.a).

Initially, the deviation from the ideal trajectory is

considered at each time step as in Eq. (15), i.e. by in-

troducing 51 inequality constraints in the optimization

problem. Mathematically, the design formulation is ex-

pressed as follows:

minimize
x

m (x)

subject to ∆l (x, tn) ≤ ∆lmax

(22)

where x corresponds to the thickness design variables,

n = 1, . . . , tend is the index of the time steps, tend is

equal to 51 and ∆lmax is equal to 10 [mm].

The optimization process fails: after a few iterations,

the constraints are violated because the thickness vari-

able T6, the nearest zone from the tip, drops to its min-

imum thickness and prevents the system to satisfy the

constraints (Fig. 4). The variable T6 is stuck to its mini-

mal value even though the constraints are violated. Sur-

prisingly, when beginning with different starting points,

the optimization process is sometimes able to converge

to a feasible solution.
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Fig. 4 Results of the sizing optimization of the 2-dof robot
with GCM.

To investigate this observation, a slice in the design

space for the variables T5 and T6 is plotted while the

other design variables are fixed at 100 [mm]. Fig. 5 illus-

trates the design space configuration for the deviation

at the 20th time step. The feasible part of the design

space lies below the plane 10 [mm]. The explanation

comes from the complexity of the design space where

a gradient-based algorithm has difficulties to converge.

The information given by each constraint may be con-

tradictory and when the algorithm tends to satisfy a

constraint, another one becomes violated. Convex ap-

proximations as ConLin (Fleury and Braibant 1986) or

MMA (Svanberg 1987) are likely to be inappropriate to

tackle such complex constraints.

To simplify the shape of the design space, a formu-

lation with a global constraint seems to be interesting.

The Max formulation expressed in Eq. (16) is consid-

ered where only the maximum value of the deviations

for any time step is retained. The mathematical formu-

lation of this optimization problem is:

minimize
x

m (x)

subject to max
n

∆l (x, tn) ≤ ∆lmax

(23)

where ∆lmax is also equal to 10 [mm].
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Fig. 5 Illustration of the design space configuration for the
local constraint formulation at the 20th time step with re-
spect to the sizing design variables T5 and T6. The others
variables are fixed at 100 [mm].

Despite the non-smooth characteristic of this func-

tion, the plot of the constraint indicates that the non-

differential points are so close that the function tends to

become quite smooth (Fig. 6). The shape of the design

space seems now to be more adapted to a gradient-

based method.

However, the results of the optimization process for

different starting points show that the optimization pro-

cess is not more stable. Moreover, oscillations appear

during the optimization process and prevent a fast con-

vergence.

Fig. 6 Illustration of the design space configuration for the
Max deviation constraint formulation with respect to the siz-
ing design variables T5 and T6. The others variables are fixed
at 100 [mm].

Finally, the Mean formulation as defined in Eq. (17)

is employed to express the deviation constraints. The

bound has been heuristically reduced to 5 [mm] to ac-

count for a looser control of the deviations at each time

step. The design is formulated mathematically as:

minimize
x

m (x)

subject to
1

tend

tend∑
n=1

∆l (x, tn) ≤ ∆lmax

(24)

where ∆lmax is equal to 5 [mm].

Fig. 7 illustrates a smooth design space. Neverthe-

less, despite the fact that the design space is smooth,

oscillations are present during the first part of the op-

timization process to finally disappear and allow the

convergence of the optimization process. This simplifi-

cation of the formulation leads to a weaker control of

the solution at each time step and it is difficult to find

the value of the upper bound in order to avoid violating

the physical constraint of 10 [mm] at all the time steps.

Fig. 7 Illustration of the design space configuration for the
Mean deviation constraint formulation with respect to the
sizing design variables T5 and T6. The others variables are
fixed at 100 [mm].

The problems encountered in this section are not

specific to the algorithm employed, i.e. GCM, but they

have also been observed for other gradient-based algo-

rithms. They are thus intimately related with the for-

mulation of the optimization problem.

5.1.2 Shape optimization

This section is dedicated to the shape optimization of

the 2-dof robot. The design variables are the width of

the arms at eight different locations Zi (Fig. 3.b). For

any value of the design variables, the robot keeps its

symmetry with respect to its longitudinal axis. The goal

is also to minimize the mass of the robot arms while

the deviation from the ideal trajectory has to be kept

under 10 [mm] when considering the normal distance

(Fig. 1.b). The normal distance can be defined as a

signed distance or not, and in this section 5.1.2, the

signed distance is considered.

Two formulations of the optimization problem are

investigated. The first formulation referred to as the ex-

pression “local constraints” below, considers the signed

distance constraints at each each time step and is de-
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fined mathematically as

minimize
x

m (x)

subject to ∆fmin ≤ ∆f (x, tn) ≤ ∆fmax

(25)

where ∆fmin corresponds to -10 [mm] and ∆fmax to

10 [mm]. The second formulation referred to as the

expression “global constraints” thereinafter, only ac-

counts for the maximum positive deviation and the

maximum negative deviation in the optimization prob-

lem. Mathematically, the optimization problem formu-

lation is

minimize
x

m (x)

subject to max
n

∆f (x, tn) ≤ ∆fmax

min
n
∆f (x, tn) ≥ ∆fmin

(26)

Before running the optimization, parametric studies

are carried out to identify the behavior of the structural

responses. The deviations between the flexible trajec-

tory and the ideal (i.e. rigid) one are plotted for four

time steps when the values of Z4 and Z7 vary between

their side constraints (Fig. 8). For each time step, the

function is continuously differentiable but each profile

is very different from one another. The nature of the

design space is less tortuous compared to the previous

case (Fig. 5) because the shape design variables con-

sidered have a smoother impact on the robot behavior.

The maximum deviation and the maximum negative

deviation (here called minimum deviation) are plotted

in Fig. 9. The non-smooth nature of the maximum and

minimum global deviations can be clearly observed.

Fig. 8 Illustration of the design space at 4 different time
steps for a local constraint formulation with respect to the
variables Z4 and Z7.

First, only gradient-based algorithms such as Con-

Lin, GCM and SQP are considered. With a feasible

starting point (Zi=25 [mm]), all algorithms converge

Fig. 9 Illustration of the design space for the minimum (left)
and maximum (right) deviations between rigid and flexible
trajectories with respect to variables Z4 and Z7.

towards the same optimum point that lies on the con-

straint boundary as illustrated in Fig. 10 for a slice of

the design space corresponding to Z4 and Z7 (unfeasi-

ble parts of the design space are in white color). Con-

cerning the local constraints (Fig. 10.a), the feasible

design space is made of disconnected domains, which

reveals a great complexity for optimization algorithms.

For both constraint formulations, ConLin provides the

fastest convergence rate, which is quite surprising as

we would have expected that GCM, a more advanced

algorithm, gives better results. Concerning the global

formulation, at some iterations of the optimization pro-

cess, large constraint violations can be observed for

GCM and SQP (Fig. 10.b).

Fig. 10 Design point trajectories with ConLin, GCM and
SQP for a feasible starting point (Zi=25 [mm]). The unfea-
sible parts of the design space are in white color. (a) Local
constraints, (b) Global constraints.

Starting with an unfeasible point (Zi=20 [mm]) and

employing a local formulation of the constraints, none

of the gradient-based optimizer is able to reach the

optimal point found in the previous experiment, see



10 Emmanuel Tromme et al.

Fig. 11.a. The iteration trajectories are trapped in a

separated part of the design space and the optimizer

is not able to go back to the best sub-domain. More-

over, the different algorithms do not converge towards

the same point. With the global formulation, the de-

sign space is composed of only one single feasible do-

main and all the algorithms can bring the optimization

process back to the feasible domain and then converge

towards an optimal point (Fig. 11.b). Again, ConLin

gives better results than the others.

Fig. 11 Design point trajectories with ConLin, GCM and
SQP for an unfeasible starting point (Zi=20 [mm]). The un-
feasible parts of the design space are in white color. (a) Local
constraints, (b) Global constraints.

Second, gradient-based algorithms are compared to

meta-heuristic optimization methods. The latter have

the advantage of exploring the entire design space and

therefore should provide better performances in com-

plex design space configurations. For the optimization

process, a feasible starting point (Zi=25 [mm]) is con-

sidered. Concerning GA, a population of 40 individuals

is employed with 20 generations. For the SBO, the Latin

hypercube method is used to generate an initial set of

20 points. Surrogates are neural networks (with 1000

iterations for training) and each iteration allows an en-

richment of the database with up to 5 points while sen-

sitivity information is not used to enhance the model.

The surrogates are solved using a GA.

Table 1 gathers the results of the optimization pro-

cess with a constraint at each time step. Only ConLin is

able to give an acceptable optimal solution. Surrogate

optimization and GA give poor performances and a bad

solution from an engineering point of view, the mini-

mum and the maximal values are far from the bounds.

GA needs 5.5 times more function evaluations than the

other algorithms while the optimal solution is not as

good (11.6 [Kg] against 5.04 [Kg] for ConLin).

Algorithm Bounds ConLin Surrogate GA

Mass [kg] / 5.0384 15.1304 11.6271
devmin [mm] -10 -10.00 -3.01 -2.97
devmax [mm] 10 8.656 2.13 2.51
Funct. Eval. / 135 214 711

Table 1 Comparison of different optimization algorithms
when a local constraint formulation is adopted, i.e. a con-
straint at each time step.

Algorithm Bounds ConLin Surrogate GA

Mass [kg] / 5.0384 5.0202 8.9895
devmin [mm] -10 -10.00 -9.98 -5.39
devmax [mm] 10 8.656 9.00 4.63
Funct. Eval. / 135 155 751

Table 2 Comparison of different optimization algorithms
when a global constraint formulation is employed.

Table 2 compares the results of the optimization

process with global constraints, one constraint for the

maximum positive deviation and one constraint for the

maximum negative deviation. The results are better

than the previous case with a constraint at each time

step. ConLin gives the same optimal result while the

best result is obtained with the Surrogate algorithm,

0.3 % better than ConLin. GA gives a better result

than in the previous case but it is still far from the so-

lution obtained using the other methods despite the

larger number of function evaluations. However, GA

might give better results with a finer tuning of the al-

gorithm parameters.

Figure 12 shows the optimal configurations obtained

with ConLin and the Surrogate algorithm. The solution

provided by ConLin seems better from an engineering

point of view.
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Fig. 12 Comparison of two optimal configurations of the
robot arms obtained with two different optimization algo-
rithms: ConLin and the Surrogate algorithms.
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5.1.3 Influence of the distance definition

As introduced in section 4, the distance definition influ-

ences the optimization process. In order to study this

impact, a parametric study is conducted for different

values of the shape variables Z4 and Z7. The position

distance is described with the function∆l while the nor-

mal distance is expressed with ∆f as a signed distance

is considered for the latter distance formulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time [s]

D
ev

ia
tio

n 
[m

m
]

Z4 = 56 [mm] and Z7 = 28 [mm]

Position distance
Normal distance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time [s]

D
ev

ia
tio

n 
[m

m
]

Z4 = 80 [mm] and Z7 = 40 [mm]

Position distance
Normal distance

Fig. 13 Evolution of the deviation between the ideal and the
real trajectories for 2 distance definitions.

Figure 13 illustrates two situations where a constant

ratio of 2 between the two variables is considered. It can

be observed that the most important difference occurs

during the starting time. Indeed, due to the inertia ef-

fects, the tip of the flexible robot has a delay compared

to the tip of the rigid robot. This phenomenon is not

rendered by the normal distance as this one only con-

siders the perpendicular distance between both spatial

curves. However, the position distance is able to capture

this phenomenon as it includes a time component. In

general, when the inertia effects play a role, the normal

difference is not able to give appropriate information.

From an optimization point of view, the position

distance also seems to be more suitable. In Fig. 14, the

constraints for each time step are superimposed which

leads to the feasible design space. The shape of the

feasible design space for the position distance exhibits

smoother features. Therefore, this domain seems to be

better adapted for the optimization process.

(a)

(b)

Fig. 14 Illustration of the feasible design space for: (a) Nor-
mal distance, (b) Position distance.

To illustrate the previous observations, the mass op-

timization of the robot is carried out with ConLin al-

gorithm and with only 2 design variables, Z4 and Z7.

The initial width of the arms is 50 [mm] and the goal

is to minimize the mass while the deviation of the tip

has to be kept under 1 [mm] at each time step. The

optimal mass is 6.8025 [Kg] with the normal distance

and is 6.9323 [Kg] with the position distance. These

results were expected due to the fact that the normal

distance is less restricting for the optimization process

as it gets rid of a time dependency. With the normal

measure, due to the non-smooth features of the design

space, more iterations are needed to obtain convergence

and oscillations may appear in the structural responses.
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5.2 Optimization of a connecting rod

5.2.1 Modeling of a slider-crank mechanism

The second numerical application consists in the shape

optimization of a connecting rod within a slider-crank

mechanism, which models a single-cylinder in a four-

stroke internal combustion diesel engine (Fig. 15). The

material is steel with a volumic mass of 7800 [kg/m3],

a Young modulus of E=210 [GPa] and a Poisson ra-

tio of ν=0.3. The rotation speed of the crankshaft is

4000 [Rpm]. At this rotation speed, the dynamic load-

ing due to inertia forces represents about 15% of the

loading at the top dead center.

The numerical simulation is conducted by imposing

the rotation speed of the crankshaft which goes from

0 to 4000 [Rpm] in 0.01 [s] in a kinematic simulation.

After, the dynamic analysis is performed: a period of

0.0025 [s] is needed to stabilize the dynamic response,

then the rotation speed stays at 4000 [Rpm] during one

cycle (0.03 [s]) where the gas pressure is introduced.

One complete four-stroke cycle corresponds to a rota-

tion of 720 [◦] of the crankshaft. The pressure gas is

known from experimental measurements of a real diesel

engine at 4000 [Rpm] and is introduced as an external

force in the multibody system.

Fig. 15 Slider-crank mechanism.

The connecting rod has been modeled by plate ele-

ments with a thickness of 12 [mm] since a 2D model is

considered while the crankshaft is considered as a rigid

body. The piston is represented by its mass (0.456 [Kg])

and by a cylindrical joint. The connecting rod is defined

thanks to 7 shape parameters (Fig. 16):

x = [D1D2R1R2R3R4R5]
T

(27)

A transfinite mesh is used to mesh the connecting

rod. The components are linked with ideal kinematic

joints. The Chung-Hulbert time integration scheme is

used with a fixed time step 0.00025 [s] for the dynamic

analysis.

R1

R2

R3
R4

R5

R5

D1 D2

136

13 8

Fig. 16 Parametric model of the connecting rod (in [mm]).

Concerning the sensitivity analysis, this step is cru-

cial for this numerical application as the computation

time is much larger. In consequence, a semi-analytical

method based on a direct differentiation scheme is em-

ployed.

The connecting rod is subject to elongation during

its working and it is critical to know precisely this defor-

mation because it can destroy the engine if the piston

bumps into the valves.

For the definition of the function ∆f , a signed dis-

tance indicator element is placed between the center of

the crank pin and the center of the piston pin. This el-

ement measures the deformation of the connecting rod

at each time step.

In the next section, the influence of the optimiza-

tion problem formulation on the convergence, the sta-

bility and the robustness of the optimization process

is investigated. Gradient-based algorithms are consid-

ered for their efficiency as the computation time of the

MBS simulation increases, and more particularly, GCM

algorithm which is an improved version of ConLin is

adopted for its robustness. As the service conditions of

the connecting rod are known a priori, the optimization

problem formulation can take profit of this knowledge
and a stress-based optimization can be considered.

5.2.2 Investigation on the elongation constraint

formulations

The first formulation Eq. (28) suggests minimizing the

mass while the elongation constraints are taken into

account at each time step and must be kept locally

under a certain value.

minimize
x

m (x)

subject to ∆f (x, tn) ≤ ∆fmax

(28)

with n = 1, . . . , tend the index of the time steps and

where ∆fmax is equal to 0.015 [mm].

The signed distance formulation defined in section 4

is adopted since the sign is essential. Indeed, the prob-

lem is to keep the elongation below a limit value while

no constraint is imposed on the compression. However,

in comparison with the constraint in Eq. (18), only an
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upper bound constraint is considered as there is no

bound on the maximum compression which correspond

to the minimum of the ∆f function.

Accounting for an elongation constraint at each time

step gives a tight control on the design. However, the

large number of constraints creates a design space quite

complex for the optimizer. Nevertheless, the elongation

occurs only during the transition between the exhaust

phase and the intake phase when there is no compres-

sion force and that the inertia forces are very large.

Thus, thanks to a selection process of the active con-

straints embedded in Boss Quattro (the optimization

shell), the number of constraints retained for the opti-

mization process may be reduced.

The optimizer is able to converge in a monotonic

and stable way (Fig. 17.a). Nonetheless, the optimiza-

tion process continues until the predefined maximum

number of iterations even though the convergence of

the objective function seems to be reached. Observing

the constraints in Fig. 17.b, the maximum elongation

is lower than the upper bound. This explains why the

optimization process continues and tries to further de-

crease the mass. Unfortunately, the very sensitive de-

sign variables have reached their optimal value whereas

the less sensitive variables are still modified slowly. This

causes that the convergence of the problem is not to-

tally obtained and continues slowly towards the optimal

solution. This problem could be avoided by selecting a

criterion based on the variation of the objective func-

tion instead of the variation of the variables. The CPU

time for this optimization process is about 5 hours and

30 minutes on a basic laptop (Intel Core i7, QuadCore

Q740, 1.73GHz).

The second formulation proposed in Eq. (29) is sim-

ilar to the previous one except that the elongation con-

straints are expressed with an absolute value. This for-

mulation can offer a faster convergence (12 iterations

and CPU time about 2 hours) and a stable and mono-

tonic convergence curve of the objective function. The

results are illustrated in Figure 18. Nevertheless, this

formulation is not totally suitable to solve this problem

as the sign of the displacement is important here. In-

deed, a positive number denotes an elongation while a

negative one stands for a compression. In a combustion

engine, the compression of the connecting rod is much

larger than its elongation and therefore, with this for-

mulation, the optimizer will focus on the compression

but not on the elongation. However, as this formulation

imposes indirectly a limit on the maximal deformation,

the problem can be solved indirectly but the major dif-

ficulty is to determine the upper bound value ∆fmax

to obtain a maximal elongation of 0.015 [mm] as this

formulation mixes the compression and the elongation
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Fig. 17 Formulation considering the constraints at each time
step (Eq. (28)): (a) Evolution of the mass, (b) Evolution of
the maximum elongation and of the maximal stress.

phenomena.

minimize
x

m (x)

subject to |∆f (x, tn) | ≤ ∆fmax

(29)

where ∆fmax is equal to 0.21 [mm].

The formulations proposed in Eqs. (28-29) are local

formulations where the constraints are considered at

each time step. The next two formulations are global

formulations, i.e. a constraint sums up the constraints

for all time steps.

The first global formulation Eq. (30) is expressed

with a Max function which selects the maximum elon-

gation amongst all time steps.

minimize
x

m (x)

subject to max
n

∆f (x, tn) ≤ ∆fmax.
(30)

Using the Max formulation, the behavior of the con-

straint function evolution with respect to the design

variables becomes non-smooth. However, it is straight-

forward to impose the upper bound value on the elon-

gation constraint. In Fig. 19.a, the convergence curve is

monotonic and stable. However, the same phenomenon

as in the first formulation appears where some design
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Fig. 18 Formulation considering the absolute value of the
constraints (Eq. (29)): (a) Evolution of the mass, (b) Evolu-
tion of the maximum elongation and of the maximum value
of the constraint.

variables, not very sensitive, keep on evolving, which

prevents the process from ending. The CPU time is

about 2 hours and 30 minutes which gives a gain of

3 hours compared to the formulation in Eq. (28). The

optimal design of the connecting rod is illustrated in

Figure 20. Nevertheless, it should be pointed out that

the maximum elongation occurs at nearly the same time

step during all the optimization process and therefore,

the non-smooth behavior is almost negligible.

The second global formulation Eq. (31) takes the

elongation constraints at each time step into account

but summarizes them in one constraint thanks to a

Mean function as following

minimize
x

m (x)

subject to
1

tend

tend∑
n=0

|∆f (x, tn) | ≤ ∆lmax.
(31)

This formulation has also the advantage of reduc-

ing the number of constraints but has also the same

problem as in the formulation Eq. (29) concerning the

upper bound value. Indeed, there is no clear relation
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Fig. 19 The first formulation considers the maximum elon-
gation of the constraints (Eq. (30)) and the second one the
mean value of the elongation constraints (Eq. (31)): (a) Evo-
lution of the mass, (b) Evolution of the elongation.

(a) (b)

Fig. 20 Optimal design of the connecting rod for the Max
formulation (Eq. 30): (a) Initial design, (b) Optimal design.

between the maximal elongation and the mean defor-

mation. It is tricky to determine the value of the upper

bound in order to get the maximum elongation under

0.015 [mm]. The problem due to the small sensitivities

of some variables is also present (Fig. 19.a). The CPU

time is similar to the Max formulation Eq. (30).

If we compare these global formulations (Fig. 19),

their behavior is the same: they are stable and mono-

tonic. The difference is due to the difficulty of deter-
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mining the upper bound value of the global constraint

when the constraints at each time step are aggregated

with an average formulation.

5.2.3 Investigation on the problem formulation with

stress constraints

The second part is dedicated to the optimization taking

stresses into account. To better capture the stresses and

to obtain reliable values of the stress concentrations,

the mesh has been refined. Nevertheless, the influence

of the mesh refinement is studied.

A stress constraint imposed at each time step for

each element is not reasonable. Indeed, considering a

coarse mesh with 600 elements and 120 time steps for

the complete cycle, it leads to 72000 restrictions. The

trick is that a critical instant is observed for this mech-

anism as the behavior is cyclic and known a priori.

When the explosion occurs, the stresses strongly in-

crease and therefore, the optimization can be bond on

stresses at this instant only. In the present case, the

critical time step does not evolve with the optimization

process. However, the analysis could be easily extended

to account for several time steps in the neighborhood

of the initial critical time step.

The adopted formulation Eq. (32) is to minimize

the mass while the stresses at the critical time are kept

under σmax = 550 [MPa] using

minimize
x

m (x)

subject to σ (x,P, tcrit) ≤ σmax

(32)

where vector P gathers all the finite element of VE .

When the mesh is rather coarse (600 elements), the

convergence is fast, monotonic and is achieved within

a reasonable number of iterations. However, when the

mesh is refined, from 600 to 3832 elements, the con-

vergence is not monotonic anymore (Fig. 21.a). After

a descent part, the mass slightly increases with oscilla-

tions and then stabilizes. As the stress concentrations

are better captured, it is normal that the optimized

mass is a little bit heavier.

Concerning the stress constraints (Fig. 21.b), it is

observed that the maximal stress, for the coarse mesh,

goes until the limit and activates the constraint until

the end of the process. For the refined mesh, the maxi-

mal stress violates the constraint during the oscillating

part of the process and then reaches and gets stuck

to the upper bound of the constraint. It is interesting

to notice that, as the number of constraints increases

and makes the optimization problem more complex, the

middle part of the optimization process oscillates. The

gradient-based method has more difficulties to find the
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Fig. 21 Minimization of the mass with stress constraints
(Eq. (32)): (a) Evolution of the mass, (b) Evolution of the
maximum elongation and the maximal stress.

way of convergence. However, even if the optimization

process is slower, the process converges.

The CPU time for one simulation with the coarse

mesh is 175 [s] while the CPU time is 280 [s] with the

refined mesh.

To help the convergence of the process, a two-step

strategy may be employed. First, the optimization is
run with the coarse mesh until convergence and then

these optimal design variables are introduced as the

initial starting point for the optimization with the finer

mesh.

5.2.4 The feasibility of the starting point

For the previous optimization processes, the starting

points were always chosen feasible due to the observa-

tion that gradient-based methods converge more easily

with a feasible starting point. However, it is not al-

ways straightforward to find a feasible starting point.

This last case investigates the previous optimization

process (Eq. 32) with an unfeasible starting point. It

turns out that the optimization process converges for

the coarse mesh even if the starting point is unfeasi-

ble. The process needs 4 more iterations (Fig. 22). An

interesting point is that, beginning with two different

starting points, very far from each other in the design

space, leads to the same optimal solution. This may
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indicate that the optimal solution could be considered

as a global optimal solution. Nevertheless, concerning

the finer mesh for which the convergence is not mono-

tonic and not stable with a feasible starting point, the

optimization process does not converge for a unfeasible

starting point.
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Fig. 22 Minimization of the mass with stress constraints
and an unfeasible starting point (Eq. (32)): (a) Evolution of
the mass, (b) Evolution of the maximum elongation and the
maximal stress.

6 Conclusions and Perspectives

Optimization of structural components is carried out in

the framework of flexible multibody simulations. This

approach has several advantages compared to a quasi-

static approach. First, this approach follows a natu-

ral evolution of virtual prototyping and computational

mechanics in which the aim is to define as precisely

as possible the loading conditions of the different bod-

ies under service. Second, this method takes properly

into account the dynamic coupling between large over-

all rigid-body motions and deformations. Only one dy-

namic analysis is required by the optimizer per iteration

and design-dependent loads can be considered. Finally,

the objective function and the design constraints can

be defined with respect to the actual dynamic problem.

The system-based approach presented here offers more

possibilities than an isolated component optimization

approach since it is able to capture more complex and

coupling behaviors.

The fully integrated approach for the optimization

of flexible components in MBS has been validated by

Brüls et al (2011) with the topology optimization of

truss components in MBS. This study pointed out that

the formulation is essential for the stability of the opti-

mization of dynamic problems and the formulation has

to be well-suited to the actual dynamic problem.

This work has proposed and compared several op-

timization problem formulations. Local and global for-

mulations have been investigated. When considering a

constraint at each time step, the control of the design

is very accurate but the problem becomes so complex

that algorithms developed in structural optimization

may have difficulties to find feasible optima. Robust-

ness seems to be improved by using global constraints.

The Max formulation, despite its non-smooth behav-

ior, simplifies the design space configuration and may

allow a faster convergence if the non-smooth behavior is

small and if the generated oscillations stabilize rapidly.

However, even if global constraints increase the robust-

ness, a Mean formulation is not suitable if the control

at each time step needs to be strictly guaranteed.

When comparing the actual behavior of a mecha-

nism to its ideal one, the comparison function defini-

tion is essential and the influence of two different defini-

tions has been studied. It turns out that from a physical

and an optimization points of view, it is more suitable

to compare the behavior when the definition consid-

ers synchronized times. Indeed, this consideration in-

troduces a time component and the inertia effects are

correctly taken into account. A definition based on the

normal distance between to spatial curves, for instance

the trajectories of the robot tip, is not convenient as the

inertia effects are omitted due to the lack of a time com-

ponent. Furthermore, considering synchronized times

makes the design space configuration smoother than

with a normal distance formulation and it therefore of-

fers more easiness for gradient-based algorithms.

Optimization with stress constraints has been re-

alized in a case where the critical instant is known a

priori. The optimization process converges and a quite

large number of stress constraints can be taken into

account. Moreover, an analysis of the mesh refinement

influence has been conducted as well as an investigation

on the feasibility of the starting point. It turns out that

the optimizer is able to converge from an unfeasible

starting point when the mesh is relatively coarse.

Different kinds of optimization algorithms have also

been tested: gradient-based (ConLin, GCM, SQP) and

meta-heuristic algorithms (GA, SBO). Surprisingly, Con-
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Lin which is the less sophisticated algorithm, gives the

best performances for the 2-dof robot. It appears that

conservative approximation techniques may fail in case

of very complex design spaces as encountered in dy-

namic loading problems when strong interactions be-

tween the design variables are present.

At the light of the results, a future work will be to

find out innovative optimization problem formulations

to tackle such complex and nonlinear problems as faced

here. A second point will be to re-investigate structural

optimization methods to better handle the optimization

of these difficult problems.
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