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Abstract

The numerical simulation of wave-like phenomena occurring in large or infinite
domains is a great challenge for a wide range of technological and scientifical
problems. A classical way consists in considering only a limited computational
domain with an artificial boundary that requires a specific treatment. In this the-
sis, absorbing layers are developed and studied for time-dependent problems in
order to deal with such artificial boundary.

A large part of this thesis is dedicated to the perfectly matched layers (PMLs),
which exhibit appealing properties. They are first studied in a fundamental case
with non-dispersive linear scalar waves. A procedure for building PMLs is pro-
posed for convex domains with regular boundary. It permits a great flexibility
when choosing the shape of the computational domain. After, the issue of choos-
ing PML parameters is addressed with the aim of optimizing the PML effectiveness
in discrete contexts. The role of each parameter, including the so-called absorp-
tion function, is highlighted by means of analytical and numerical results. A sys-
tematic comparison of different kinds of absorption functions is performed for
several classical numerical schemes (based on finite differences, finite volumes
or finite elements). Then, while the PMLs do not a priori account for incoming
signals generated outside the computational domain, different problem formu-
lations that account for such forcing are detailed and compared. The interest of
the whole approach is finally illustrated with two- and three-dimensional numer-
ical examples in electromagnetism and acoustics, using a discontinuous finite el-
ement scheme.

In regional oceanic models, modeling open-sea boundaries brings new diffi-
culties. Indeed, additional linear/nonlinear dynamics are involved and the exter-
nal forcing is generally poorly known. In this context, different absorbing layers
and the widely used Flather boundary condition are compared by means of classi-
cal benchmarks. The choice of the absorption function and the way of prescribing
the external forcing are discussed in specific marine cases.





Résumé

La simulation numérique de phénomènes de propagation d’ondes dans des do-
maines très grands, voire infinis, reste un défi pour nombre de problèmes tech-
nologiques et scientifiques. Un moyen classique consiste à utiliser un domaine de
calcul limité dont la frontière nécessite un traitement spécifique. Cette thèse est
dédiée au développement et à l’étude de couches absorbantes pour la modélisation
de ce type de frontière artificielle pour des problèmes en temps.

Les couches absorbantes de type "perfectly matched layer" (PML) présentent
des propriétés intéressantes. Dans un premier temps, on considère des problèmes
de base supportant des ondes scalaires linéaires non-dispersives. On propose
une procédure de construction de PML pour des domaines convexes à frontière
régulière. Les formulations obtenues permettent une grande souplesse dans le
choix de la forme du domaine de calcul. La question du choix des paramètres
de la PML est alors abordée avec pour objectif d’optimiser son efficacité dans
des contextes discrets. Le rôle de chaque paramètre, dont celui de la fonction
d’absorption, est étudié au moyen de résultats analytiques et numériques. Une
comparaison systématique de différentes fonctions d’absorption est réalisée pour
plusieurs schémas numériques classiques (basés sur des différences finies, des
volumes finis ou des éléments finis). Ensuite, alors que les PMLs ne permettent
a priori pas de forcer des signaux générés à l’extérieur du domaine de calcul, dif-
férentes formulations du problème permettant un tel forçage sont présentées et
comparées. Enfin, l’intérêt de l’approche globale est illustré par des simulations
numériques à deux et trois dimensions, en électromagnétisme et en acoustique.
Le schéma numérique utilisé est basé sur des éléments finis discontinus.

Dans les modèles océaniques régionaux, les frontières en mer ouverte appor-
tent de nouvelles difficultés. En effet, des dynamiques supplémentaires linéaires
et/ou non-linéaires doivent être considérées, et le forçage extérieur est générale-
ment mal connu. Dans ce contexte, différentes couches absorbantes et la condi-
tion aux limites de Flather sont comparées au moyen de cas-tests classiques. Le
choix de la fonction d’absorption et la façon de tenir compte d’un éventuel forçage
extérieur sont également discutés.
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Introduction

Numerical simulations are intensively used in both industry and academia for
studying and solving both technological and scientifical problems. The complex-
ity of problems of interest is ever increasing, as well as the accuracy requirements
on the numerical solutions. In order to reduce the computational costs, researchers
are permanently looking for methods that are both cheap and accurate.

In this work, we are interested in the numerical resolution of wave-like prob-
lems set on spatial domains that are infinite or very large in comparison with the
regions of interest. Such kinds of problems are encountered in various branches of
science and engineering. For example, one purpose of aero-acoustics is the study
of the noise generated around aircraft engines. Even if we are only interested in
what happens in a limited region around the engines, the physical domain that
should be ideally considered is the whole space. In electromagnetic compatibility,
electronic devices should ideally be tested in open space to remove exterior influ-
ences, which is approached experimentally by performing the measurements in
anechoic chambers. Finally, many oceanographic and atmospheric models deal
with a limited geographic zone instead of the whole globe. All these examples have
in common the propagation of waves (i.e. sound waves, electromagnetic waves
and oceanic/atmospheric waves, respectively) in infinite or large regions.

A major challenge for the numerical simulation of such problems is to com-
pute the solution on a small domain — the truncated domain — instead of the
large or infinite physical one, without altering the original solution. The bound-
ary of the truncated domain is purely artificial, and requires a specific treatment.
At this boundary, the model is supposed to describe accurately the outward prop-
agation of signals and perturbations of all kinds generated inside the truncated
domain, even if they are a priori not known. For this purpose, a lot of boundary
conditions, artificial layers and alternative techniques have been developed and
used in various physical and numerical contexts (see e.g. [9, 27, 41, 71, 73, 79, 164]
and references therein).

Artificial layers, generally called absorbing layers, have been used for a long
time to deal with truncated domains. Inside these layers, the model equations
are modified in order to damp (or ‘absorb’) outgoing waves. Initially, such absorb-
ing layers were built based on physical reasoning, and were mainly dedicated to
improving the efficicency of artificial boundary conditions. The introduction of
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2 Introduction

the perfectly matched layer (PML) concept by Bérenger [21] in 1994 changed the
paradigm. With his PML, Bérenger showed that it is possible to design layers that
perfectly simulate the truncation of the physical domain in electromagnetism. Af-
terwards, the concept has been extended and used in a large range of wave-like
problems.

While the efficiency of PMLs has already been demonstrated in many cases, fur-
ther developements are required and new absorbing layers must be developed to
deal with increasingly complex problems. This notably emcompasses problems
involving nonlinear dynamics, complicated geometries or large-scale computa-
tion.

Scope and goals of this work

This work contributes to the improvement of truncation strategies for simulating
wave-like phenomena that occur in large or infinite areas. In particular, it is fo-
cused on the design, the discretization and the optimization of absorbing layers
for time-dependent problems.

For this purpose, three topics are treated in the context of scalar-waves time-
dependent problems:

• The design of PMLs for truncated domains of general shape.

Since the choice of the truncated domains is a priori arbitrary, it is advan-
tageous to take a truncated domain as small as possible in order to reduce
the computational cost. This can lead to domains with non-conventional
shapes (i.e. that are not cuboid, cylindrical or spherical). However, only a
few time-dependent PML formulations have been investigated in the liter-
ature for these kinds of domains [52, 107]. In this thesis, we are looking for
a simple procedure to build such formulations, which can be easily imple-
mented in existing finite difference, finite volume or finite element codes.

• The optimal choice of PML parameters.

In discrete contexts, the efficiency of a PML essentially depends on the layer
thickness, the discretization and a spatially varying function σ, called ab-
sorption function. Increasing the layer thickness and refining the discretiza-
tion generally improve the PML effectiveness, but at the price of an increas-
ing computational cost. Therefore, a common approach is to first choose
them, and then tune the absorption functionσ. However, this tuning is gen-
erally made by using costly case-dependent optimization procedures or em-
pirical rules. In this thesis, we study in detail the influence of the problem
parameters on the PML efficiency at the discrete level, and compare differ-
ent absorption functions. We aim at reaching a conclusion as general as
possible on optimum parameters in order to make any tuning unnecessary
for a large range of applications.
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• The external forcing of incoming signals through PMLs.

For several problems, such as scattering problems, wave sources are placed
outside the truncated domain. The incoming signals generated by these
sources must then be prescribed through the layer. However, PML formu-
lations do not naturally account for such external forcing. We are therefore
looking for strategies to prescribed incoming signals without altering the ef-
ficiency of the PML.

Even if all developments are made in the specific context of a basic scalar wave
system, the scope of our conclusions is larger. The applicability of our approach is
first tested on acoustic and two-dimensional electromagnetic cases. We then deal
with regional oceanographic models where additional difficulties are considered:
multiple dynamics and the poor knowledge of external forcing.

Outline

This work is divided into five chapters. The chapter following this introduction
presents the mathematical and numerical frameworks of this thesis. Fundamen-
tal systems of equations for wave-like problems are defined: the hyperbolic sys-
tem and the scalar wave system. Their properties related to wave propagation are
highlighted. Then, different numerical schemes are derived with classical meth-
ods: finite difference method, finite volume method and finite element method
with both continuous and discontinuous elements.

In chapter 2, we propose a review of the main kinds of boundary conditions and
absorbing layers that deal with truncated domains. Bérenger’s PML is presented
and its fundamental properties at the continuous level are highlighted. Some in-
tepretations of PMLs are explained and illustrated in the time-harmonic domain.
After, we propose a procedure for building novel PMLs for general convex trun-
cated domains with regular boundary. The PML equations are explicitly written
for the time-dependent scalar wave system in Cartesian coordinates.

Chapter 3 deals with the optimization of PMLs at the discrete level, i.e. when
numerical methods are used. First, we study in detail the influence of the problem
parameters on the efficiency of discretized PMLs in one dimension. We derive and
interpret new analytical results for the finite difference scheme. Numerical results
are then provided to extend the analysis to other numerical schemes. Then, dif-
ferent kinds of absorption functions are optimized and compared by means of nu-
merical results in both one and two dimensions. In order to draw conclusions as
general as possible, all numerical simulations are systematically performed with
the different numerical schemes.

In chapter 4, we present different strategies to account for incoming signals
in scattering problems when PMLs are used. Then, we propose a discontinuous
Galerkin scheme for the general PML equations of the scalar wave system. Its nu-
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merical convergence is shown. Two illustrations of electromagnetic and acoustic
scattering applications are presented in two and three dimensions, respectively.
They show the efficiency of the proposed PML formulations with generally shaped
truncated domains, and confirm the conclusion of the previous chapter.

Chapter 5 is dedicated to the study of absorbing layers in the perspective of
marine applications. Different absorbing layers (which are perfectly matched or
not) are presented in the framework of the shallow water model. These layers
are compared, and the choice of the absorption function (a common constraint
for all these layers) is discussed using benchmarks that are strongly influenced by
the dynamics of oceanography. The methods for prescribing an external solution
through an absorbing layer are discussed in the case of the shallow water model.

Finally, general conclusions are drawn and research prospectives are pointed
out.

Original contributions and communications

Hereafter, a list of main contributions that we believe original is drawn up:

– A complete procedure for building PMLs for convex truncated domains with
regular boundary, applicable in time-harmonic and time-dependent prob-
lems (section 2.4). The implementation of a PML for a non-conventionally
shaped truncated domain in a three-dimensional benchmark (section 4.4.2);

– Exact formulas of discrete reflection coefficients associated to a PML in one
dimension, discretized with a finite difference method, for a constant ab-
sorption function (section 3.2.1);

– The systematic comparison of optimized absorption functions in both one
and two dimensions, with four different numerical methods in the time do-
main (section 3.3). The extension of this comparison to cases dominated by
ocean dynamics (sections 5.3 and 5.4);

– An original interpretation of the optimized hyperbolic absorption functions
(section 3.3.3.3 and end of section 5.4);

– Two novel layers for shallow water equations (section 5.2). A comparison be-
tween these novel layers, classical layers and a classical boundary condition
by means of different benchmarks (chapter 5);

– The use of an interface condition for forcing incoming signals through layers
in the context of the shallow water model (section 5.5).
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An important part of the time devoted to the realization of this thesis has been
spent on implementing the proposed methods in different research codes. The
majority of simulations, performed with discontinuous Galerkin schemes, have
been performed using a C++/Python code developed in collaboration with the re-
search group MEMA of the University of Louvain. Our specific contribution in this
code consists in new physical modules with supplementary conservation laws, in-
terface conditions and boundary conditions. Then, the continuous finite element
simulations has been done using the open-source GetDP software [54]. Finally,
the finite difference and finite volume schemes have been implemented in orig-
inal Matlab codes, except for the nonlinear oceanographic simulation of section
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CHAPTER 1
Some Fundamentals

of Wave-Like Problems

1.1 Introduction

In this work, we investigate the numerical resolution of time-dependent problems
defined with hyperbolic partial differential equations. These equations are infor-
mally interpreted as supporting wave-like phenomena. Important laws of physics
are described by hyperbolic equations, such as the Euler equations, the Maxwell
equations and the shallow water equations. Since the properties of these equa-
tions are similar, common numerical methods have been developed and used for
the various application contexts involving propagation of waves.

The aim of this chapter is to introduce the mathematical framework and the
numerical methods used in this work. In section 1.2, the equations of wave-like
problems are defined: the hyperbolic system (general case) and the scalar wave
system (fundamental case). For both cases, mathematical tools highlighting some
fundamental properties of the equations are presented: the plane-wave solution
and the characteristic analysis. In section 1.3, the numerical methods used in this
thesis are presented: the finite difference method (FD method), the finite volume
method (FV method) and both continuous and discontinuous finite element meth-
ods (FE methods). The numerical schemes are given in the context of the scalar
wave system, which is enough to sketch the key ideas of each method.

The first part of this chapter is based on the reference books of Evans [61],
Hirsch [87], Toro [163] and Whitham [166]. For the numerical methods we also
refer to LeVeque [109] and Hesthaven and Warburton [86].

7
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1.2 Definition and properties of wave-like systems

In this section, two systems of partial differential equations (PDEs) describing
wave-like phenomena are presented and studied: the general hyperbolic system
and the scalar wave system. Their main properties are highlighted using the plane-
wave analysis and the characteristic analysis.

1.2.1 Hyperbolic system

In the most general case, let us consider the system of m first-order PDEs with the
quasi-linear form

∂v

∂t
+

d∑
i=1

Ai
∂v

∂xi
= s, ∀(x, t ) ∈Ω×R+, (1.1)

where the unknown v(x, t ) is a vector field with m real components. It is defined
in a bounded spatial domain Ω ⊂ Rd with the spatial dimension d = 1, 2 or 3.
The vector x = (x1, . . . , xd )T denotes the spatial position and t is the time. The
m ×m matrices Ai and the m-component vector s are real. They may depend on
v, x and t , but not on the derivatives of v. The hyperbolicity condition then reads
[61, 87, 163, 166]:�

�

�

�
The system (1.1) is hyperbolic if, for every vector n = (n1, . . . ,nd )T ∈Rd ,
the eigenvalues of the m ×m matrix B =∑d

i=1 ni Ai are real
and its eigenvectors form a basis of Rm , ∀(x, t ) ∈Ω×R+.

As a consequence, the matrix B is diagonalizable.

1.2.2 Scalar wave system

One fundamental PDE is the scalar wave equation,

∂2p

∂t 2 −a∇· (b∇p) = 0, ∀(x, t ) ∈Ω×R+, (1.2)

where the unknown p(x, t ) is a real scalar field and both a and b are constant
nonzero real parameters. Introducing a real vector field u(x, t ), this second-order
equation can be rewritten as the first-order scalar wave system

∂p

∂t
+a∇·u = 0, ∀(x, t ) ∈Ω×R+,

∂u

∂t
+b∇p = 0, ∀(x, t ) ∈Ω×R+,

(1.3)

which is a hyperbolic system. Both equation (1.2) and equivalent system (1.3) are
used for modeling various physical waves, such as acoustic waves, linear gravity
waves or transverse electric/magnetic waves.
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1.2.3 Plane-wave analysis

The elementary solution in the form of a complex harmonic plane wave

e ı(k·x−ωt )

is frequently used to study wave-like problems [74, 85, 103]. The real vector k is the
wave vector and the real scalar ω is the angular frequency, assumed to be positive.
The wave vector indicates the direction of propagation of the plane wave. This so-
lution is an ideal representation of many physical phenomena. The Fourier theory
allows arbitrary wave forms to be constructed from harmonic plane waves.

Plane-wave solution of the general hyperbolic system

Hyperbolic systems are informally interpreted as systems supporting wave-like
solutions [61, 87]. It can be illustrated considering the harmonic plane-wave solu-
tion of the system (1.1),

v(x, t ) = Ve ı(k·x−ωt ), (1.4)

where V is the amplitude, assumed to be constant. The homogeneous part of the
system (1.1) admits solutions of form (1.4) if the system(

d∑
i=1

ki Ai −ωI

)
V = 0

admits non-trivial solutions. This equality asserts that V is an eigenvector of the
matrix

∑d
i=1 ki Ai corresponding to the eigenvalue ω. Therefore, the hyperbolicity

condition means that there are m distinct plane-wave solutions of (1.1) in each
direction n. The propagation velocities of these plane waves is λi /‖n‖, where λi is
the i th eigenvalue of B, corresponding to the i th mode of propagation.

Plane-wave solution of the scalar wave system

For the scalar wave system (1.3), the elementary harmonic plane-wave solution
reads (

p(x, t )
u(x, t )

)
=

(
P
U

)
e ı(k·x−ωt ), (1.5)

where P and U are the amplitudes. This plane wave is a solution of the system (1.3)
if two important relations are satisfied: the dispersion relation

ω=
p

ab ‖k‖ (1.6)

and the amplitude relation

P
k

‖k‖ =
√

a

b
U, (1.7)
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where ‖k‖ =p
k ·k is the norm of the vector k. Indeed, injecting the solution (1.5)

in the system (1.3) gives the system{−ıωP +aık ·U = 0,

−ıωU+bıkP = 0,

which is true if and only if the relations (1.6) and (1.7) are satisfied.

Two important quantities are obtained from the relations (1.6) and (1.7): the
phase velocity c, which is the propagation velocity of the plane waves in the direc-
tion k,

c
def.= ω

‖k‖ =
p

ab,

and the impedance Z , which is the ratio of the amplitudes of fields,

Z
def.= |P |

‖U‖ =
√

a

b
.

They characterise the wave propagation in the medium.

1.2.4 Characteristic analysis

The characteristic analysis provides an efficient way to highlight properties of quasi-
linear first-order PDEs. In the most fundamental cases, the solution of initial
boundary value problems can be obtained with this method (see e.g. [87, 163]).

Characteristic analysis of the general hyperbolic system

In order to introduce the concepts, let us consider the hyperbolic system (1.1) in a
one-dimensional homogeneous case with constant coefficients. The system then
reduces to

∂v

∂t
+A

∂v

∂x
= 0, (1.8)

Since this system is hyperbolic, the constant matrix A is diagonalizable. Define the
eigenvalue matrix Λ = diag(λ1, . . . ,λm) and the eigenvector matrix T = [t1 · · ·tm],
which are connected by the relation Λ = T−1AT. The system (1.8) can then be
rewritten

∂w

∂t
+Λ∂w

∂x
= 0, (1.9)

where w = T−1v = (w1, . . . , wm)T is a new set of unknowns called characteristic
variables. The equations of this system are the characteristic equations. Since
the matrix Λ is diagonal, the system is decoupled and each equation can be in-
terpreted separately.

Each equation of the system (1.9) is a transport equation. Indeed, the j th equa-
tion

∂w j

∂t
+λ j

∂w j

∂x
= 0 (1.10)
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required

(boundary
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x = x j (t ) x = x j (t )
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Figure 1.1: Characteristic lines in the x − t plane for the one-dimensional problem with
λ j > 0 (a) and λ j < 0 (b). For both cases, the gray zone indicates the area influenced by the
initial value of the characteristic variable w j , i.e. the value prescribed at t = 0 on the seg-
ment [0,L], while the orange zone is influenced by the value prescribed at the boundary.

describes the transport of the quantity w j at the velocity λ j , for j = 1, . . . ,m. A
useful interpretation is obtained considering the set of characteristic lines x = x j (t )
in the x − t plane defined by

dx j

dt
=λ j . (1.11)

The rate of change of w j along the line x = x j (t ) is

dw j

dt

∣∣∣∣
x=x j (t )

= ∂w j

∂t
+ dx j

dt

∂w j

∂x
.

Considering the equations (1.10) and (1.11), this rate is equal to zero. Therefore,
along a characteristic line x = x j (t ), the corresponding characteristic variable w j

stays constant. It is called Riemann invariant.

Considering now the complete system (1.9), the interpretation above means
that, as time increases, the value of the m characteristic variables are preserved
along m sets of characteristic lines. Therefore, information (the value of the vari-
ables wi ) is transported (or ‘propagated’) in the spatial domain at velocities given
by the eigenvalues λ j . This interpretation exactly corresponds to a wave propaga-
tion phenomenon.

In the context of initial-boundary value problems, the characteristic analysis
provides the number of relations to prescribe as initial or boundary conditions.
This can be shown for the system (1.8) with x ∈ [0,L], by considering the zones of
influence of the characteristic variables, illustrated in Figure 1.1. Since the value of
a characteristic variable w j (x, t ) is preserved along the corresponding character-
istic lines, w j (x, t ) is entirely defined by its initial value in the gray zone and by a
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boundary value in the yellow zone. Therefore, for both cases shown in Figure 1.1,
one relation is required on each bold segment, where characteristic lines start. On
the contrary, no relation must be prescribed on the dashed segment, where w j is
already determined by the values propagated along characteristic lines. For the
complete problem (1.8), the number of initial conditions then corresponds to the
number of fields, while the number of boundary conditions depends on the num-
ber of sets of characteristic lines that start at the considered boundary.

The characteristic analysis can be performed considering a more general non-
constant matrix A(v,x, t ) and a source term s(v,x, t ) in the one-dimensional system
(1.8). In this case, the characteristic lines become curves satisfying

dx j

dt
=λ j (v,x, t )

and the characteristic variables w j can vary along thereof. Nonetheless, the global
idea of the analysis remains the same, especially concerning the number of bound-
ary conditions [87, 166].

Unfortunately, the extension of this analysis to the multidimensional case is
not straightforward (see e.g. [87, 166]). Indeed, the general system (1.1) cannot be
diagonalized, except if the matrices Ai are simultaneously diagonalizable, which
happens in only very specific cases. Nevertheless, useful information is obtained
assuming v varies in only one direction n. Depending on the interpretation, this
direction can be the propagation direction of a plane wave or the normal direction
to a boundary. The general system (1.1) then reduces to

∂v

∂t
+B

∂v

∂xn
= s,

where xn = x ·n and B = ∑d
i=1 ni Ai . Then, a characteristic analysis of this system

indicates the information that is propagated upstream and downstream the direc-
tion n and the number of boundary conditions to prescribe for initial-boundary
value problems.

Characteristic analysis of the scalar wave system

Following the procedure presented for the general hyperbolic system, let us as-
sume that the fields vary only along a direction n. Therefore, the scalar wave sys-
tem (1.3) reduces to the one-dimensional system

∂p

∂t
+a

∂un

∂xn
= 0,

∂un

∂t
+b

∂p

∂xn
= 0,

(1.12)

where un and xn are the projections of the vectors u and x in the direction n. Some
algebraic manipulations allow to rewrite this system with the decoupled charac-
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teristic equations 
∂w1

∂t
+
p

ab
∂w1

∂xn
= 0,

∂w2

∂t
−
p

ab
∂w2

∂xn
= 0,

where the characteristic variables

w1 = p +
√

a

b
un , (1.13)

w2 = p −
√

a

b
un , (1.14)

are the Riemann invariants. These equations are transport equations. Interpreting
this system, the information contained in the characteristic variables w1 and w2

is transported in the spatial domain respectively to the directions n (downstream)
and −n (upstream) at the velocity

p
ab.

In the case of an initial-boundary value problem, one boundary condition must
be prescribed at each boundary, whatever the spatial dimension. Indeed, consid-
ering n is the outward normal direction to the boundary, one characteristic vari-
able (w1) is propagated along characteristic lines from the boundary (one relation
required), while the other (w2) is propagated towards the boundary (no relation
required).

1.3 Numerical resolution

The goal of numerical methods is to provide approximate solutions, called numer-
ical solutions, for problems that cannot (or can only hardly) be solved analytically.
These methods involve two steps: the choice of a discrete space, that determines
the shape of the numerical solution, and the design of a numerical scheme that
governs this solution (instead of continuous laws).

In this section, the numerical methods used in this thesis are presented in the
context of the wave system (1.3), which is sufficient to sketch the key ideas of each
method. Explanations are focused on the numerical resolution in space. The nu-
merical resolution in time (or time-stepping) is not a critical issue in this work and
is performed using classical schemes. Therefore, we refer to the reference books
[87, 155] for further details.

1.3.1 Finite difference method

The finite difference method (FD method) is the oldest and simplest numerical
method used for solving problem with PDEs. It was already known by Leonhard
Euler in 1768. Today, it is widely used in both research and industry [e.g. 44, 56,
77, 87, 153, 155].



14 Some Fundamentals of Wave-Like Problems

ex

ey

ũx |i , j+1/2 ũx |i+1, j+1/2

ũy |i+1/2, j

ũy |i+1/2, j+1

•

p̃i+1/2, j+1/2

Figure 1.2: FD method. Discretization of the fields on the mesh.

The idea of the FD method is quite simple. The continuous fields are directly
approximated by discrete ones. Each discrete field has then values at different
points of a regular grid. They are governed by discrete equations that are built by
replacing the partial derivatives of the PDEs with finite differences.

The FD schemes used in this thesis are built considering a spatial discretiza-
tion of the fields on staggered grids. For the two-dimensional problem, the spatial
domain is partitioned into regular non-overlapping cells of size ∆x ×∆y . As il-
lustrated in Figure 1.2, the scalar field p is approximated by the spatially discrete
field p̃, that is defined at the center of each cell. The Cartesian components of the
vector field u = (

ux ,uy
)T are approximated by ũx and ũy , that have values at the

center of the interfaces. This can be written

p̃i+1/2, j+1/2(t ) ≈ p(xi+1/2, j+1/2, t ), (1.15)

ũx |i , j+1/2(t ) ≈ ux (xi , j+1/2, t ), (1.16)

ũy |i+1/2, j (t ) ≈ uy (xi+1/2, j , t ), (1.17)

where xi , j = (i∆x, j∆y) is the position of the discrete point (i , j ), and i and j are the
indices corresponding to the spatial directions. Such staggered grids have been
introduced by Yee [168] in the electromagnetic context and by Arakawa and Lamb
[10] in the oceanographic context. They are now considered classical [44, 155].

The equations governing the semi-discrete fields (1.15)-(1.17) are simply ob-
tained by remplacing the spatial partial derivatives of the PDEs (1.3) with central



1.3. Numerical resolution 15

finite differences of fields. The numerical scheme is then written

dp̃i+1/2, j+1/2

dt
+a

(
ũx |i+1, j+1/2 − ũx |i , j+1/2

∆x
+

ũy |i+1/2, j+1 − ũy |i+1/2, j

∆y

)
= 0,

dũx |i , j+1/2

dt
+b

p̃i+1/2, j+1/2 − p̃i−1/2, j+1/2

∆x
= 0,

dũy |i+1/2, j

dt
+b

p̃i+1/2, j+1/2 − p̃i+1/2, j−1/2

∆y
= 0.

At the border of the computational domain, boundary conditions are easily pre-
scribed. The value of the discrete field (for a Dirichlet condition) or the finite dif-
ference (for a Neumann condition) is simply replaced at the border.

This spatial scheme is dispersive and non-dissipative (see section A.1 and [87,
155]). The final scheme conserves the total energy if this spatial scheme is used to-
gether with a non-dissipative time-stepping scheme, such as the Crank-Nicolson
scheme or the Leapfrog scheme with staggered grids in time.

1.3.2 Finite volume method

The finite volume method (FV method) is based on the discretization of the in-
tegral form of PDEs instead of the direct discretization of the differential form.
This method presents some major advantages: unstructured meshes (and thus
complex geometries) and media with discontinuous properties are easily consid-
ered. In addition, since integral forms are used for expressing conservation prop-
erties, FV numerical schemes that preserve these properties can be naturally built
[87, 109].

The fields are discretized using a partition M of the spatial domainΩ into non-
overlapping polyhedral cells. In this work, each unknown field is approximated by
its average value over each cell — this strategy is sometimes called cell-centered
approach —, i.e.

p̃(x, t ) = p̃e (t ), for x ∈Ωe , ∀Ωe ∈M ,

ũ(x, t ) = ũe (t ), for x ∈Ωe , ∀Ωe ∈M ,

with

p̃e (t ) ≈ 1

Ve

∫
Ωe

p(x, t ) dx,

ũe (t ) ≈ 1

Ve

∫
Ωe

u(x, t ) dx,

where Ωe denotes the eth cell and Ve is its area (in two dimensions) or its volume
(in three dimensions). Therefore, the numerical solution is piecewise-constant in
the domain.
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A numerical FV scheme for the system (1.3) is obtained by discretizing its in-
tegral form instead of its differential form for each cell. The integral form corre-
sponding to the cellΩe reads

d

dt

∫
Ωe

p dΩe +
∫
Γe

(au) ·ne dΓe = 0,

d

dt

∫
Ωe

u dΩe +
∫
Γe

(bp)ne dΓe = 0,
(1.18)

where Γe is the boundary of the eth cell and ne is its outward unit normal on Γe .
For both equations, the approximation of the volume integrals is trivial since the
numerical solution is constant in each cell. However, it is more complicated for
the surface integrals: the solution is discontinuous at interfaces between cells and
boundary conditions must be taken into account at the border of the domain Ω.
Therefore, specific numerical fluxes must be carefully defined in order to correctly
evaluate these surface integrals. Finally, the numerical scheme reads

dp̃e

dt
+ 1

Ve

N faces
e∑

i=1
f num

e,i Se,i = 0,

dũe

dt
+ 1

Ve

N faces
e∑

i=1
f num

e,i Se,i = 0,

(1.19)

where N faces
e is the number of faces of the cellΩe , f num

e,i and f num
e,i are the numerical

fluxes across the i th face and Se,i is the area of this face.

Numerical fluxes at the interface between two cells

At the interface between two cells, a first set of numerical fluxes, called centered
fluxes, are obtained by simply considering the mean value of the fields, i.e.

f num
e,i = a

{
ũ
} ·ne , (1.20)

f num
e,i = b

{
p̃

}
ne , (1.21)

where
{ℵ}

denotes the mean value of the quantity ℵ at the i th face ofΩe , i.e.

{ℵ}= ℵ++ℵ−

2
.

The superscripts + and − correspond to the value of ℵ in the adjacent cell and the
current cell respectively, as illustrated in Figure 1.3 for the two-dimensional case.
The resulting numerical scheme is non-dissipative [163].

As an alternative, the so-called upwind fluxes are obtained by using a one-
dimensional Riemann solver. At the interface, consider the one-dimensional sys-
tem (1.12), where n is here the outward unit normal ne . With the Riemann solver,
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Ωe
ne

− +

Figure 1.3: FV method. Notation used on both sides of an interface for discontinuous
quantities. The sign ‘−’ corresponds to the current cell (Ωe ), while ‘+’ is for the adjacent
cell.

an upwind scheme is used for each characteristic variable. The characteristic vari-
able that is transported outward (w1) takes its value in the current cell, while the
other (w2), which is transported inward, takes its value in the adjacent cell, i.e.{

w?
1 = w+

1 ,

w?
2 = w−

2 .

Using the definition of the characteristic variables (1.13)–(1.14), this system is rewrit-
ten 

p̃?+
√

a

b
ũ?n = p̃−+

√
a

b
ũ−

n ,

p̃?−
√

a

b
ũ?n = p̃+−

√
a

b
ũ+

n ,

where p̃? and ũ?n are the values to use in the numerical fluxes. Solving this system
gives

p̃? = {
p̃

}−√
a

b

�
ũn

�
,

ũ?n = {
ũn

}−
√

b

a

�
p̃

�
,

where
�ℵ�

denotes the jump value of the quantity ℵ at the interface, i.e.�ℵ�= ℵ+−ℵ−

2
.

Finally, the numerical fluxes read

f num
e,i = a

{
ũ
} ·ne −

p
ab

�
p̃

�
, (1.22)

f num
e,i = b

{
p̃

}
ne −

p
ab

(�
ũ
� ·n

)
ne . (1.23)
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In comparison with centered fluxes, these upwind fluxes are penalized by the jump
of the fields in the second terms. These additional terms introduce dissipation in
the numerical scheme [163].

When the coefficients a and b are piecewise constant, the integral form (1.18)
remains valid, as well as the numerical scheme (1.19), but the numerical fluxes
must be adapted to take into account the jump of these coefficients at the interface
between cells. The numerical fluxes are then written

f num
e,i = a−u?n ,

f num
e,i = b−p?ne ,

where the values p? and u?n are given by an adapted Riemann solver [109],

p̃? =
{
Y p̃

}{
Y

} − α{
Y

}�
ũn

�
,

ũ?n =
{

Z ũn
}{

Z
} − α{

Z
}�

p̃
�

,

with Z = p
a/b and Y = p

b/a. The decentering parameter α is equal to 1 for
upwind fluxes and 0 for centered fluxes.

Numerical fluxes at the boundary of the domain

At the border of the domain, the boundary condition must be prescribed through
the numerical fluxes. A strategy consists in extending the domain to include an
additional ghost cell [109, 163]. Therefore, the numerical fluxes defined above are
reused with the ghost cells as adjacent cells.

In this work, a Dirichlet condition on one field is prescribed by replacing the
value of this field in the ghost cell. For the other field, the value of the current
cell is reused in the ghost cell. For example, the Dirichlet condition u ·n = g (t ) is
prescribed using

p̃+ = p̃−,

ũ+
n = g (t ).

The upwind fluxes (1.22)–(1.23) then become

f num
e,i = a

g + (ũ− ·ne )

2
,

f num
e,i = bp̃−ne −

p
ab

(
g − (ũ− ·ne )

2

)
ne .
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1.3.3 Finite element method

The finite element method (FE method) offers a general framework to build numer-
ical schemes. This method is very appealing for solving PDEs on complex geome-
tries, especially if curved boundaries must be considered. Indeed, unstructured
meshes are naturally taken into account and curved cells can be used. Moreover,
various techniques have been developed to improve the representation of the so-
lution, such as high-order elements, mixed elements [67, 99, 128, 145], discontin-
uous elements [37, 86] and the extended finite element method (X-FEM) [124].

In this work, we consider a continuous Galerkin method (CG method) and a
discontinuous Galerkin method (DG method). For both methods, the solution is
approximated by polynomial functions over each cell (called element) of the mesh.
The fundamental difference is the continuity of the numerical solution at the in-
terfaces between elements, which is enforced with CG and not with DG. In the case
of first-order elements, where the discrete unknowns of the discrete problems are
the values of the fields at the nodes of the mesh, each field has one single value
per node with CG, while it has different values per node (one for each neighboring
element) with DG, as illustrated in Figure 1.4.

The DG method is generally considered as a clever combination of FV and
CG methods: from the former, it naturally deals with discontinuous solutions;
from the latter, high-order and curved elements can be used. However, since the
discrete unknowns have multiple values at the interfaces between elements, the
number of unknowns and the size of the algebraic system to solve are larger with
the DG method than with the CG method. This disadvantage is offset consider-
ing the DG scheme has an ideal form to perform a parallel computation, which
explains its success.

•

•

•

• •

•

•

•

•

•

(a) CG method (b) DG method

Figure 1.4: Illustration of the discrete unknowns in first-order elements for both CG and
DG methods. At an interface between two elements, each field has one single value per
node with the continuous method (a), and one value per node for each neighboring ele-
ment with the discontinuous method (b).
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Two finite element solvers have been used during the realisation of this thesis.
The GetDP software [54] for the CG schemes, and a DG code developed in collab-
oration with the research group MEMA of the University of Louvain. All meshes
are made using the Gmsh software [68, 69].

The CG and DG numerical schemes are detailed hereafter. For more clarity,
inner products over the domain D and its boundary B = ∂D are denoted

(
f , g

)
D =

∫
D

f g dD,〈
f , g

〉
B =

∫
B

f g dB,

where f and g are scalar fields. Similar notations are used for inner products of
vectors.

1.3.3.1 Continuous Galerkin method

Let us consider a partition M of the domain Ω into non-overlapping cells. Over
the eth cell, denotedΩe , the local numerical solution is written as a truncated poly-
nomial expansion

p̃e (x, t ) =
Ne∑

i=1
p̃e,i (t )ϕe,i (x), for x ∈Ωe ,

ũe (x, t ) =
Ne∑

i=1
ũe,i (t )ϕe,i (x), for x ∈Ωe ,

where Ne is the number of discrete unknowns associated to the cell, p̃e,i and ũe,i

are the discrete unknowns, and the function ϕe,i (x) is a local basis function. Hier-
archical functions [53, 55, 67] are used as local basis functions. Since the solution
is continuous throughout the domain, the global numerical solution can be writ-
ten

p̃(x, t ) =
N∑

i=1
p̃i (t )ψi (x), (1.24)

ũ(x, t ) =
N∑

i=1
ũi (t )ψi (x), (1.25)

where N is the total number of discrete unknowns associated to each field, i is now
a global index, p̃i and ũi are the discrete unknowns with the global numerotation,
and the function ψi (x) is a global basis function. Each global basis function is
obtained by combining the local basis functions associated to the same discrete
unknown in different elements. Resulting functions are therefore continuous.

The numerical scheme is built from a weak form of the equations (1.3) over
the domain Ω. This weak form is obtained by multiplying the equations by test
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functions and integrating them over the domain Ω. Using integration by parts,
one has 

(
∂p

∂t
, p̂

)
Ω

− (
au,∇p̂

)
Ω+〈

(au) ·n, p̂
〉
Γ = 0, ∀p̂,(

∂u

∂t
, û

)
Ω

+ (
b∇p, û

)
Ω = 0, ∀û,

(1.26)

where the vector n is the outward unit normal on the boundary Γ. The system
(1.26) must stay valid for all test functions p̂ and û that are in the same spatial
function space as the unknown fields p and u, respectively. In the discrete prob-
lem, both the numerical solution (1.24)–(1.25) and the test functions must belong
to the finite basis {ψi }N

i=1, which is complete. Therefore, injecting the numerical
solution in the weak form, and using the basis functions as test functions, one
obtains successively, for j = 1, . . . , N ,

(
∂p̃

∂t
,ψ j

)
Ω

− (
aũ,∇ψ j

)
Ω
+〈

(aũ) ·n,ψ j
〉
Γ
= 0,(

∂ũ

∂t
,ψ j

)
Ω

+ (
b∇p̃,ψ j

)
Ω
= 0,

and 
N∑

i=1

[(
ψi ,ψ j

)
Ω

dp̃i

dt
− (

aψi ,∇ψ j
)
Ω
· ũi +

〈
(aψi )n,ψ j

〉
Γ
· ũi

]
= 0,

N∑
i=1

[(
ψi ,ψ j

)
Ω

dũi

dt
+ (

b∇ψi ,ψ j
)
Ω

p̃i

]
= 0.

(1.27)

This system can be written in the matrix form

M
dṼ

dt
+KṼ = 0, (1.28)

where M is the global mass matrix, and K is the global stiffness matrix. The vector
Ṽ contain all the discrete unknowns of the problem. The elements of matrices are
computed using numerical integration.

A Dirichlet boundary condition on a field is strongly incorporated in the for-
mulation by fixing the value of the corresponding discrete field at the nodes of the
boundary Γ. A Neumann boundary condition on u is weakly taken into account
by modifying the boundary term in the system (1.27).

Stabilization with the PSPG method

Unfortunately, spurious numerical oscillations are generated by the formulation
(1.27) [49]. Stabilization techniques have been developed to avoid them (see e.g.
[49, 81, 111]).

In this work, we consider the Pressure-Stabilization Petrov-Galerkin method
(PSPG method) proposed by Hughes, Franca and Balestra [94]. It consists in adding
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a stabilization term in the left-hand side of the first equation of the weak form
(1.26),

−(
κRu,∇p̂

)
Ω ,

where κ is the numerical stabilization parameter and Ru is the residue associated
to the second equation of the differential form (1.3), i.e.

Ru = ∂u

∂t
+b∇p.

1.3.3.2 Discontinuous Galerkin method

With the DG method, the procedure for building the numerical solution and the
numerical scheme is similar to the one employed above with the CG method. The
fundamental difference is that the global basis functions are here discontinuous.
An additional step is then introduced in the procedure in order to account for the
discontinuities of the numerical solution.

Over the eth cell of the mesh M , the local numerical solution reads, with a trun-
cated polynomial expansion,

p̃e (x, t ) =
Ne∑

i=1
p̃e,i (t )φe,i (x), for x ∈Ωe ,

ũe (x, t ) =
Ne∑

i=1
ũe,i (t )φe,i (x), for x ∈Ωe ,

where Ne is the number of discrete unknowns associated to each field on the eth

cell, p̃e,i and ũe,i are the discrete unknowns, and the functionφe,i (x) is a local basis
function. Here, the local basis functions are the multivariate Lagrange interpola-
tion polynomials associated to points {xe,i }Ne

i=1 (called nodes) of the cell (see e.g.
[86]). They are such that

φe,i (xe, j ) =
{

1, if i = j ,
0, if i 6= j ,

for i , j = 1, . . . , Ne .

Therefore, Ne represents the number of nodes associated to the eth element, and
p̃e,i and ũe,i are the values of numerical fields at the node xe,i . The global numeri-
cal solution writtes

p̃(x, t ) = p̃e (x, t ), for x ∈Ωe , ∀Ωe ∈M ,

ũ(x, t ) = ũe (x, t ), for x ∈Ωe , ∀Ωe ∈M .

This solution is discontinuous at the interfaces between elements.
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The numerical scheme is now built from a weak form of the equations (1.3) over
each elementΩe ,

(
∂p

∂t
, p̂

)
Ωe

− (
au,∇p̂

)
Ωe

+〈
(au) ·ne , p̂

〉
Γe

= 0, ∀p̂,(
∂u

∂t
, û

)
Ωe

− (
bp,∇· û

)
Ωe

+〈
(bp)ne , û

〉
Γe

= 0, ∀û,
(1.29)

where the vector ne is the outward unit normal on the boundary Γe . Again, the
system (1.29) must stay valid for all test functions p̂ and û that are in the same
spatial function space as the unknown fields p and u, respectively. Injecting the
numerical solution in the weak form (1.29), and using the local basis functions as
test functions, one obtains successively, for j = 1, . . . , Ne ,

(
∂p̃e

∂t
,φe, j

)
Ωe

− (
aũe ,∇φe, j

)
Ωe

+〈
f num

e ,φe, j
〉
Γe

= 0,(
∂ũe

∂t
,φe, j

)
Ωe

− (
bp̃e ,∇φe, j

)
Ωe

+〈
f num

e ,φe, j
〉
Γe

= 0,

and
Ne∑

i=1

[(
φe,i ,φe, j

)
Ωe

dp̃e,i

dt
− (

aφe,i ,∇φe, j
)
Ωe

· ũe,i

]
+〈

f num
e ,φe, j

〉
Γe

= 0,

Ne∑
i=1

[(
φe,i ,φe, j

)
Ωe

dũe,i

dt
− (

bφe,i ,∇φe, j
)
Ωe

· p̃e,i

]
+〈

f num
e ,φe, j

〉
Γe

= 0.

(1.30)

where f num
e and f num

e are numerical fluxes. The system (1.30) can be written in
the matrical form 

Mp
e

dP̃e

dt
+Kp

e Ũe +
N faces

e∑
k

F p
e,k = 0

Mu
e

dŨe

dt
+Ku

e P̃e +
N faces

e∑
k

F u
e,k = 0

(1.31)

where the vectors P̃e and Ũe contain the discrete unknowns associated to the eth

element, Mp
e and Mu

e are local mass matrices, Kp
e and Ku

e are local stiffness matrices,
F p

e,k and F u
e,k are flux vectors, and N faces

e is the number of faces of the eth element.

As for the FV scheme, the way of evaluating the fluxes vectors is a key element
of the scheme. The strategy employed in section 1.3.2 for the FV scheme is reused,
at both the boundary of the domain and the interfaces between elements: numer-
ical fluxes, such as the centered fluxes or the upwind fluxes, are inserted in the
scheme (1.30). Since these numerical fluxes involve discrete unknowns on both
sides of an interface between two elements, the fluxes vectors connect the systems
corresponding to the different elements together. Information is then transmitted
from one element to its neighboring elements through these terms.



24 Some Fundamentals of Wave-Like Problems

Assembling all local systems of the form (1.31) with the numerical fluxes pro-
vides a global system having the form (1.28). The final system connects all un-
knowns together.

The DG scheme has an ideal form to perform a parallel computation. Indeed,
the global mass matrix, obtained by assembling local mass matrices Mp

e and Mu
e ,

is block-diagonal and can then be fastly inverted. Moreover, the coupling between
discrete unknowns of different neighboring elements is only made through inter-
face terms.

The DG method is frequently seen as a generalization of the FV method. As
with the FV scheme, the dissipation and dispersion errors of the DG scheme de-
pend on the numerical fluxes [93]: centered fluxes provide a dispersive scheme,
while the numerical scheme is dissipative with upwind fluxes. When the local ba-
sis functions are constant (the order of elements is then 0), the DG scheme exactly
reduces to the FV scheme.



CHAPTER 2
Design of Perfectly Matched Layers

for Unbounded Domains

2.1 Introduction

Many wave-like problems are posed on unbounded spatial domains. However, the
classical numerical methods presented in the previous chapter require a bounded
computational domain. The numerical resolution is then based on a modified
version of the physical problem, posed on a bounded domain (called truncated
domain). As a result of the truncation, the model domain is bounded by an artifi-
cial boundary. Although unphysical, this boundary must be carefully modeled in
order to recover the solution corresponding to the original problem.

For many decades, artificial boundary treatments have been proposed, stud-
ied and used in the literature. Their aim is to reproduce as accurately as possible
the correct physical dynamics (i.e. those of the original problem) at the artificial
boundary. A first strategy consists in using a specific boundary condition, i.e. a
prescribed relation between the fields at the boundary. The so-called layer tech-
niques can be considered as a second category of strategies. The truncated domain
is surrounded by a layer (Figure 2.1), where the fields are subject to a particular
treatment. A general review of these methods is sketched in this chapter.

Layer techniques have received great attention after the introduction of the per-
fectly matched layer (PML) concept by Bérenger in 1994 [21]. Layers designed with
Bérenger’s technique have a great advantage: their medium is both dissipative and
perfectly matched with the original medium of the truncated domain. This means
that every outgoing wave is perfectly transmitted from the truncated domain to
the layer, and is damped in the layer, whatever the angle of incidence. This was
not possible with previously proposed layers. Due to its interesting properties,
Bérenger’s PML, originally introduced for two-dimensional electromagnetic prob-

25
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Υ

R
n\Ω̄

Ω

Υ
Γ

Ω

Σ

(a) Unbounded domain (b) Truncated domain with layer

Figure 2.1: Geometry of the problem with the unbounded domain (a) and the truncated
domain (b). In the second case, the truncated domainΩ is surrounded by a layer Σ.

lems [21], was quickly extended to three dimensions [22, 100] and other wave-like
equations [45, 84, 89]. Unfortunately, some instabilities have been observed in
PMLs built with Bérenger’s technique (see [19] and references herein). The design
of stabilized versions and the extension for cases of increasing complexity (e.g.
general geometries, dispersive waves, nonlinear problems, ...) are not straightfor-
ward. Today, numerous versions have been proposed in various physical contexts.
This research field remains very active [6, 13, 17, 57, 80, 92, 102, 110, 130, 138].

In order to minimize the computational cost of the numerical resolution, the
truncated domain should be taken as small as possible. This can lead to domains
with non-conventional shape, as illustrated in Figure 2.2. It is then advantageous
to havea general PML formulation for arbitrarily-shaped truncated domains. How-
ever, most PML formulations are designed for cuboids, cylinders and spheres us-
ing corresponding coordinate systems. Some versions dealing with general convex
domains have been proposed in time-harmonic contexts [64, 105, 106, 159, 161].
A first application in the time domain has been proposed by Donderici and Teix-
eira [52] with a specific numerical scheme. PML formulations have been investi-
gated for non-convex domains [107, 125]. Nevertheless, no general formulation
that could be used with classical numerical methods, has been proposed for time-
dependent problems.

The aim of this chapter is to describe a method to build PMLs for convex trun-
cated domains with a regular boundary (i.e. without corner). The PML formula-
tion is derived for the scalar wave system (1.3). It is adapted to physical applica-
tions in chapters 4 and 5. The PML equations are written in Cartesian coordinates
in order to facilitate their implementation in computational codes.

This chapter is organized as follows. In section 2.2, we present a general review
of methods used to truncate unbounded domains. In section 2.3, we review some
key ideas about the PMLs: the Bérenger’s method to design a PML, fundamental
properties of this layer, interpretations of the method and alternative ways to de-
sign PMLs. Finally, in section 2.4, we detail a procedure to derive PMLs for convex
truncated domains in the time domain.
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(a) Electromagnetic device (b) Submarine

Figure 2.2: Examples of wave-like problems where a general convex truncation bound-
ary is advantageous: (a) electromagnetic scattering by a perfectly conducting device and
(b) acoustic or electromagnetic scattering by a submarine. In both cases, the truncation
boundary should be close to the scatterer in order to reduce the computational domain,
and thus the computational cost. Reproduced from [52] (© 2008 IEEE) and [162] (© 2001
John Wiley & Sons, Ltd), respectively.

2.2 General review of boundary treatments
for truncated domains

The main kinds of methods employed to truncate unbounded domains are re-
viewed in this section. They are written in the context of the scalar wave problem.
The initial condition of the original problem (corresponding to the unbounded
domain Rd ) is assumed to have compact support in the truncated domain Ω ⊂
Rd . Therefore, the presented boundary treatments deal only with outgoing waves.
We assume that no waves come from the exterior domain, through the artificial
boundary. The first part of this review (section 2.2.1), dedicated to boundary con-
ditions, is mainly based on the recent paper of Givoli [73].

2.2.1 Boundary conditions

Artificial boundary conditions dealing with truncated domains are called trans-
parent, non-reflecting or absorbing boundary conditions (ABCs). Generally, trans-
parent and non-reflecting conditions refer to boundary conditions that provide a
perfect treatment of the artificial boundary, while absorbing boundary conditions
are only approximate.
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Radiation boundary conditions

The simplest artificial conditions derive from the well known radiation condition
proposed by Sommerfeld [154] in the harmonic context. Considering the Helmholtz
equation in the unbounded domain Rd , i.e.

∆p +k2p = 0, ∀x ∈Rd ,

the radiation condition reads

lim
‖x‖→∞

‖x‖(d−1)/2
(
∂p

∂‖x‖ − ıkp

)
= 0, (2.1)

where d is the spatial dimension and k is the wave number. It is based on a phys-
ical principle: "The sources must be sources, not sinks, of energy. The energy which
is radiated from the sources must scatter to infinity; no energy may be radiated from
infinity into the prescribed singularities of the field." (Arnold Sommerfeld) [154, p.
189]. The radiation condition must be prescribed at infinity, and is not directly
applicable when the domain is truncated.

In the one-dimensional case, the radiation condition leads to a boundary con-
dition that perfectly simulates the truncation of the unbounded domain. For the
time-dependent problem with the wave equation

∂2p

∂t 2 − c2 ∂
2p

∂x2 = 0, ∀(x, t ) ∈ [0,L]×R+,

the condition (2.1), evaluated at the boundary x = L, becomes:

∂p

∂t
+ c

∂p

∂x
= 0, ∀t ∈R+. (2.2)

Given that no incoming waves from infinity are allowed, the solution at the bound-
ary x = L must contain waves moving only to the right. The most general form of
this solution is then p(x, t ) = P (x − ct ). Since this general solution satisfies the
relation (2.2), this boundary condition perfectly simulates the truncation. Let us
note that this condition can be obtained by an alternative way. Indeed, writing the
second-order wave equation as[

∂

∂t
− c

∂

∂x

][
∂

∂t
+ c

∂

∂x

]
p = 0, ∀t ∈R+,

it appears that the relation (2.2) is obtained by removing the first differential op-
erator in the left-hand side of the equation. Therefore, this boundary condition is
sometimes considered as a modified version of the wave equation, with simplified
dynamics: only the outgoing waves are accounted for. For a boundary condition
at the other side of the domain (x = 0), the sign + is replaced with − in the relation
(2.2).
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The boundary condition (2.2) still holds for the problem described with the
wave system, i.e. 

∂p

∂t
+a

∂u

∂x
= 0, ∀(x, t ) ∈ [0,L]×R+,

∂u

∂t
+b

∂p

∂x
= 0, ∀(x, t ) ∈ [0,L]×R+,

where c =p
ab. Another convenient version of the boundary condition is obtained

by injecting the second equation of this system into (2.2):

∂p

∂t
− c

(
1

b

∂u

∂t

)
= 0,

⇔ ∂

∂t

(
p −

√
a

b
u

)
= 0.

The last equation implies that the quantity p −p
a/b u remains constant at the

boundary. If this quantity is initially equal to zero, the condition becomes

p −
√

a

b
u = 0, ∀t ∈R+. (2.3)

This condition can be interpreted by the characteristic analysis (see section 1.2.4).
The quantity in the left-hand side of relation (2.3) is the Riemann invariant of the
wave system, transported to the left. The condition means therefore that no infor-
mation (or a ‘zero’ information) is transported inward, along the incoming char-
acteristic lines.

When FV or DG methods are used with upwind fluxes, the boundary condition
(2.3) is easily implemented. The value of the incoming Riemann invariant in the
Riemann solver is simply prescribed to zero. This is achieved by replacing the
values of the variables in the ghost cells with zero (see the end of section 1.3.2).

Hierarchical and exact boundary conditions

Both radiation conditions (2.2) and (2.3) can be applied to multidimensional cases.
However, they are only approximate for more than one spatial dimension, and
errors are generated [71]. Different kinds of accurate boundary conditions have
been derived in the literature.

First, sequences of ABCs have been proposed in the late 70’s and 80’s. These
conditions are hierarchical: an order is associated with each condition of these se-
quences. The higher the order of the condition, the better its accuracy. The most
well-known are the Engquist-Majda conditions [59] and the Bayliss-Turkel condi-
tions [15]. The formers are for plane boundaries, while the latters are for circular
and spherical truncated domains. In two dimensions, for a straight boundary with
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the outward normal n = ex , the first-order Engquist-Majda condition is equivalent
to the radiation condition (2.2), and the second-order one reads[

1

c

∂2

∂x∂t
− 1

c2

∂2

∂t 2 + 1

2

∂2

∂y2

]
p = 0.

For a spherical domain of radius R, the J th-order Bayliss-Turkel condition is[
J∏

j=1

(
1

c

∂

∂t
+ ∂

∂r
+ 2 j −1

R

)]
p = 0,

where r is the radial coordinate. Unfortunately, because high-order conditions
of these sequences require the computation of high-order partial derivatives, only
low-order conditions are usable for numerical resolutions [73]. Further details and
other similar boundary conditions can be found in papers [8, 70, 71, 78, 164].

Since 90’s, new kinds of hierarchical boundary conditions, that can really be
used with high-orders, have been developed. They involve the definition of auxil-
iary equations at the boundary, instead of using high-order derivatives. The higher
the order, the greater the number of auxiliary equations. A sequence of this type
has been first introduced by Collino [38]. In two dimensions, for a straight bound-
ary with outward normal n = ex , the J th-order condition of Collino reads

∂p

∂t
+ c

∂p

∂x
−

J∑
j=1

β j
∂φ j

∂t
= 0,

1

c2

∂2φ j

∂t 2 −α j
∂2φ j

∂y2 − ∂2p

∂y2 = 0, for j = 1, . . . , J ,

whereφ j is an auxiliary variable and the coefficientsα j and β j are defined in [38].
Reviews and further developments can be found in [72, 73].

Finally, exact boundary conditions providing a perfect treatment of fields at the
truncated boundary have been proposed (see e.g. [71, 101]). Inside the truncated
domain, the solution of the problem is then identical to the solution of the original
problem with the unbounded domain. However, such boundary conditions are
nonlocal: they involve a boundary integral operator, instead of only differential
operators. All points of the boundary are then directly coupled. In a numerical
resolution, it generally leads to dense algebraic systems that are expensive to solve.

2.2.2 Layer techniques

With layer techniques, the artificial boundary Υ is modeled by using a particular
treatment of the fields inside an artificial layer Σ that surrounds the truncated do-
main Ω. In the layer, the original equations are then modified considering either
physical or mathematical arguments.
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Geometric layers

A first way to design layers consists in using geometric transformations: the layer
Σ is mapped onto the exterior domain Rn\Ω̄ of the original problem [75, 95, 129].
The external problem is then fully solved inside the layer. In the domain Ω, the
solutions obtained with both the original problem and the resulting one are theo-
retically identical.

However, the numerical solution of the resulting problem fails for oscillatory
solutions [75]. Indeed, the apparent wavelength of plane waves in the layer de-
creases due to the spatial mapping. A finer spatial mesh is then required and the
computational cost increases.

Absorbing layers

Efficient layers are obtained by adding dissipation. Then, travelling waves that
leave the domainΩ are damped inside the layer. Since waves disappear and seem
to be absorbed by the medium, these layers are called absorbing or sponge layers.

The most intuitive method to design an absorbing layer is to introduce physical
dissipation in the medium. A damped version of the system (1.3) is easily obtained
by adding a viscous term and/or a friction term in the first equation,

∂p

∂t
+a∇·u =µ∂

2p

∂t 2 −σp,

∂u

∂t
+b∇p = 0,

whereµ(x) is the viscous coefficient andσ(x) is the friction coefficient. In that case,
the plane waves are damped in the layer, but the medium becomes dispersive and
spurious transient waves appear [96].

A more efficient absorbing layer is obtained by introducing an unphysical fric-
tion term in the second equation of (1.3), in addition to the friction term of the
first equation [88], i.e. 

∂p

∂t
+a∇·u =−σp,

∂u

∂t
+b∇p =−σ̃u,

(2.4)

where σ̃(x) is an unphysical coefficient. Taking σ̃ = σ (the matching condition),
this medium becomes dispersionless and the spurious transient waves are avoided
[88, 155]. The interface between the domain and the layer is unreflective, but only
for waves with a normal incidence. Similarly to the radiation condition, this layer
can be exact for normal waves, and not for oblique waves.

With the perfectly matched layers (PMLs), first introduced by Bérenger in 1994
[21], outgoing waves of any incidence are transmitted from the truncated domain
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to the layer without any reflection, and are then damped. The layer is then both
perfectly matched and dissipative. Furthermore, by using adequate parameters,
outgoing waves are completely damped. The artificial boundary of the truncated
domain is then theoretically perfectly modeled. Unfortunately, some instabilities
can be brought on in Bérenger’s PMLs and an extension for wave-like equations
involving additional dynamics is not trivial. Moreover, the design and the imple-
mentation of a PML is far more elaborate than with former layers, especially for
time-dependent problems. Key ideas about PMLs and a short review are devel-
oped in section 2.3.

The above absorbing layers can be employed together with an absorbing bound-
ary condition at the external boundary Γ. This ABC can improve the global perfor-
mance of the layer by absorbing spurious transients and the outgoing waves that
are not sufficiently damped by the medium. However, the PML gives already ex-
cellent results without requiring any kind of ABC if its parameters are well-chosen
[140]. In this case, the use of an ABC is then not necessary.

2.2.3 Discussion and remarks

Due to both the quantity and the diversity of boundary conditions and layer tech-
niques, a comparison between these boundary treatments is a complicated task.
Various points of view could be considered [73]: the mathematical properties (well-
posedness and stability), the accuracy (in both continuous and discrete levels), the
ease of implementation, the computational cost, the generality, ... Moreover, de-
pending on the application context, other points may appear.

Nevertheless, two general comments can be made on these two families of
boundary treatments:

• In a discrete context, a higher accuracy implies a higher computation cost
for both families. Indeed, it requires an increase of the order of the hier-
archical condition (and thus the order of involved derivatives or the num-
ber of additional equations) or the size of the layer (and thus the number
of discrete unknowns). Similarly, an accurate numerical approximation of
nonlocal boundary conditions will be expensive.

• The extension of boundary treatments to increasingly complex physics and
general geometries is not straighforward. Adaptations are required to guar-
antee a certain level of accuracy and, sometimes, the well-posedness and
the stability. Specific reviews of boundary treatments are made in oceanog-
raphy [27], in electromagnetism [79], in compressible fluid dynamics [41]
and for the Schrödinger equation [9].

For the sake of completeness, let us mention the infinite and boundary ele-
ments, proposed in the framework of finite element methods. They directly deal
with unbounded domains, and do not require the redefinition of problems on
truncated domains. Further details can be found in [73] and references herein.
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2.3 Key ideas about the PMLs

Bérenger’s original strategy to design PMLs [21] is based on a purely mathemati-
cal transformation of the Cartesian equations. This transformation, devoid of any
physical justification, has found convenient interpretations in the time-harmonic
context. Thanks to these interpretations, alternative PMLs have been developed
in various wave-like problems for both time and frequency domains.

In this section, key ideas about the PMLs are reviewed. First, Bérenger’s strat-
egy is explained and applied to the system (1.3). Fundamental properties of the
obtained PML equations are then demonstrated by using plane-wave analyses.
The interpretations of the PML and methods to design other versions are finally
proposed.

2.3.1 Bérenger’s technique to design a PML

Bérenger’s technique to design a PML consists in splitting each field and equation
into the Cartesian directions [21, 22]. Each equation contains partial derivatives
in only one direction. For a damping in one Cartesian direction (ex , ey or ez ), a
dissipation term is added in each equation with a partial derivative corresponding
to the direction. With this formulation, PMLs with different directions of damping
can be used together. Overlap of these layers at corners of the domain are naturally
taken into account, as illustrated in Figure 2.3.

ex
ey

ez

(σx ,0,0)

(σx ,0,σz )

(0,0,σz )

(σx ,0,σz )

(σx ,σy ,σz )

(σx ,σy ,0)

(0,σy ,σz )

(0,σy ,0)

(σx ,σy ,σz )

(σx ,σy ,0)

Figure 2.3: Geometry for the problem with the split PML of Bérenger for a rectangular
cuboid truncated domain (upper-right part). The absorption coefficients are different in
each face, each side and each corner, where outgoing waves are damped in respectively
one, two and three directions. The figure is inspired from [22].
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For the system (1.3), the field p is split into px , py and pz , with p = px +py +pz .
At the corners of the domain, where the PML damps in the three directions, the
fields are then governed by

∂px

∂t
+a

∂ux

∂x
=−σx px ,

∂ux

∂t
+b

∂p

∂x
=−σx ux ,

∂py

∂t
+a

∂uy

∂y
=−σy py ,

∂uy

∂t
+b

∂p

∂y
=−σy uy ,

∂pz

∂t
+a

∂uz

∂z
=−σz pz ,

∂uz

∂t
+b

∂p

∂z
=−σz uz ,

(2.5)

where ux , uy and uz are the Cartesian components of u, and σx (x), σy (y) and
σz (z) are the absorption functions corresponding to the three Cartesian directions.
These functions are non-zero only in the regions with damping in the directions
ex , ey and ez , respectively (see Figure 2.3). Inside the truncated domain, they are
equal to zero.

This split PML, originally designed for Maxwell’s equations in two dimensions
[21], has been quickly adapted to three-dimensional Maxwell’s equations [22, 100],
acoustics [89], geophysical fluid dynamics [45] and elastodynamics [84].

2.3.2 Properties of the PML

The PML is dissipative, dispersionless and perfectly matched for any incidence. In
addition, if the absorption function is singular at the external boundary (perfectly
absorption condition), outgoing waves are fully absorbed by the layer, without any
spurious reflection.

These interesting properties can be demonstrated by means of plane-wave anal-
yses. Here, we consider a PML with damping only in the direction ex (i.e. σy =
σz = 0 everywhere). We use the notation σ(x) instead of σx (x), with x ∈R+ (semi-
infinite layer) or x ∈ [0,δ] (finite layer). The extension for the corner at the inter-
section of two or three PMLs is trivial. Here, we study separately the roles of the
PML medium, the interface domain/layer and the external boundary.

Plane-wave solution

In the PML, the elementary time-harmonic plane-wave solution of the system
(2.5) corresponds to a damped wave of the form(

p(x, t )
u(x, t )

)
=

(
P
U

)
e ı(k·x−ωt )e−α, (2.6)
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where p = (px , py , pz )T , α(x) is the attenuation function and P and U are the am-
plitudes. Injecting this solution in the system (2.5), one obtains the relations

ω=
p

ab ‖k‖ , (2.7)

P =
√

a

b

k : U

‖k‖ ,

α(x) = cosθp
ab

∫ x

0
σ(x ′) dx ′, ∀x ∈Σ. (2.8)

where θ = arccos(kx /‖k‖) is the angle of incidence, and ‘:’ denote the element-by-
element product. Adding the split fields px , py and pz , one obtains the solution
for the unsplit field p,

p(x, t ) = Pe ı(k·x−ωt )e−α, (2.9)

with the amplitude relation

P
k

‖k‖ =
√

a

b
U. (2.10)

The dispersion relation (2.7) and the amplitude relation (2.10), are identical to
those of the original medium (relations (1.6) and (1.7)). The phase velocities and
the impedance are also identical. Therefore, the plane waves that propagate in the
PML medium have exactly the same properties as those of the original medium,
but with an additional factor (second exponential of (2.6) and (2.9)) that dimin-
ishes the amplitude of both fields. The shape of the decay is independent of the
frequency, but not of the angle of incidence.

Perfect matching of the PML

If continuity conditions are prescribed on the fields at the interface between the
truncated domain and the layer, the interface is transparent for waves. This can
be shown considering a representative problem with a semi-infinite domain (with
x < 0) extended by a semi-infinite layer (with x > 0). Let us assume that an incident
wave that propagates towards the layer is decomposed into a reflected part (in the
domain) and a transmitted part (in the layer). The solution is then

p(x, t ) =
{

P i e ı(k·x−ωt ) +P r e−2ıkx x e ı(k·x−ωt ) in the domain,
P t e ı(k·x−ωt )e−α in the layer,

u(x, t ) =
{

Ui e ı(k·x−ωt ) +Ur e−2ıkx x e ı(k·x−ωt ) in the domain,
Ut e ı(k·x−ωt )e−α in the layer.

Injecting this solution in the continuity interface conditions and using the ampli-
tude relation (2.10), one immediately obtains that the amplitudes of the reflected
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wave, P r and Ur , are zero whatever the value of σ. Therefore, the reflection coeffi-
cient associated with the interface is zero, i.e.

rinterf =
∣∣∣∣P r

P i

∣∣∣∣= 0. (2.11)

Every incident wave is perfectly transmitted from the truncated domain to the
layer, whatever its frequency and angle of incidence. The interface is said perfectly
matched.

Perfect absorption of the PML

If plane waves are not sufficiently damped, they could be reflected by the exter-
nal boundary and come back in the domain. To study this case, let us consider a
semi-infinite domain (with x < 0) extended by a finite layer (with x ∈ [0,δ]), with
the homogeneous Dirichlet boundary condition ex ·u = 0 at x = δ. Assuming the
outgoing wave is reflected by the external boundary, the general solution becomes

p(x, t ) =
{

P i e ı(k·x−ωt ) +P r e−2ıkx x e ı(k·x−ωt ) in the domain,
P t e ı(k·x−ωt )e−α+P be−2ıkx x e ı(k·x−ωt )eα in the layer,

u(x, t ) =
{

Ui e ı(k·x−ωt ) +Ur e−2i kx x e ı(k·x−ωt ) in the domain,
Ut e ı(k·x−ωt )e−α+Ube−2ıkx x e ı(k·x−ωt )eα in the layer.

After some calculations, one obtains the reflection coefficient associated with the
layer,

rpml =
∣∣∣∣P r

P i

∣∣∣∣= exp

[
−2

cosθp
ab

∫ δ

0
σ(x ′)dx ′

]
, (2.12)

which gives an indication on the reflection of outgoing waves by the layer. As an-
nounced before, this reflection coefficient is zero if

∫ δ

0
σ(x ′) dx ′ =+∞, (2.13)

e.g. if σ is singular at the external boundary x = δ. The layer is then perfectly
absorbing.

2.3.3 Interpretations of the PML

While the PML has been introduced by Bérenger without any physical justifica-
tion, convenient interpretations have been proposed in the time-harmonic con-
text. Assuming a time-dependency in e−ıωt , the time-harmonic form of the split



2.3. Key ideas about the PMLs 37

PML equations (2.5) is

−ıωp̂x +a
∂ûx

∂x
=−σx p̂x , −ıωûx +b

∂p̂

∂x
=−σx ûx ,

−ıωp̂y +a
∂ûy

∂y
=−σy p̂y , −ıωûy +b

∂p̂

∂y
=−σy ûy ,

−ıωp̂z +a
∂ûz

∂z
=−σz p̂z , −ıωûz +b

∂p̂

∂z
=−σz ûz ,

where the symbol ˆ denotes time-harmonic fields. After some manipulations and
by adding the three first equations, the system is reduced to the unsplit system

−ıωp̂ +a

(
h−1

x
∂ûx

∂x
+h−1

y

∂ûy

∂y
+h−1

z
∂ûz

∂z

)
= 0,

−ıωûx +bh−1
x
∂p̂

∂x
= 0,

−ıωûy +bh−1
y
∂p̂

∂y
= 0,

−ıωûz +bh−1
z
∂p̂

∂z
= 0,

(2.14)

with

hx (x) = 1−σx (x)/(ıω), (2.15)

hy (y) = 1−σy (y)/(ıω), (2.16)

hz (z) = 1−σz (z)/(ıω). (2.17)

In the literature, these functions are generally referred as the stretching functions.

PML as a stretch of the metric

The PML treatment of the equations can be interpreted as a change of the metric
of the space [106, 160, 161]. Indeed, defining the complex operator

∇̃ def.= diag(h−1
x ,h−1

y ,h−1
z )∇,

the system (2.14) can be written in the more compact form

{−ıωp̂ +a ∇̃ · û = 0,

−ıωû+b ∇̃p̂ = 0.
(2.18)

This system is similar to the original wave system (1.3) in its time-harmonic form,
but with a modification of the metric of the space. While the Cartesian metric
tensor in the original medium is the identity diag(1,1,1), the PML medium has the
complex one diag(h2

x ,h2
y ,h2

z ).
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PML as an anisotropic material absorber

The PML can also be considered as an anisotropic absorbing medium. Indeed,
defining the new field

ûabs = diag(hy hz ,hx hz ,hx hy ) û,

the system (2.14) can be rewritten

{−ıωp̂ +aabs ∇· ûabs = 0,

−ıωûabs +Babs ∇p̂ = 0,
(2.19)

with the complex physical parameters

aabs = a

hx hy hz
and Babs = diag

(
hy hz

hx
,

hx hz

hy
,

hx hy

hz

)
b.

The PML system is again similar to the original wave system (1.3) in his time-
harmonic form. Unlike the system (2.18), this version does not require any change
of the metric. The PML treatment is made through the complex physical parame-
ters and another definition of the field û.

In the case of time-harmonic Maxwell’s equations, this interpretation can be
seen as a consequence of the change of the metric [66, 152, 160]. Indeed, Maxwell’s
equations are independent of the metric, contrary to the constitutive relations.
Therefore, the classical equations are still used in the PML, but with complex ma-
terial parameters that replace the physical ones [160].

PML as a change of variables in a stretched coordinate system

Finally, the PML treatment to design layers can be interpreted as a change of vari-
ables in a stretched coordinate system [35, 144]. The real coordinates are simply
replaced with complex ones (with a nonzero imaginary part), and a change of vari-
ables is then used to come back to a real coordinate system.

For a PML that damps in the x−direction, the coordinate x ∈ [0,δ] is replaced
with x̃ ∈ U , where U is a curve in the complex plane (see Figure 2.4). In order to
write the PML equations in a real coordinate system, the curve U is parametrized
by the function x̃(x?) with the real argument x? ∈ [0,δ]. Taking the particular func-
tion

x̃(x?) =
∫ x?

0
hx (x ′

?) dx ′
? = x?− 1

ıω

∫ x?

0
σx (x ′

?) dx ′
?, (2.20)

the complex spatial derivative associated with x̃ is written

∂

∂x̃
= 1

1−σx /ıω

∂

∂x?
= h−1

x
∂

∂x?
.
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(a) Original medium (b) PML medium

Figure 2.4: Complex coordinate stretching of a coordinate. The domain is represented by
the black line, while the layer is represented by the red one.

Finally, the PML equations are obtained by replacing the real partial derivative by
the complex one, and then by using the change of variables with a parametrization
of the curve:

∂

∂x

rep.−→ ∂

∂x̃
c.v.−→ h−1

x
∂

∂x?
.

Using this procedure for the three Cartesian directions and removing the sub-
scrit ? , the PML system (2.14) is immediately obtained from the original one (1.3)
in its time-harmonic form.

2.3.4 Alternative PMLs — Extension to other geometries and physics

In light of the above interpretations, a lot of new PMLs have been proposed for var-
ious linear wave-like problems in time-harmonic and time-dependent contexts.

Unsplit PMLs that preserve the original (unsplit) structure of fields are an al-
ternative to Bérenger’s split PMLs in Cartesian coordinates. The time-harmonic
systems (2.18) or (2.19) are unsplit. In the time-dependent context, PML equa-
tions are obtained by employing an inverse Fourier transform. The fields can then
be governed by the original equations, but with additional terms involving either
time-convolutions [143, 170] or additional fields governed by additional differen-
tial equations [2, 5, 6, 12, 19, 65].

In other classical orthogonal coordinate systems, PMLs are simply obtained by
changing the metric tensor [160] or using the complex coordinate stretching of
one of the coordinates [36, 40, 141, 158, 169]. For example, a PML for a spherical
truncated domain is provided by stretching the radial coordinate r of the spherical
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coordinate system, i.e.

r → r̃ (r ) = r − 1

ıω

∫ r

r0

σ(r ′) dr ′, ∀r ∈ [r0,r0 +δ],

where r0 is the radius of the spherical domain and δ is the thickness of the layer.

A perfect extension of PMLs for increasing complex problems brings up new
difficulties. In advective acoustics, for example, the advection terms need specific
attention [3, 51, 90–92, 126, 156]. Evanescent waves are overdamped by PMLs de-
signed with the complex coordinate stretching (2.20). Therefore, spurious errors
appear when numerical methods are used [23, 24, 48]. A solution is to slightly
change the formula (2.20) or, equivalently, the stretching functions (2.15)–(2.17)
[43, 65, 104, 148]. For example, Kuzuoglu and Mittra [104] propose the stretching
function

h = κ+ σ

α− ıω
,

where κ andα are new positive parameters. The last is introduced to better absorb
the evanescent waves.

Even though Bérenger’s PMLs have demonstrated an overall excellent perfor-
mance for applications [21, 22, 65], Abarbanel and Gottlieb [1] and later Bécache
and Joly [16] have shown that the PML equations designed with Bérenger’s tech-
nique are not strongly well-posed: spurious modes can be generated in the layer.
In addition, some problems have been reported for long-term simulations [4, 18].
Different improved layers exhibiting better properties have been proposed [2, 4, 6,
12, 16, 18, 141, 143].

2.4 A novel formulation of PML
for convex truncated domains

In this section, we propose a complete strategy to design PMLs for convex trun-
cated domains with a regular boundary1 in the time domain. The strategy is ap-
plied to derive the equations of a PML for the scalar wave system (1.3). Let us note
that PMLs could be derived in a similar manner for other linear wave-like systems.

The proposed strategy is based on a coordinate stretch in a specific curvilinear
coordinate system that is associated with the artificial boundary Υ of the trun-
cated domain Ω. This particular stretch has been first proposed by Teixeira and
Chew [159]. It has been studied in time-harmonic contexts [105, 106, 161] and
first applied in a time-dependent context in the paper [52] with a specific numer-
ical scheme. The novelty here is that we provide a convenient form of the PML

1 At each point of the boundary, there is a unique tangent line (for a regular curve) or a unique
tangent plane (for a regular surface). As a consequence, the proposed strategy cannot be applied to
boundaries with corners.
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Ω
Υ

Ω
Υ

(a) Elliptical coordinate system (b) Curvilinear coordinate system
based on parallel surfaces

Figure 2.5: Coordinate systems associated with an elliptical truncated domain. Radial
lines of the elliptical system are curved (a), while those of the curvilinear system based
on parallel lines are straight (b).

equations at the continuous level in the time domain. These equations can be
easily written in the Cartesian coordinate system, even if the coordinate stretch is
performed in the curvilinear one.

This section is organized as follows. First, the specific curvilinear coordinate
system is presented. Then, the nabla operator in the stretched metric is explicitly
derived in the (real) Cartesian coordinate system. Finally, both time-harmonic
and time-dependent PML equations are obtained for the scalar wave system.

2.4.1 Curvilinear coordinate system associated with the boundary

Different coordinate systems can be associated with the boundary Υ of a convex
truncated domainΩ. For instance, in the case of a two-dimensional elliptical trun-
cated domain, two choices are natural: the elliptical coordinate system, and the
curvilinear coordinate system based on lines parallel to Υ (Figure 2.5). For both
systems, the radial coordinate is stretched to derive a layer. The two obtained lay-
ers are perfectly matched, but with a different geometry [161]. Indeed, the external
boundary of the first is elliptical and the radial lines are curved. For the second,
the external boundary is not elliptical, but parallel to Υ, and the radial lines are
straight.

PMLs used in this thesis are built using curvilinear systems based on parallel
surfaces (in three dimensions) and parallel lines (in two dimensions). In the lit-
erature, such PMLs are called conformal PMLs [52, 159, 161]. Since they can be
derived for all convex truncated domains with regular boundary, this approach
appears very general. Hereafter, the local curvilinear system is derived for both
two-dimensional and three-dimensional cases.
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Figure 2.6: Orthonormal curvilinear coordinate system (s,ϕ) associated with the curve C .

In two dimensions, the boundary of Ω is a curve, denoted C . Let us consider a
natural parametrization for this curve inR2, p(ϕ) with

∥∥dp/dϕ
∥∥= 1 andϕ ∈ [0,2π].

SinceΩ is convex, a point of the layer has a unique closest point on C . Its Cartesian
coordinates, respectively x(s,ϕ) and p(ϕ), are then linked by the relation

x(s,ϕ) = p(ϕ)+ s es(ϕ), (2.21)

whereϕ is the arc length corresponding to the closest point on C , s is the distance
between the two points, and es(ϕ) is the unit outward normal of Ω at p(ϕ), as
illustrated in Figure 2.6. The pair (s,ϕ) defines the curvilinear coordinate system.

In three dimensions, the curvilinear coordinate system is an extension of the
one proposed above. The boundary ofΩ is a surface, denoted S and parametrized
in R3 by p(ϕ,θ), with ϕ ∈ [0,2π] and θ ∈ [0,π]. Since Ω is convex, each point of the
layer can be written

x(s,ϕ,θ) = p(ϕ,θ)+ s es(ϕ,θ), (2.22)

where the parametersϕ and θ correspond to the point of S the closest to x(s,ϕ,θ),
s is again the distance between x(s,ϕ,θ) and p(ϕ,θ), and es(ϕ,θ) is the unit out-
ward normal of Ω at p(ϕ,θ). Let us consider the specific case where the parame-
ters ϕ and θ are also the arc lengths of the curves Cϕ and Cθ obtained from the
intersection of S with the planes generated by es and one of the principal vectors
of the surface, denoted eϕ and eθ. The coordinates (s,ϕ,θ) define an orthogonal
curvilinear system. The vectors es , eϕ and eθ are orthonormal and define the so-
called Darboux frame [76]. The Frenet relations for Cϕ and Cθ read

∂p

∂ϕ
= eϕ,

∂eϕ
∂ϕ

=−κϕes ,
∂es

∂ϕ
= κϕeϕ,

∂p

∂θ
= eθ,

∂eθ
∂θ

=−κθes ,
∂es

∂θ
= κθeθ.
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2.4.2 Coordinate stretch

The PML is built by stretching the radial coordinate s in the time-harmonic con-
text. For both two and three dimensions, the real coordinate s ∈ [0,δ] is then re-
placed with the complex one s̃ ∈U , where U is a curve in the complex plane. Let
us consider the parametrization of this curve

s̃(s?) = s?− 1

ıω

∫ s?

0
σ(s′) ds′, with s? ∈ [0,δ]. (2.23)

The time-harmonic PML equations are obtained in the Cartesian coordinate
system using the following four-step procedure:

1) change of variables to write the original time-harmonic equations from the
Cartesian coordinate system (x, y, z) to the curvilinear one (s,ϕ,θ),

2) coordinate stretch: the coordinates (s,ϕ,θ) are replaced with (s̃,ϕ,θ),

3) change of variables to write the PML equations from the complex curvilinear
coordinate system (s̃,ϕ,θ) to the real one (s,ϕ,θ) using the relation (2.23),

4) change of variables to write the PML equations from the curvilinear coordi-
nate system (s,ϕ,θ) to the Cartesian one (x, y, z).

With this procedure, the nabla operator ∇ becomes successively

∇
(x,y,z)

c.v.−→ ∇
(s,ϕ,θ)

rep.−→ ∇̃
(s̃,ϕ,θ)

c.v.−→ ∇̃
(s,ϕ,θ)

c.v.−→ ∇̃
(x,y,z)

,

where ∇̃ is the nabla operator with complex stretched coordinates. At each step,
the operator is written using the coordinates indicated under the symbol.

1) Change of variables (x, y, z)
c.v.−→ (s,ϕ,θ)

The transformation from Cartesian to curvilinear coordinates is made using the
Jacobian matrix ∂s x ∂ϕx ∂θx

∂s y ∂ϕy ∂θy
∂s z ∂ϕz ∂θz

=
 es,x eϕ,x eθ,x

es,y eϕ,y eθ,y

es,z eϕ,z eθ,z

 1 0 0
0 1+κϕs 0
0 0 1+κθs

 ,

where κϕ(ϕ,θ) and κθ(ϕ,θ) are the principal curvatures of S at p(ϕ,θ). The first
matrix of the right-hand side of this equation contains the Cartesian components
of vectors es , eϕ and eθ. The Jacobian matrix is obtained using the relation (2.22)
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and the Frenet relations for Cϕ and Cθ. Therefore, one has ∂s

∂ϕ
∂θ

=
 1 0 0

0 1+κϕs 0
0 0 1+κθs

 es,x es,y es,z

eϕ,x eϕ,y eϕ,z

eθ,x eθ,y eθ,z

 ∂x

∂y

∂z

 , (2.24)

⇒
 ∂x

∂y

∂z

=
 es,x eϕ,x eθ,x

es,y eϕ,y eθ,y

es,z eϕ,z eθ,z


 1 0 0

0 1
1+κϕs 0

0 0 1
1+κθs


 ∂s

∂ϕ
∂θ

 , (2.25)

and then in the compact form

∇= es
∂

∂s
+ 1

1+κϕs
eϕ

∂

∂ϕ
+ 1

1+κθs
eθ

∂

∂θ
.

2) Coordinate stretch (s,ϕ,θ)
rep.−→ (s̃,ϕ,θ)

In this step, the real coordinate s is simply replaced with the complex one s̃. As a
consequence, the real operator ∇ is replaced with the complex one ∇̃, defined by

∇̃ = es
∂

∂s̃
+ 1

1+κϕ s̃
eϕ

∂

∂ϕ
+ 1

1+κθ s̃
eθ

∂

∂θ
.

3) Change of variables (s̃,ϕ,θ)
c.v.−→ (s,ϕ,θ)

Using the parametrisation (2.23), the change of variables from (s̃,ϕ,θ) to (s,ϕ,θ)
gives  ∂s

∂ϕ
∂θ

=
 ∂s s̃ 0 0

0 1 0
0 0 1

 ∂s̃

∂ϕ
∂θ


with ∂s s̃ = 1−σ/(ıω). Using this relation, the complex operator ∇̃ thus reads ∂x̃

∂ỹ

∂z̃

=
 es,x eϕ,x eθ,x

es,y eϕ,y eθ,y

es,z eϕ,z eθ,z


 1 0 0

0 1
1+κϕ s̃ 0

0 0 1
1+κθ s̃


 ıω

ıω−σ 0 0
0 1 0
0 0 1

 ∂s

∂ϕ
∂θ

 ,

and then

∇̃ = ıω

ıω−σes
∂

∂s
+ 1

1+κϕ s̃
eϕ

∂

∂ϕ
+ 1

1+κθ s̃
eθ

∂

∂θ
.

4) Change of variables (s,ϕ,θ)
c.v.−→ (x, y, z)

Using the relation (2.24), the complex operator ∇̃ reads ∂x̃

∂ỹ

∂z̃

=
 es,x eϕ,x eθ,x

es,y eϕ,y eθ,y

es,z eϕ,z eθ,z




ıω
ıω−σ 0 0

0
1+κϕs
1+κϕ s̃ 0

0 0 1+κθs
1+κθ s̃


 es,x es,y es,z

eϕ,x eϕ,y eϕ,z

eθ,x eθ,y eθ,z

 ∂x

∂y

∂z

 .
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It can be successively written

∇̃ = ıω

ıω−σ∇es +
1+κϕs

1+κϕ s̃
∇eϕ +

1+κθs

1+κθ s̃
∇eθ ,

= ıω

ıω−σ∇es +
1+κϕs

1+κϕs −κϕ σ̄
ıω

∇eϕ +
1+κθs

1+κθs −κθ σ̄
ıω

∇eθ ,

with

∇es = [es(es ·∇)], ∇eϕ = [eϕ(eϕ ·∇)], ∇eθ = [eθ(eθ ·∇)],

σ̄=
∫ r

0
σ(s) d s, κ̄ϕ = (κ−1

ϕ + s)−1, κ̄θ = (κ−1
θ + s)−1.

Finally, the complex operator ∇̃ reads

∇̃ =∇− σ

σ− ıω
∇es −

κ̄ϕσ̄

κ̄ϕσ̄− ıω
∇eϕ −

κ̄θσ̄

κ̄θσ̄− ıω
∇eθ . (2.26)

2.4.3 PML equations

In the time-harmonic context, the equations of the PML are obtained by remplac-
ing the operator ∇ by the complex one ∇̃. Using the expression (2.26), the time-
harmonic scalar wave system becomes

−ıωp̂ +a∇· û = a
σ

σ− ıω
∇es · û+a

κ̄ϕσ̄

κ̄ϕσ̄− ıω
∇eϕ · û+a

κ̄θσ̄

κ̄θσ̄− ıω
∇eθ · û,

−ıωû+b∇p̂ = b
σ

σ− ıω
∇es p̂ +b

κ̄ϕσ̄

κ̄ϕσ̄− ıω
∇eϕ p̂ +b

κ̄θσ̄

κ̄θσ̄− ıω
∇eθ p̂.

(2.27)

The time-dependent PML equations are obtained using a Fourier transform on
the time-harmonic ones. In order to perform this transform, additional fields must
be defined. The system (2.27) then becomes

−ıωp̂ +a∇· û =−σp̂s − κ̄ϕσ̄p̂ϕ− κ̄θσ̄p̂θ,

−ıωû+b∇p̂ =−σûs − κ̄ϕσ̄ûϕ− κ̄θσ̄ûθ,

−ıωp̂s +a∇es · û =−σp̂s ,

−ıωp̂ϕ+a∇eϕ · û =−κ̄ϕσ̄p̂ϕ,

−ıωp̂θ+a∇eθ · û =−κ̄θσ̄p̂θ,

−ıωûs +b∇es p̂ =−σûs ,

−ıωûϕ+b∇eϕ p̂ =−κ̄ϕσ̄ûϕ,

−ıωûθ+b∇eθ p̂ =−κ̄θσ̄ûθ.
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This system can be written in the more compact form

−ıωp̂ +a∇· û =−σp̂s − κ̄ϕσ̄p̂ϕ− κ̄θσ̄(p̂ − p̂s − p̂ϕ),

−ıωû+b∇p̂ =−σes(es · û)− κ̄ϕσ̄eϕ(eϕ · û)− κ̄θσ̄eθ(eθ · û),

−ıωp̂s +a∇es · û =−σp̂s ,

−ıωp̂ϕ+a∇eϕ · û =−κ̄ϕσ̄p̂ϕ,

where ûs = es(es · û), ûϕ = eϕ(eϕ · û), ûθ = eθ(eθ · û) and p̂ = p̂s + p̂ϕ+ p̂θ. Finally, the
inverse Fourier transform gives the time-dependent PML equations



∂p

∂t
+a∇·u =−σps − κ̄ϕσ̄pϕ− κ̄θσ̄(p −ps −pϕ),

∂u

∂t
+b∇p =−σes(es ·u)− κ̄ϕσ̄eϕ(eϕ ·u)− κ̄θσ̄eθ(eθ ·u),

∂ps

∂t
+a∇es ·u =−σps ,

∂pϕ
∂t

+a∇eϕ ·u =−κ̄ϕσ̄pϕ.

(2.28)

In two dimensions, the system is reduced to

∂p

∂t
+a∇·u =−σps − κ̄σ̄(p −ps),

∂u

∂t
+b∇p =−σes(es ·u)− κ̄σ̄eϕ(eϕ ·u),

∂ps

∂t
+a∇es ·u =−σps ,

(2.29)

with κ̄= (κ−1+r )−1, where κ(ϕ) is the curvature of the curve C . For a straight trun-
cation surface in the direction es , the system is, for both two and three dimensions,

∂p

∂t
+a∇·u =−σps ,

∂u

∂t
+b∇p =−σes(es ·u),

∂ps

∂t
+a∇es ·u =−σps .

(2.30)

In one dimension, the system (2.4) is recovered.
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2.5 Conclusion

The perfectly matched layers (PMLs) exhibit very interesting properties for trun-
cating an unbounded domain: the perfect matching and the perfect absorption.
The artificial boundary of the truncated domain can then be theoretically perfectly
modeled. This explains why many PMLs have been and continue to be devel-
opped for a wide range of wave-like problems.

In this chapter, we have reviewed some key elements about the PMLs and their
design. In particular, some well-known interpretations used to build PMLs are
explained: the change of the metric, the change of physical parameters or the co-
ordinate stretch in the frequency domain. These viewpoints are usefull to develop
novel efficient absorbing layers.

We have proposed a procedure to design PMLs for generally-shaped convex
truncated domains with regular boundary for time-dependent problems. This
permits a great flexibility when choosing the shape of the computational domain.
While involving a stretch in a specific curvilinear coordinate system, the final PML
equations (2.28) are easily written in cartesian coordinates, which facilitate their
implementation in computational codes. The complete procedure is the main
original result of this chapter. The effectiveness of obtained PMLs will be illus-
trated by numerical results in chapters 4 and 5.





CHAPTER 3
Optimizing Perfectly Matched Layers

in Discrete Contexts

3.1 Introduction

In a discrete context, when a numerical method is used to solve the wave-like
problem, the properties of the PML are altered [34, 167]. Indeed, the perfect match-
ing is lost, and the perfect absorption is no longer ensured by the condition (2.13),
valid only for the continuous problem. The PMLs are deteriorated by the dis-
cretization. In the worst cases, they become highly reflective.

Fortunately, spurious reflection of outgoing waves by a discretized PML can be
reduced by adjusting the discretization and the PML parameters. To this aim, very
thick layers, adaptive meshes [121], modified discrete schemes [60] and optimized
absorption functions [34, 167] can be used. However, the first two approaches im-
ply an increase of the computational cost, and the others are case-dependent. In
particular, the absorption function σ(x) is generally optimized by means of costly
computational procedures or a priori error estimates [39, 83, 130, 142], whose re-
sult depends on both the equations and the numerical scheme considered.

Smoothly increasing absorption functions σ(x) are commonly used with suc-
cess in the litterature. Indeed, they provide a smooth and efficient damping of
the outgoing waves in the layer. Polynomial functions are widely used (see e.g.
[25, 65]), even if they require a case-dependent optimization of additional param-
eters. Alternatives are offered by the promising hyperbolic functions [26]. In a spe-
cific time-harmonic acoustic context with a continuous finite element scheme,
Bermúdez et al. [26] showed that these functions do not require any tuning to
provide PMLs as efficient as those obtained with optimized polynomial functions.

49
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This chapter deals with the optimization of PMLs when numerical methods
are used. Since the absorption function σ(x) is a key parameter of the optimiza-
tion problem, a large part of the chapter is dedicated to its study. In particular, the
result of Bermúdez et al. [26] about hyperbolic functions is extended to the time
domain. In order to draw conclusions as case-independent as possible, all simu-
lations are systematically performed with different classical numerical methods,
and interpretations are proposed.

This chapter is organized as follows. In section 3.2, we propose a preliminary
analysis of the PML in one dimension. The change of properties of discretized
PMLs are highlighted, together with the influence of the problem parameters. The
specific role of the absorption function σ(x) is shown and interpreted, together
with the existence of optimum values in discrete contexts. In section 3.3, both
polynomial and hyperbolic absorption functions are optimized and compared by
means of one- and two-dimensional benchmarks. Thereby, the result of Bermúdez
et al. [26] is extended to the time domain for different numerical methods. Finally,
we propose an interpretation of this result.

3.2 Preliminary analysis of the PML in discrete contexts

When using a PML together with a numerical scheme, it is worthwhile to preserve
its ability to simulate accurately the artificial boundary of the truncated domain.
In discrete contexts, this ability can be studied from two complementary stand-
points.

First, the different contributions to the error on the solution can be studied.
Let us recall that, inside the truncated domain, the numerical solution must be as
close as possible to the solution of the original continuous problem. The differ-
ence between these solutions (i.e. the global error) is due to two kinds of error, as
illustrated in Figure 3.1:

• the modeling error, caused by the replacement of the original continuous
problem (defined on the unbounded domain Rn) by a modified version (de-
fined on the truncated domainΩ surrounded by the layer Σ);

• the numerical error, generated by the discretization of the fields and the
equations of the modified continuous problem (in bothΩ and Σ).

The modeling error can be studied by using plane-wave analyses of continuous
equations, as performed in section 2.3.2. In particular, the reflection coefficient
rpml associated to a PML of finite thickness, given by the expression (2.12), is a
way to quantify this error. For a finite difference scheme, the numerical error can
be evaluated using the truncation1 error of the scheme.

1Here, the term ‘truncation’ refers to the replacement of infinite sums by finite ones. Truncated
Taylor series are used to evaluate the error generated by the replacement of partial derivatives with
finite differences in the scheme.
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Ω

R
n

Ω
Σ

Original continuous problem

Modified continuous problem

Discrete problem

PML stretch
Modeling error

Discretization

Numerical error

Figure 3.1: When using a PML together with a numerical scheme, the global error can be
interpreted as the sum of modeling and numerical errors.

A complementary standpoint is to consider the discrete problem itself as a
wave-like problem. Indeed, the discrete equations support discrete plane-wave
solutions, which have properties different from their continuous versions. The
purpose of a discretized PML is then to absorb as accurately as possible the dis-
crete outgoing waves.

These standpoints lead to two ways to optimize PMLs: minimizing both mod-
eling and numerical errors [130], or minimizing directly a discrete version of the
reflection coefficient rpml [39, 83, 142]. The former way has the advantage to high-
light the different sources of error. With the latter, it is convenient to have to min-
imize a single quantity: the discrete reflection coefficient.

In this section, we study the ability of discretized PMLs to simulate an artifi-
cial boundary in a simple one-dimensional case. First, we derive and analyse the
discrete reflection coefficients associated to discrete plane waves for the finite dif-
ference scheme. Then, our approach is validated and extended to other numerical
methods by using numerical simulations in the time domain.

The problem considered hereafter is defined on the semi-infinite domain Ω =
R−, extended with a PMLΣ= [0,δ]. In both domainΩ and layerΣ, the fields p(x, t )
and u(x, t ) are governed by 

∂p

∂t
+a

∂u

∂x
=−σp,

∂u

∂t
+b

∂p

∂x
=−σu,

where the absorption function σ is equal to a constant value σ̄ in Σ, and to zero in
Ω. In this particular case, the reflection coefficient associated to the interface (or
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an infinite layer) (2.11) remains

rinterface = 0, (3.1)

while the reflection coefficient associated to a PML of thickness δ, that is given by
the general expression (2.12), becomes

rpml = exp

[
− 2σ̄δp

ab

]
. (3.2)

3.2.1 Properties of the PML in the FD context

Let us consider a discretization of the problem defined above with the finite differ-
ence (FD) method. The fields are spatially discretized on staggered regular grids.
The semi-discrete fields p̃i+1/2(t ) and ũi (t ) take their values at the discrete points
xi+1/2 = (i + 1/2)∆x and xi = i∆x, respectively, where i is the spatial index and ∆x
is the spatial step. Using central finite differences, the governing semi-discrete
equations read 

dp̃i+1/2

dt
+a

ũi+1 − ũi

∆x
=−σi+1/2 p̃i+1/2,

dũi

dt
+b

p̃i+1/2 − p̃i−1/2

∆x
=−σi ũi .

(3.3)

The discrete values of the absorption function, σi and σi+1/2, are equal to zero in
the domain (i < 0) and to the constant value σ̄ in the PML (i ≥ 0).

Discrete plane-wave solution

As for the continuous case, some properties of the discrete problem can be studied
by analysing its plane-wave solution. The complete analyses are in appendix A.

In the domain Ω, the elementary plane-wave solution of the discrete system
(3.3) (without the sink terms) reads

p̃i+1/2(t ) = Pe ı(k(i+1/2)∆x−ωt ),

ũi (t ) =U e ı(ki∆x−ωt ),

where the amplitudes P and U are linked by P =±pa/b U , while the wave number
k (real) and the angular frequencyω (real and positive) are linked by the dispersion
relation

k =± 2

∆x
arcsin

(
∆x

2

ω

c

)
, (3.4)

with c =p
ab. Since their phase velocityω/ |k| depends on the wave number, these

plane waves are dispersive, contrary to their continuous versions. To recover the
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continuous behavior of waves, and therefore the corresponding dispersion rela-
tion, the spatial step must be small in front of the wavelength, i.e. ∆x << c/ω. The
discrete lattice must be able to reproduce the oscillatory behavior of waves.

In the layer Σ, the oscillatory behavior of discrete plane waves is altered by the
absorption function, and the decay of these waves varies with the frequency, in
contrast with the continuous case (see section 2.3.2). For a constant absorption
function σ̄, the elementary solution of the system can be written with damped
plane waves

p̃i+1/2(t ) = Pe ı(β(i+1/2)∆x−ωt ),

ũi (t ) =U e ı(βi∆x−ωt ),

where β is a complex number. The real part of β is the wave number, while its
imaginary part gives the attenuation factor. Injecting these solutions in the gov-
erning equations, one obtains the relation

β=± 2

∆x
arcsin

(
∆x

2

ω+ ıσ̄

c

)
. (3.5)

Both real and imaginary parts of β depend on ω and σ̄. To recover the continuous
dispersion relation, the spatial step ∆x must be small in comparison with both
c/ω and c/σ̄. The first condition is the same as in the domain Ω (with σ = 0).
The second condition can be interpreted considering the shape of the solution in
the layer, illustrated in Figure 3.2. For a constant absorption function, the decay
of waves is exponential, with the characteristic length c/σ̄. Because this decay
must be captured by the discrete mesh, the spatial step must be smaller than this
characteristic length, i.e. ∆x << c/σ̄.

Spatial coordinate x

P
la

ne
−

w
av

e 
so

lu
tio

n

Domain Ω Layer Σ

ε = c/σ

Figure 3.2: Illustration of the exponential decay of a plane wave in a one-dimensional PML
for a constant absorption function σ(x) = σ̄. The characteristic length of the decay is c/σ̄.
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Discrete reflection coefficients — Effectiveness of the discretized PML

Discrete versions of the reflection coefficients (3.1) and (3.2) are derived using the
procedure already employed for the continuous case in section 2.3.2. They are
representative of the effectiveness of the discretized layer for simulating the trun-
cation of the domain. Assuming a semi-infinite domain terminated with a PML,
a discrete reflection coefficient is the ratio of the amplitudes of an incident and a
reflected discrete plane wave. The coefficient associated to the interface (or an
infinite PML) is then

r?interf =
∣∣∣∣∣
(
σ∆x

c − ı ω∆x
c

)+e ıβ∆x/2 −e−ık∆x/2(
σ̄∆x

c − ı ω∆x
c

)+e ıβ∆x/2 +e ık∆x/2

∣∣∣∣∣ ,

while the one corresponding to a PML of thickness δ is

r?pml =
∣∣∣∣∣∣
(
σ̄∆x

c − ı ω∆x
c

)+ ı cos(βδ−β∆x/2)
sin(βδ) −e−ık∆x/2(

σ̄∆x
c − ı ω∆x

c

)+ ı cos(βδ−β∆x/2)
sin(βδ) +e ık∆x/2

∣∣∣∣∣∣ . (3.6)

In these formulas, k and β are linked to ω by the dispersion relations (3.4) and
(3.5) with the plus sign in either case. The complete developments are detailed in
appendix A. The continuous and discrete versions of the reflection coefficients are
plotted for a set of parameters in Figure 3.3.

For a small value of σ̄, the behaviour of the continuous solution in the PML
is accurately reproduced by the numerical scheme. Indeed, when σ̄ < c/δ, the
curves of the discrete reflection coefficients are close to those of the correspond-
ing continuous ones (see Figure 3.3). The outgoing waves are then perfectly trans-
mitted from the domain to the PML. However they are not sufficiently damped in
both the continuous and the discrete cases. For a finite layer, the waves are in-
deed reflected by the outer boundary and come back in the domain. Therefore,
the poor behavior of the PML is due to the modeling error that is already present
in the continuous model. A larger σ̄ is needed.

If σ̄ is too large, the interface domain/layer is reflective, while it is perfectly
mached in the continuous case. This spurious reflection of waves is caused by the
discretization error. The characteristic length of the exponential decay of outgoing
waves is lower than the spatial step, i.e. if c/σ̄<∆x. As a consequence, the behav-
ior of the solution cannot be reproduced by the discrete lattice, and numerical
errors appear.

Therefore, a constant absorption function σ̄ must be chosen in such a way to
damp enough outgoing waves (c/σ̄< δ) without inducing a too sharp decrease of
the fields in the PML (c/σ̄ > ∆x). There exists an optimum value σ̄opt that corre-
sponds to a compromise. The value σ̄opt minimizes (3.6). It is such that the char-
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Figure 3.3: Reflection coefficients obtained with plane-wave analyses in both continuous
(rinterf and rpml) and discrete (r?interf and r?pml) contexts, for the PML thickness δ = 5∆x,

the angular frequency ω = 2π/(13∆x) and the spatial step ∆x = 103. All quantities are
normalized to both velocity

p
ab and impedance

p
a/b, and are then dimensionless.

acteristic length of the exponential decay c/σ̄opt is in the range [∆x,δ], as shown
in Figure 3.3.

The impact of the spatial step ∆x and the thickness of the layer δ on the errors
can be interpreted by analysing the curves in Figure 3.3. An increase of δ moves
the curve rpml(σ̄) to the left. Similarly, a decrease of ∆x moves the curve rinterf(σ̄)
to the right. Therefore, for a given value of σ̄, they lead to a decrease of the model-
ing error and the numerical error, respectively. Both ways then decrease the total
error, but they do not ensure a significant decrease. Indeed, an increase of δ (resp.
decrease of ∆x) does not improve significantly the layer if the total error is largely
dominated by the numerical error (resp. modeling error).

As a conclusion, σ̄, δ and ∆x are key parameters that influence the effective-
ness of the discretized PML. The modeling error is related to the value δ, while the
numerical error strongly depends on ∆x. The most appropriate approach to im-
prove a PML is to choose δ and ∆x, and after to find the corresponding optimum
value of σ̄. If the obtained total error is too large, the procedure must be repeated
with a larger δ and/or a smaller ∆x, and thus a larger computational cost.
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3.2.2 Extension to other numerical methods

The behavior of the discretized PMLs is now studied using the results of time-
dependent numerical simulations, with the FD methods as well as the FV, CG and
DG ones. For convenience, all quantities are normalized to both velocity

p
ab and

impedance
p

a/b. They are then dimensionless.

One-dimensional benchmark

Let us adapt the previous time-harmonic benchmark to the time domain. A finite
domainΩ= [−L,0] is extended with the finite PMLΣ= [0,δ]. An incident Gaussian
pulse is used as initial condition with

p(x,0) = exp

(
− (x +L/4)2

R2

)
,

u(x,0) = exp

(
− (x +L/4)2

R2

)
,

where R is a constant parameter, as illustrated in Figure 3.4. This pulse covers a
broad range of frequencies, by contrast with the incident sine wave of the time-
harmonic benchmark. It is initially centered at the middle of [−L/2,0]. As time
goes by, it moves towards the layer and is partly reflected. At the end of the sim-
ulation (t f = L/2), the reflected part of the pulse is mainly in [−L/2,0]. However,
due to the numerical dispersion of the discrete scheme, some numerical modes
can reach [−L,−L/2] and the shape of the reflected signal can be non-Gaussian.
Finally, the boundary condition u = 0 is used at both x =−L and x = δ.

(a) Initial solution

−L −L/2 0 δ

x
σ

(b) Final solution

−L −L/2 0 δ

x
σ

Figure 3.4: One-dimensional benchmark. Field p(x, t ) at the initial and final instants. A
Gaussian-shaped pulse that moves to the right is prescribed by the initial condition (a).
After a reflection by the layer, the reflected part of the pulse moves to the left. At the final
instant, the reflected signal (possibly deformed) is mainly in the right part of the domain
(b).
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The reflection by the PML is quantified with the relative error ξr of the numeri-
cal solution defined by

ξr =
√

Epml(t f )

Ewall(t f )
, (3.7)

where Epml(t f ) is the total energy associated to the numerical solution in [−L,0] at
the end of the simulation, i.e. in the dimensionless case

Epml(t f ) =
∫ 0

−L

(
1

2
p2(x, t f )+ 1

2
u2(x, t f )

)
dx,

and Ewall(t f ) is the one obtained by remplacing the PML with the perfectly reflect-
ing boundary condition u = 0 at x = 0. The value of ξr can be then interpreted as
the part of the total energy that is reflected by the layer. The value 0 corresponds
to a perfectly absorbing layer, while 1 is for a perfectly reflective layer.

The discrete reflection coefficient r?pml and the relative error ξr are two comple-
mentary ways to quantify the effectiveness of a PML. The former is for a particular
frequency (time-harmonic context), while the latter directly accounts for a range
of frequencies through the initial incident pulse (time-dependent context). In the
particular case where a harmonic plane wave is used instead of the Gaussian in-
cident pulse, the relative error reduces to the discrete reflection coefficient, i.e.
ξr = r?pml.

Numerical results

The relative error ξr has been computed for values of the parameter σ̄ in [10−6,1]
with different numerical schemes in a unique setting. The curves of ξr as a func-
tion of σ̄ are plotted in Figure 3.5 (decimal scale) and Figure 3.6 (logarithmic scale).
We consider centered and upwind fluxes for FV and DG schemes, and first and
second-order elements for CG and DG schemes. Let us recall that a DG scheme
with zero-order elements reduces to a FV scheme. For all schemes, the spatial
step is ∆x = 103, the size of the domain is L = 500∆x, the thickness of the layer is
δ= 5∆x, and the parameter of the initial pulse is R = 10∆x. The time-integration
is made using the Leapfrog scheme with ∆t = 0.5 103 (FD), or the Crank-Nicolson
scheme with∆t = 2.5103 (FV, CG and DG). To stabilize the CG scheme, PSPG terms
are added in the formulation (see section 1.3.3.1) with a numerical diffusion pa-
rameter κ= 103.

The numerical results obtained with the FD scheme are consistent with the
plane-wave analysis of the previous section. Indeed, in Figure 3.5(a), the curve
of the relative error ξr (σ̄) is close to the one of the discrete reflection coefficient
r?pml(σ̄) obtained with the plane-wave analysis. The small difference can be ex-
plained by the difference of incident signal: a harmonic one with a single fre-
quency for r?pml and a Gaussian one with a range of frequencies for ξr .
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(a) FD scheme (b) CG scheme
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(c) FV/DG schemes with centered fluxes (d) FV/DG schemes with upwind fluxes
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Figure 3.5: One-dimensional benchmark. Relative errors ξr of the one-dimensional
benchmark as a function of the constant absorption function σ̄ for different numerical
methods.
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(a) FD scheme (b) CG scheme
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Figure 3.6: One-dimensional benchmark. Same as Figure 3.5, but with a logarithmic scale.
In graph (d), horizontal lines are plotted at the positions corresponding to the relative
errors obtained with the absorbing boundary condition (ABC) (2.3).
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For σ̄<< c/δ, the continuous solution is accurately reproduced by all schemes.
Indeed, all curves of relative error are close to the one of the continuous reflec-
tion coefficient rpml. Therefore, in each case, the outgoing pulse is not sufficiently
damped by the layer and is reflected by the outer boundary. The error is due to the
mathematical model.

For σ̄ >> c/δ, the exponential decay of outgoing waves is too sharp to be re-
produced by the discrete mesh. In this case, the behavior of the discretized PML
varies with the numerical scheme.

With the CG scheme and the FV/DG schemes (with centered fluxes), the curves
ξr (σ̄) look like the one obtained with the FD scheme (Figures 3.5(b) and 3.5(c)):
there is an optimum value of σ̄ and, beyond this value, the relative error increases
with σ̄. For very high values of σ̄, the interface domain/layer becomes perfectly
reflective. The optimum value of σ̄ increases when the order of elements increases
(see Figures 3.6(b) and 3.6(c)). This can be explained considering that a higher
order method can more accurately reproduce the rapid variations of the solution.
Therefore, a higher σ̄, which reduces the characteristic length of the exponential
decay, can be used.

While the reflected signal (not shown here) is a Gaussian pulse moving to the
right with the CG scheme, it presents rapid oscillations that move faster than the
physical velocity (c = 1 in this dimensionless context) with the FV/DG schemes,
shown in Figure 3.7 for first-order elements. These rapid oscillations can be inter-
preted by considering that the fields are overdamped in the layer. At the interface,
the centered numerical fluxes are then computed with both numerical fields equal
to zero at the point of the interface on the side of the layer, i.e. at x = 0+. This cor-
responds to prescribing two homogeneous Dirichlet boundary conditions (one on
each field), while only one can be prescribed to have a well-posed problem. There-
fore, the well-posedness is lost and instabilities are generated.

t = 0 t = t f /3 t = 2t f /3 t = t f
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Figure 3.7: One-dimensional benchmark. Discrete field p at different instants of the sim-
ulation, obtained with the DG method, centered fluxes and first-order elements. A too
large value of the absorption coefficient, σ̄ = 10−1, is used. In the graphs, the horizontal
axis represents the spatial coordinate, while the vertical one is for the value of the field.
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With the FV/DG schemes and upwind fluxes, unlike with other schemes, the
PML remains highly absorbing for large values of σ̄ (see Figure 3.5(d)). This is due
to the upwind fluxes, which are correctly computed at this interface thanks to the
Riemann solver. This solver splits the parts of the solution that propagate inward
and outward the domain. Outgoing information (i.e. outgoing waves) is correctly
computed with the interior values. Incoming information (i.e. incoming waves),
based on the overdamped solution of the layer, are then zero, which is exact. At its
best, the PML reaches the accuracy of the absorbing boundary condition (2.3) (see
Figure 3.6(d)). This condition is exact for the continuous problem with one spatial
dimension (see section 2.2.1). The incoming Riemann invariant is prescribed to
zero at the interface, such that no incoming waves enter in the domain. Unfor-
tunately, as shown later, this ideal behavior is lost for multidimensional problems
with oblique incident waves. Indeed, the absorbing boundary condition is then
approximate and becomes reflective. Similarly, the PML becomes reflective for
too large values of σ̄.

All these numerical results corroborate the conclusion of the plane-wave analy-
sis in the FD context, and extend it to other numerical methods. In nearly all cases,
there is an optimum value of σ̄ to use with the discretized PML. The important ex-
ception is a particular case that does not occur in multidimensional problems (for
FV and DG schemes with upwind fluxes).

3.3 Spatially varying absorption functions

The effectiveness of a discretized PML is easily improved by using increasing ab-
sorption functions σ(x) instead of constant ones. Indeed, such spatially varying
functions provide decays of outgoing waves that are easier to approximate by the
numerical methods than the exponential decay provided by constant functions.

This section deals with the choice of the spatially varying function to use as
absorption function σ(x). First, we consider this choice as a full optimization
problem, where each discrete value of the function is a parameter to optimize. Al-
though this approach is very case-dependent, it provides instructive information.
After, polynomial and hyperbolic absorption functions are presented. The addi-
tional parameters introduced by these functions are studied. They are optimized
by means of one- and two-dimensional benchmarks.

3.3.1 Full optimization of the discrete absorption function

The determination of the spatial distribution of the absorption function can be
approached as a full optimization problem: each discrete value of the absorption
function is a control variable.

Reusing the benchmark of section 3.2.2 in the one-dimensional FD context, the
full optimization procedure consists in minimizing the relative error ξr (3.7). This
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error is here a function of all the discrete values of the absorption function that are
used in the discrete system (3.3), i.e. σ1/2, σ1, ..., σNδ−1 and σNδ−1/2, where Nδ is the
number of cells in the layer. The optimization problem then reads

minimize{σi } ξr ({σi }),

such that 0 ≤σ1/2 ≤σ1 ≤ ... ≤σNδ−1/2.

The additional constraint, which enforces the absorption function to be positive
and non-decreasing, has been added in order to improve the convergence of the
numerical resolution. Here, the relative error ξr is computed considering the total
energies in [−L/2,0] instead of [−L,0]. This modification removes the influence of
a numerical artefact introduced by the initial condition, which had a little impor-
tance until now.

The numerical resolution of the optimization problem using the optimization
toolbox of Matlabr suffers from an irregular convergence when the PML is broad
or when the model is triggered with a sine wave instead of a Gaussian signal. In
either case, a nearly perfect behavior of the PML can be achieved with slightly dif-
ferent distributions of the absorption function, so that the optimum distribution
is poorly defined. When the system is triggered with a sine wave, in particular,
a nearly perfect behavior can be obtained even for thin absorbing layers, but the
optimum distribution (not shown) depends strongly on the wave number and the
frequency.

Figure 3.8 shows the optimum spatial distribution {σi } obtained through nu-
merical optimization for a 5-cell PML in the set-up considered in section 3.2.2.
The gradual increase of the optimum distribution {σi } in the PML introduces a
progressive damping of the incoming wave and avoids therefore the development
of large gradients in the solution. This distribution corresponds to the relative
error ξr = 3.0256 10−6, which is far smaller than what can be obtained with opti-
mized analytical functions (see values in Figure 3.13(a)). Therefore, even if there
is no proof that the procedure converges to the global optimum distribution, the
present result is already relevant.

3.3.2 Review of analytical absorption functions

Polynomial functions are widely used as absorption functions, i.e.

σn(x) =α
( x

δ

)n
,

where n andα are additional positive parameters. The parabolic functionσ2 (with
n = 2) and the cubic one σ3 (with n = 3) are the most frequently used (see e.g.
[65] and the references of this thesis). As for a constant absorption function, the
parameter α of polynomial functions must be large enough to damp the outgoing
waves, and small enough to avoid a too sharp variation of the solution that cannot
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Figure 3.8: Optimized analytical absorption functions and discrete optimum distribution
{σ1/2,σ1, ...,σNδ−1,σNδ−1/2} for a 5-cell PML with the FD scheme.

be reproduced accurately by the numerical scheme. Nevertheless, the optimum α

is not clearly identified. Currently, there exists no general rule to choose it.

As an alternative, hyperbolic functions have been proposed by Bermúdez et al.
[26],

σh(x) = α

δ−x
, σsh(x) = α

δ−x
− α

δ
,

where α is an additional positive parameter to choose. The second function is
called shifted hyperbolic function, because it is pushed down to ensure a zero value
at the interface domain/layer (i.e. at x = 0). Both functions are singular at the outer
border of the layer (i.e. at x = δ). Therefore, since the condition (2.13) is met, the
PML is theoretically perfectly absorbing in the continuous context.

In discrete contexts, the parameter α must be optimized for the same reason
as with other functions. Fortunately, both functions are optimum with α ≈ c (or
α≈ 1 in the dimensionless context). This was first shown by Bermúdez et al. [26]
in a specific time-harmonic acoustic context with the CG method. This result is
extended hereafter in time-dependent contexts with different numerical methods.

Let us note that, when a finite element method is used, the numerical inte-
gration over an element close to the boundary is tricky because of the large val-
ues of σ. This issue can be fixed by adapting the numerical integration [26]. In
this work, no particular difficulty has been encountered for both discontinuous
Galerkin (DG) and continuous Galerkin (CG) finite element schemes.
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3.3.3 Optimization of analytical absorption functions

In this section, polynomial and hyperbolic functions are optimized and compared
using one- and two-dimensional benchmarks. The one-dimensional benchmark
deals only with waves that are normal to the interface domain/layer, while waves
with oblique incidences are considered in the two-dimensional one.

3.3.3.1 Optimization for normal waves

Let us consider again the one-dimensional benchmark of section 3.2.2, with FD,
CG and DG schemes. Only first-order elements are employed for the finite element
schemes (CG and DG). Figures 3.9, 3.10, 3.11 and 3.12 show the relative error ξr

as a function of the parameter α for each absorption function and each scheme
in different settings. Two sets of numerical parameters are considered for each
numerical scheme: those of section 3.2.2 (labelled ‘set A’) and more accurate ones
(labelled ’set B‘). In each case, two PML thicknesses δ are used. The values of
parameters are given in the caption of figures.

For the PML discretized with the DG scheme and upwind fluxes, the result ob-
tained with a constant absorption function is recovered: the PML remains highly
absorbing with very high value of α (see Figure 3.12), by contrast with other nu-
merical schemes. At its best, the PML is as accurate as the absorbing boundary
condition (2.3), which is exact in this one-dimensional context.

With other numerical schemes, the curves ξr (α) can present several minima. A
systematic optimization of absorption functions must therefore be carefully done.
For polynomial functions, the best α, which corresponds to the global minimum
of each curve, is always in the range 10−3−10−2, except when the DG scheme with
centered fluxes is used. In this case, the best α may have very different values:
close to 10−3, 100 or 102 (see Figure 3.11). By contrast, for the hyperbolic functions
σh and σsh, it is always close to 1.

Figure 3.13 shows the minimum ξr and the corresponding optimum α as func-
tions of the number of spatial steps in the layer. They are obtained using a sys-
tematic procedure with a heuristic minimum search algorithm. The optimumα is
searched in the range 10−4 −10−2 for polynomial functions and 10−1 −101 for hy-
perbolic ones. Although there is no guarantee that the obtained optimum values
correspond to the global minimum of ξr (α), the behavior of all curves is coherent:
by increasing the thickness of the layer, the minimum relative error ξr decreases.

For each absorption function, the optimum value of α is similar in all discrete
contexts (Figure 3.13, graphs on the right). It remains in the range 10−3 − 10−2

for polynomial functions (σ2 and σ3), and close to 1 for hyperbolic ones (σh and
σsh). In the first case, this optimum value varies slightly following the numerical
scheme, and diminishes when the layer thickness increases. By constrast, it is
almost always constant with the hyperbolic functions.
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(a) FD scheme with δ= 5 103 and set A (b) FD scheme with δ= 104 and set A
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(c) FD scheme with δ= 5 103 and set B (d) FD scheme with δ= 104 and set B
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Figure 3.9: One-dimensional benchmark with the finite difference (FD) scheme. Relative
error ξr as a function of the parameter α for different absorption functions σ(x) and two
PML thicknesses δ. In each case, two sets of numerical parameters are considered: ∆x =
103, ∆t = 500 (set A) and ∆x = 100, ∆t = 50 (set B). All values are dimensionless.
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(a) CG scheme with δ= 5 103 and set A (b) CG scheme with δ= 104 and set A
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(c) CG scheme with δ= 5 103 and set B (d) CG scheme with δ= 104 and set B
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Figure 3.10: One-dimensional benchmark with the continuous Galerkin (CG) scheme.
Relative error ξr as a function of the parameter α for different absorption functions σ(x)
and two PML thicknesses δ. In each case, two sets of numerical parameters are consid-
ered: ∆x = 103, ∆t = 2.5 103 (set A) and ∆x = 250, ∆t = 625 (set B). κ = 1000 for both
settings. All values are dimensionless.
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(a) DG scheme with centered fluxes, (b) DG scheme with centered fluxes,

δ= 5 103 and set A δ= 104 and set A
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(c) DG scheme with centered fluxes, (d) DG scheme with centered fluxes,

δ= 5 103 and set B δ= 104 and set B
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Figure 3.11: One-dimensional benchmark with the discontinuous Galerkin (DG) scheme
with centered fluxes. Relative error ξr as a function of the parameter α for different ab-
sorption functions σ(x) and two PML thicknesses δ. In each case, two sets of numerical
parameters are considered: ∆x = 103, ∆t = 2.5 103 (set A) and ∆x = 250, ∆t = 625 (set B).
All values are dimensionless.
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(a) DG scheme with upwind fluxes, (b) DG scheme with upwind fluxes,

δ= 5 103 and set A δ= 104 and set A
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(c) DG scheme with upwind fluxes, (d) DG scheme with upwind fluxes,

δ= 5 103 and set B δ= 104 and set B
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Figure 3.12: One-dimensional benchmark with the discontinuous Galerkin (DG) scheme
with upwind fluxes. Relative error ξr as a function of the parameter α for different ab-
sorption functions σ(x) and two PML thicknesses δ. In each case, two sets of numerical
parameters are considered: ∆x = 103, ∆t = 2.5 103 (set A) and ∆x = 250, ∆t = 625 (set B).
The position of the dashed line corresponds to the relative error obtained with the absorb-
ing boundary condition (ABC) (2.3). All values are dimensionless.



3.3. Spatially varying absorption functions 69

(a) FD scheme

5 6 7 8 9 10 11 12 13 14 15
10

−6

10
−4

10
−2

10
0

Number of cells in the PML

M
in

im
um

 r
el

at
iv

e 
er

ro
r 

 ξ
r

 

 

σ
2

σ
3

σ
h

σ
sh

5 6 7 8 9 10 11 12 13 14 15
10

−4

10
−2

10
0

Number of cells in the PML

O
pt

im
um

 p
ar

am
et

er
  α

 

 

σ
2

σ
3

σ
h

σ
sh

(b) CG scheme
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(c) DG scheme with centered fluxes
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Figure 3.13: One-dimensional benchmark. Minimum relative error ξr (left) and corre-
sponding optimum parameter α (right) as a function of the PML thickness δ for the dif-
ferent absorption functions σ(x). When δ increases, the spatial step ∆x remains constant
and the number of cells in the PML increases. For all schemes, ∆x = 103. The time step ∆t
is 500 (FD) or 2.5 103 (CG and DG). All values are dimensionless.
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The effectiveness of the different absorption functions at their best, i.e. when
the optimumα is used, changes depending on the numerical method (Figure 3.13,
graphs on the left). With the FD scheme, the optimized polynomial functions give
the smallest relative error. Among the hyperbolic functions, the shifted one σsh

works better than the other. With the CG scheme, σh outperforms all other opti-
mized functions, which give equivalent results. Finally, with the DG scheme and
centered fluxes, all functions give a relative error of the same order of magnitude.

3.3.3.2 Optimization for oblique waves

In order to test the PML with waves with oblique incidences, a two-dimensional
benchmark is now considered.

Two-dimensional benchmark

A Gaussian-shaped pulse is initially prescribed in the center of a squared domain
using the initial condition on p(x, t ):

p(x,0) = exp

(
−‖x‖2

r 2

)
,

where r is a parameter. The field u(x, t ) is equal to zero everywhere at t = 0. As time
goes by, the pulse collapses and circular waves appear. The simulation ends when
the main wave front reaches the borders of the square (see the reference solution
in Figure 3.14). The homogeneous Dirichlet condition u ·n = 0 is prescribed at
each border of the square, where n is the outward normal.

The PML is tested considering a modified version of the problem with a trun-
cated domain: the upper part of the squared domain is removed and replaced with
a PML Σ (see Figure 3.14). The goal is to reproduce the reference solution in the
truncated domainΩ. Let us note that, even if the PML is normally used to truncate
an unbounded domain, it can replace the removed area of the bounded squared
domain in this case. Indeed, during the simulation, the reference solution in the
truncated domain is not influenced by the upper boundary of the original squared
domain.

The accuracy of the PML is again quantified by using the relative error ξr de-
fined as

ξr =
√

Eerror with pml(t f )

Eerror with wall(t f )
,

except that the total energies Eerror with pml(t ) and Eerror with wall(t ) are now asso-
ciated to the error on the fields in the truncated domain Ω. The former energy
corresponds to the numerical solution obtained with the PML, while the latter is
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Reference solution Solution with PML Error in the domainΩ

t
=

0

0 0.5 10 0.5 1 0 0.5 10 0.5 1 0 0 00 0 0

t
=

t f
/2

0.15-0.17 -0.01 0.15-0.17 -0.01 -0.17 -0.01 0.15-0.17 -0.01 0.15 -0.002 0.001 0.004-0.002 0.001 0.004

t
=

t f

-0.11 -0.005 0.1-0.11 -0.005 0.1 -0.11 -0.005 0.1-0.11 -0.005 0.1 -0.0026 -0.0001 0.0024-0.0026 -0.0001 0.0024

Figure 3.14: Two-dimensional benchmark. Field p(x, t ) at different instants of the simu-
lation in the reference domain (left) and the truncated domain Ω extended with a PML Σ
(center). The difference between these two solutions in the truncated domain is plotted
on the right.
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obtained in the case where the interface is perfectly reflective (u·n = 0 is prescribed
at the interface). In this dimensionless context, the first total energy reads

Eerror with PML(t ) =
∫
Ω

((
ppml(x, t )−pref(x, t )

)2 +∥∥upml(x, t )−uref(x, t )
∥∥2

)
dx,

where the numerical fields ppml and upml are obtained with the PML, while pref

and uref correspond to the reference numerical solution obtained with the original
squared domain (see Figure 3.14, left). The layer is then perfectly absorbing for
ξr = 0, and perfectly reflective for ξr = 1. In the latter case, the energy reflected by
the layer is indeed the same as with a perfectly reflective boundary condition.

As for the one-dimensional benchmark, the relative error ξr is computed with
numerous values of the parameterα for the different absorption functions and dif-
ferent numerical schemes. For all simulations, the spatial dimensions are 8 104 ×
8 104 for the reference squared domain, and 8 104×5 104 for the truncated domain.
We consider the PML thickness δ= 104, the characteristic length of the Gaussian-
shaped pulse r = 5 103, and the simulation duration is t f = 3.6 103. The numerical
schemes used are described in section 4.3.2 (DG scheme) and in appendix B.2 (FD
and CG schemes). For the FD scheme, the spatial steps are ∆x = ∆y = 500 and
the Leapfrog time-stepping is used with ∆t = 300. For both CG and DG schemes,
the mesh is made of first-order triangular elements with the characteristic size
`= 1.75103. The time-stepping Crank-Nicolson scheme is used with the time step
∆t = 3 103. We consider two values of the stabilization parameter κ for the CG
scheme, and centered and upwind fluxes for the DG scheme.

Numerical results

Figure 3.15 shows the relative error ξr as a function of the parameter α for the
different absorption functions in different numerical contexts.

Contrary to the one-dimensional case, the PML discretized with the DG scheme
and upwind fluxes is reflective for large values of α (see Figure 3.15(e)). There is
therefore an optimumα (at the minimum of each curve) for each absorption func-
tion, like with the other numerical schemes. In each case, the minimum relative
error ξr is smaller than the one obtained with the ABC (2.3). This is due to the
oblique outgoing waves of the two-dimensional benchmark, for which the ABC
is only approximate. The PML is more accurate in this context, but it requires to
choose a value of α neither large nor small.

Another difference with the one-dimensional case: the hyperbolic function σh

provides not so good results than other absorption functions. Indeed, when all
functions are optimized, the relative error corresponding to σh is the worst in
every discrete context, while this function was efficient with both CG and DG
schemes in one dimension. Moreover, when the CG sheme is used, the functionσh

gets worse when the stabilization parameter κ increases, while the performance of
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(b) CG scheme with κ= 200 (c) CG scheme with κ= 103
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(d) DG scheme with centered fluxes (e) DG scheme with upwind fluxes
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Figure 3.15: Two-dimensional benchmark. Relative error ξr as a function of the parame-
ter α for the different absorption functions in different numerical contexts. In graph (e),
the position of the horizontal line indicates the relative error obtained with the absorbing
boundary condition (ABC) (2.3).
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other functions is not affected (see Figure 3.15(c)-(d)). Therefore, σh is less robust
than others.

The cubic function σ3 and the shifted hyperbolic one σsh exhibit close relative
error ξr when they are optimized. The former is slightly better than the latter for
the FD scheme and the DG scheme with centered fluxes. The converse holds for
the CG scheme with κ = 200. Between polynomial functions, the cubic one σ3 is
always better than the parabolic one σ2.

As for the one-dimensional case, the optimumα of the shifted hyperbolic func-
tion σsh is very close to 1. By contrast, for the hyperbolic function σh, the opti-
mum value is now systematically smaller than 1. Finally, for polynomial functions
σ2 and σ3, the optimum α is always close to 10−3. This optimum value is co-
herent with those obtained in one dimension with the same PML thickness (see
Figure 3.13 for a PML with 10 cells), while being currently devoided of any inter-
pretation.

3.3.3.3 Interpretation

The performance of hyperbolic functions and the optimum value of α can be in-
terpreted by considering the particular shape of the obtained solution. Indeed,
since there is no modeling error with the hyperbolic functions for all α > 0 (see
section 3.3.2), the total error is entirely due to the numerical error. Since this nu-
merical error depends on the ability of the numerical scheme to reproduce the
solution (see section 3.2), the optimum parameter α corresponds to the solution
shape that can be described with the best accuracy in a given numerical context.

For a straight PML that damps in the direction ex , the plane-wave solution (2.9)
becomes, for the hyperbolic functions σh with α= c,

p(x, t ) = Pe ı(k·x−ωt )
[(

1− x

δ

)]cosθ
(3.8)

and, for the shifted hyperbolic function σsh with α= c,

p(x, t ) = Pe ı(k·x−ωt )
[

ex/δ
(
1− x

δ

)]cosθ
.

For waves with a normal incidence (i.e. θ = 0), the decay of plane waves is then
respectively linear and exponential-linear. These plane-wave solutions are illus-
trated in Figure 3.16.

The linear decay of plane waves provided by the hyperbolic functionσh is ideal.
Indeed, linear variations are perfectly represented by numerical schemes built
on regular grids. Here, the linear variation modulates the wave oscillation (part
e i (k·x−ωt ) of the solution). For the FD scheme, we show in appendix A.2.2 that the
linear decay is captured by the scheme without change of the dispersion proper-
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(a) Decay with σh(x) (b) Decay with σsh(x)
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Figure 3.16: Illustration of the decay of a plane wave in a one-dimensional PML for (a)
a hyperbolic function σh(x) and (b) a shifted hyperbolic function σsh(x). The decay is
respectively linear and exponential-linear.

ties of the discrete plane waves if α is equal to the group velocity cg (A.4)2. There-
fore, both decay and wave oscillation are ideally simulated. The same behavior is
expected with other numerical schemes.

However, the spatial derivative of the plane-wave solution is discontinuous at
the interface between the domain Ω and the layer Σ (see Figure 3.16(a)). Such so-
lution can be correctly represented with finite element schemes (CG or DG), but
not with a FD one. Indeed, the finite difference at the interface is a bad approxima-
tion. This explains the observed results for the one-dimensional benchmark: σh

is good with both CG and DG schemes and bad with the FD one. Unfortunately, in
two dimensions, the decay of obliques waves (3.8) is no longer linear, and the dis-
continuity of the derivative remains. This could explain the bad results observed
for all methods with the two-dimensional benchmark.

By contrast, the shifted hyperbolic function σsh provides a nonlinear decay of
plane waves, without discontinuity of the spatial derivative at the interface, as il-
lustrated in Figure 3.16(b). The numerical error is then generated inside the layer,
and no longer at the interface. The shape of this solution, with a slow decay, mini-
mizes this error with α= c in all considered discrete contexts.

2This assumption is reasonable since cg differs from the propagation velocity c only for wave-
lengths close to the spatial step ∆x [82]. However, in practical cases, ∆x is chosen small enough in
comparison to the considered wavelengths.
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3.4 Conclusion

The properties of PMLs, shown in the continuous context, are altered when nu-
merical methods are used. While the perfect matching was automatic and the
perfect absorption was ensured by an unbounded absorption function σ(x), the
parameters of a discretized PML must be carefully chosen in order to limit both
modeling and numerical errors.

The important elements for the optimization of PMLs are the absorption func-
tion σ, the layer thickness δ and the spatial discretization. Tacking a larger δ or a
finer mesh improves the PML, but at the price of an increase of the computational
cost. Unfortunately, the improvement is not significant if the global error is dom-
inated by respectively the numerical error or the modeling error. It is then crucial
to take an absorption function σ that minimize both kinds of error. Since this is
done without increasing the computational cost, looking for efficient absorption
functions is a very attractive approach.

In discrete contexts, σ must be large enough to sufficiently damp outgoing
waves, without introducing large gradients in the solution that cannot be repre-
sented by the numerical scheme. In this chapter, we have proposed a system-
atic comparison between different absorption functions that produce such kind
of smooth but efficient damping: commonly used polynomial functions (σ2 and
σ3) and hyperbolic functions (σh and σsh). When they are optimized, σ2, σ3 and
σsh provide comparable results, which are better than with σh, except in specific
one-dimensional cases. However, since the optimum value of the free parameter
of the polynomial functions does not find any direct interpretation, an optimiza-
tion procedure remains necessary to use them. By contrast, the function σsh can
be successfully used without any tuning. Indeed, it is nearly optimum when its
free parameter α is equal to the propagation velocity c. This function is there-
fore a convenient choice for a practical use, especially for massive cases where the
tuning of the absorption function is not possible.

Since the comparison has been done by means of two representative bench-
marks with different classical numerical schemes and different numerical param-
eters, this conclusion is valid for a broad range of cases involving non-dispersive
waves. In chapter 4, the effectiveness of the functionσsh will be assessed for a case
of electromagnetism with a more complicated geometry (a convex truncated do-
main). The study of absorption functions will be extended to cases that account
for other physical dynamics in chapter 5.



CHAPTER 4
Perfectly Matched Layers

for Acoustic and Electromagnetic
Scattering Problems

4.1 Introduction

Scattering problems, which form an important category of problems in both acous-
tics and electromagnetism, are defined on unbounded domains. Basically, waves
are scattered by one or more objects, called scatterers. When the equations are lin-
ear, the complete mathematical solution can be separated into two contributions,
as illustrated in Figure 4.1: the incident fields, which corresponds to the solution
obtained by removing the scatterers, and the scattered fields, which represent the
modification of the incident fields due to the presence of the scatterers. When a
scattering problem is redefined on a bounded domainΩ, the absorbing boundary
condition or the absorbing layer must account for both these fields. In the case
where incident waves are coming from the exterior of Ω (case (b) of Figure 4.1),
the boundary treatment must be able to prescribe them.

In this chapter, we present numerical acoustic and electromagnetic scattering
benchmarks in order to show the effectiveness of the PMLs introduced in chapter
2. Different formulations for scattering problems with PMLs are presented and
discussed, including some that easily account for ingoing incident waves. The
numerical solutions are obtained with a discontinuous Galerkin scheme.

The chapter is organised as follows. First, equations of acoustics and elec-
tromagnetism are introduced (section 4.2). Then, in section 4.3, we derive and
study different formulations for scattering problems with PMLs, and propose a
DG scheme. Its convergence is studied by means of one- and three-dimensional
reference benchmarks. Finally, we present two benchmarks in section 4.4.

77
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ΥIncident
fields

Scattered fields

Ω

(a)

Υ

Incident fields

Scattered fields

Ω

(b)

Figure 4.1: Illustration of scattering problems. Incident waves, generated inside (a) or out-
side (b) the domain of interest Ω, are scattered by one or more objects, called scatterers.
These incident waves are described by the incident fields, while the modification of the
solution due to the presence of scatterers (i.e. the scattered waves) is described by the
scattered fields. The sum of the incident and scattered fields gives the total fields.

4.2 Mathematical models

4.2.1 Equations for acoustics

Acoustics is a branch of fluid dynamics concerned with the study of sound waves
(see e.g. [103, section 15.2] or [147]). This is a linearized theory: variations of fields
are small in comparison with steady reference values. In a quiescent fluid, the
fluctuations in pressure p(t ,x) and velocity u(t ,x) are governed by


∂p

∂t
+ρc2∇·u = 0,

∂u

∂t
+ 1

ρ
∇p = 0,

(4.1)

where ρ is the reference density and c is the propagation velocity of the medium.
These parameters are assumed to be constant. In initial-boundary value prob-
lems, a solid wall is modeled with the boundary condition n ·u = 0, where n is the
outward normal.

The system (4.1) is obviously related to the scalar wave system (1.3). Their pa-
rameters are linked by

a −→ ρc2,

b −→ ρ−1.

Therefore, all results obtained in previous chapters are immediately applicable to
acoustic problems defined with the system of equations (4.1).
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4.2.2 Equations for electromagnetism

The time-evolution of electromagnetic fields is modeled by Maxwell’s equations
and constitutive relations (see e.g. the reference books [74, 97]). In a linear isotropic
nonconducting medium, these equations reduce to


ε
∂e

∂t
−∇×h = 0,

µ
∂h

∂t
+∇×e = 0,

(4.2)

where e(x, t ) is the electric field and h(x, t ) is the magnetic field. The properties of
the medium are taken into account through the permittivity ε and the permeabil-
ity µ. In this work, these parameters are constant.

In initial-boundary value problems, the boundary condition n× e = 0 is used
at the surface of a perfectly electrical conductor (PEC), where n is the outward
normal on the boundary. The corresponding condition for a perfectly magnetic
conductor is n×h = 0. Finally, the radiation condition for Maxwell’s equations,
called the Silver-Muller condition, reads

n×e−
√
µ

ε
n× (n×h) = n×einc −

√
µ

ε
n× (n×hinc),

where einc and hinc are the incidents fields. Each of these boundary conditions
can be written with only two scalar relations that correspond to the projections
in the two directions perpendicular to n. Indeed, the scalar relation obtained by
projecting a boundary condition on n is trivially ensured.

Reduced systems for TE and TM modes

Wave guide problems with invariance along one direction reduce to problems with
only two spatial dimensions. Two particular cases must be considered [74, 97]: the
transverse magnetic (TM) mode, where e is parallel and h is perpendicular to the
invariance direction, and the transverse electric (TE) mode, where e is perpendic-
ular and h is parallel to this direction.

For both TM and TE modes, the equations of the system (4.2) reduce to three
scalar equations with three scalar unknown fields, that are in correspondence with
the scalar wave system. Let us consider a TM mode with invariance of fields in the
z−direction. Then, e is parallel and h is perpendicular to the z−direction, which
can be written e = [0,0,ez ] and h = [hx ,hy ,0]. The Cartesian components of vector
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fields are then governed by the system

ε
∂ez

∂t
− ∂hy

∂x
+ ∂hx

∂y
= 0,

µ
∂hx

∂t
+ ∂ez

∂y
= 0,

µ
∂hy

∂t
− ∂ez

∂x
= 0.

(4.3)

This system is immediately recovered from the two-dimensional version of the
scalar wave system written with the Cartesian components, i.e.

∂p

∂t
+a

(
∂ux

∂x
+ ∂uy

∂y

)
= 0,

∂ux

∂t
+b

∂p

∂x
= 0,

∂uy

∂t
+b

∂p

∂y
= 0,

by using the substitutions

p −→ ez ,

ux −→ −hy ,

uy −→ hx ,

a −→ ε−1,

b −→ µ−1.

Similar substitutions can be written for the TE mode. Therefore, as for the acoustic
case, results obtained with the scalar wave system are applicable to two-dimensional
electromagnetic problems with TE and TM modes.

4.3 Methods

In this section, we examine different formulations of scattering problems with
PMLs. We compare different ways of considering incident fields. Then, the nu-
merical DG scheme used in benchmarks is detailed and studied. All developments
are made in the context of the scalar wave system, with a single scatterer.

4.3.1 Formulations for scattering problems with PML

Let us consider a general scattering problem in the time domain. The geometry of
the problem is illustrated in Figure 4.2 for the two-dimensional case. The scatterer
is denoted Π, and its boundary is ∂Π. We are interessed in the solution in the
bounded domain of interest Ω that contains the scatterer. The domain Ω is such
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(a)
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Σ

Υ
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Γ

Figure 4.2: Notations for the scattering problem with an unbounded domain (a) and a
truncated domainΩ surrounded by a layer Σ (b).

that Ω∩Π = ;, and Ω∪Π is convex. For the numerical resolution, Ω is used as
truncated domain, and is surrounded by a PML Σ (Figure 4.2(b)).

The scattering problem defined in the unbounded domain Rn\Π, with n = 2 or
3, reads 

∂p

∂t
+a∇·u = 0, ∀(x, t ) ∈Rn∖

Π×R+,

∂u

∂t
+b∇p = 0, ∀(x, t ) ∈Rn∖

Π×R+,

n ·u = 0, ∀(x, t ) ∈ ∂Π×R+,

p|t=0 = p inc|t=0, ∀x ∈Rn∖
Π,

u|t=0 = uinc|t=0, ∀x ∈Rn∖
Π,

(4.4)

where p inc(x, t ) and uinc(x, t ) are the incident fields. These fields correspond to
the solution of the modified problem obtained by removing the scatterer. They
are assumed to have a compact support in Rn

∖
Π.

The redefinition of the problem (4.4) on the truncated domainΩwith a PML is
not immediate. Indeed, if the incident fields have not initially a compact support
in Ω, external signals coming from the exterior domain R3

∖
(Ω∪Π) must be pre-

scribed at the boundary of Ω. However, the PML formulations derived in chapter
2 do not directly account for such external signals.
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A solution consists in rewriting the problem with another formulation so that
the PML formulations can be used unchanged. Such a formulation is derived
thanks to the linearity of the equations. The fields p and u can then be split into
incident and scattered parts, i.e.

p = p inc +pscatt, (4.5)

u = uinc +uscatt, (4.6)

where pscatt and uscatt denote the scattered fields. Since the incident fields satisfy
the scalar wave system in Rn

∖
Π, the problem (4.4) can be rewritten with scattered

fields as unknowns instead of the total fields:

∂pscatt

∂t
+a∇·uscatt = 0, ∀(x, t ) ∈Rn∖

Π×R+,

∂uscatt

∂t
+b∇pscatt = 0, ∀(x, t ) ∈Rn∖

Π×R+,

n ·uscatt =−n ·uinc, ∀(x, t ) ∈ ∂Π×R+,

pscatt|t=0 = 0, ∀x ∈R3∖Π,

uscatt|t=0 = 0, ∀x ∈R3∖Π,

(4.7)

which is called the scattered-field formulation of the problem. Since the initial
conditions are zero everywhere, there is no external signal to account for at the
boundary of Ω. Incident waves are only prescribed by the boundary condition at
the surface of the scatterer.

Thanks to the linearity of the problem, different problem formulations with
PMLs can be derived. They exhibit two fundamental differences advantageous
or not depending on the application context. First, the unknown fields are not the
same: the total fields, the scattered fields or a combination thereof. Second, the
incident signals are taken into account differently: through a modification of the
interior problem, an adapted PML formulation or a specific interface condition at
Υ.

The problem formulations are derived hereafter. Their main properties are
highlighted and discussed.
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Scattered-field formulation with PML

In the formulation (4.7), all scattered waves are generated by the boundary con-
dition, and are therefore propagated outwards the domain Ω. Since there is no
incoming wave, the PML system derived in chapter 2 can be used as it is. In three
dimensions, the modified problem reads

Equations inΩ and Σ:

∂pscatt

∂t
+a∇·uscatt = 0, ∀(x, t ) ∈Ω×R+,

∂uscatt

∂t
+b∇pscatt = 0, ∀(x, t ) ∈Ω×R+,

∂pscatt

∂t
+a∇·uscatt =−σps − κ̄ϕσ̄pϕ− κ̄θσ̄(pscatt −ps −pϕ), ∀(x, t ) ∈Σ×R+,

∂uscatt

∂t
+b∇pscatt =−σes (es ·uscatt)− κ̄ϕσ̄eϕ(eϕ ·uscatt)

−κ̄θσ̄eθ(eθ ·uscatt), ∀(x, t ) ∈Σ×R+,

∂ps

∂t
+a∇es ·uscatt =−σps , ∀(x, t ) ∈Σ×R+,

∂pϕ
∂t

+a∇eϕ ·uscatt =−κ̄ϕσ̄pϕ, ∀(x, t ) ∈Σ×R+,

Boundary conditions:

n ·uscatt =−n ·uinc, ∀(x, t ) ∈ ∂Π×R+,

n ·uscatt = 0, ∀(x, t ) ∈ Γ×R+,

Initial conditions:

pscatt
∣∣

t=0 = 0, ∀x ∈Ω∪Σ,

uscatt
∣∣

t=0 = 0, ∀x ∈Ω∪Σ,

ps
∣∣

t=0 = 0, ∀x ∈Σ,

pϕ
∣∣

t=0 = 0, ∀x ∈Σ.

Incident waves are taken into account through the modified boundary condition
on the scatterer.

This formulation is convenient for linear problems with constant parameters a
and b without source terms. However, if nonlinear terms are added and/or a and
b vary spatially, supplementary terms must be added in the first two equations.
Therefore, the computational cost increases because of the numerical evaluation
of these terms. This is a weakness of this formulation.
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Total-field formulations with PML

If the incident fields have a compact support in Ω, the PML is incorporated in the
total-field formulation (4.4) exactly as for scattered-field one: the total fields are
governed by the scalar wave system in Ω and by the PML system in Σ. Therefore,
both outgoing incident and scattered waves are damped in the PML.



Equations inΩ and Σ:

∂p

∂t
+a∇·u = 0, ∀(x, t ) ∈Ω×R+,

∂u

∂t
+b∇p = 0, ∀(x, t ) ∈Ω×R+,

∂p

∂t
+a∇·u =−σps − κ̄ϕσ̄pϕ− κ̄θσ̄(p −ps −pϕ), ∀(x, t ) ∈Σ×R+,

∂u

∂t
+b∇p =−σes (es ·u)− κ̄ϕσ̄eϕ(eϕ ·u)− κ̄θσ̄eθ(eθ ·u), ∀(x, t ) ∈Σ×R+,

∂ps

∂t
+a∇es ·u =−σps , ∀(x, t ) ∈Σ×R+,

∂pϕ
∂t

+a∇eϕ ·u =−κ̄ϕσ̄pϕ, ∀(x, t ) ∈Σ×R+,

Boundary conditions:

n ·u = 0, ∀(x, t ) ∈ ∂Π×R+,

n ·u = 0, ∀(x, t ) ∈ Γ×R+,

Initial conditions:

p
∣∣

t=0 = p inc
∣∣

t=0, ∀x ∈Ω,

u
∣∣

t=0 = uinc
∣∣

t=0, ∀x ∈Ω,

p
∣∣

t=0 = 0, ∀x ∈Σ,

u
∣∣

t=0 = 0, ∀x ∈Σ,

ps
∣∣

t=0 = 0, ∀x ∈Σ,

pϕ
∣∣

t=0 = 0, ∀x ∈Σ.



4.3. Methods 85

In order to take into account incident waves coming from the exterior domain
Rn

∖
(Ω∪Σ), another total-field formulation is obtained from the scattered-field

formulation with PML. Using the relations (4.5)–(4.6), the scattered-field formula-
tion is rewritten with the total fields as unknowns:

Equations inΩ and Σ:

∂p

∂t
+a∇·u = 0, ∀(x, t ) ∈Ω×R+,

∂u

∂t
+b∇p = 0, ∀(x, t ) ∈Ω×R+,

∂p

∂t
+a∇·u =−σps − κ̄ϕσ̄pϕ− κ̄θσ̄(p −p inc −ps −pϕ), ∀(x, t ) ∈Σ×R+,

∂u

∂t
+b∇p =−σes

(
es ·u−es ·uinc

)
−κ̄ϕσ̄eϕ

(
eϕ ·u−eϕ ·uinc

)
−κ̄θσ̄eθ

(
eθ ·u−eθ ·uinc

)
, ∀(x, t ) ∈Σ×R+,

∂ps

∂t
+a∇es ·u = a∇es ·uinc −σps , ∀(x, t ) ∈Σ×R+,

∂pϕ
∂t

+a∇eϕ ·u = a∇eϕ ·uinc − κ̄ϕσ̄pϕ, ∀(x, t ) ∈Σ×R+,

Boundary conditions:

n ·u = 0, ∀(x, t ) ∈ ∂Π×R+,

n ·u = n ·uinc, ∀(x, t ) ∈ Γ×R+,

Initial conditions:

p
∣∣

t=0 = p inc
∣∣

t=0, ∀x ∈Ω∪Σ,

u
∣∣

t=0 = uinc
∣∣

t=0, ∀x ∈Ω∪Σ,

ps
∣∣

t=0 = 0, ∀x ∈Σ,

pϕ
∣∣

t=0 = 0, ∀x ∈Σ.

In this formulation, incident waves are prescribed through the boundary condi-
tion on Γ, the initial conditions in Ω∪Σ and additional terms in the PML equa-
tions.

By contrast with the scattered-field formulation, the original form of both equa-
tions and boundary conditions are preserved in Ω. Additional source terms and
spatially varying a and b inΩ are then naturally taken into account. Unfortunately,
additional terms appear in all PML equations, increasing the computational cost.
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Scattered/total-field formulation with PML

An alternative formulation that combines the advantages of both previous formu-
lations is obtained by writing equations with the total fields p and u in Ω, and
with the scattered fields pscatt and uscatt in Σ. Compatibility relations must be pre-
scribed as interface conditions onΥ. This formulation then reads



Equations inΩ and Σ:

∂p

∂t
+a∇·u = 0, ∀(x, t ) ∈Ω×R+,

∂u

∂t
+b∇p = 0, ∀(x, t ) ∈Ω×R+,

∂pscatt

∂t
+a∇·uscatt =−σps − κ̄ϕσ̄pϕ− κ̄θσ̄(pscatt −ps −pϕ), ∀(x, t ) ∈Σ×R+,

∂uscatt

∂t
+b∇pscatt =−σes (es ·uscatt)− κ̄ϕσ̄eϕ(eϕ ·uscatt)

−κ̄θσ̄eθ(eθ ·uscatt), ∀(x, t ) ∈Σ×R+,

∂ps

∂t
+a∇es ·uscatt =−σps , ∀(x, t ) ∈Σ×R+,

∂pϕ
∂t

+a∇eϕ ·uscatt =−κ̄ϕσ̄pϕ, ∀(x, t ) ∈Σ×R+,

Boundary conditions:

n ·u = 0, ∀(x, t ) ∈ ∂Π×R+,

n ·uscatt = 0, ∀(x, t ) ∈ Γ×R+,

Interface conditions:

p = pscatt +p inc, ∀(x, t ) ∈Υ×R+,

n ·u = n ·uscatt +n ·uinc, ∀(x, t ) ∈Υ×R+,

Initial conditions:

p
∣∣

t=0 = p inc
∣∣

t=0, ∀x ∈Ω,

u
∣∣

t=0 = p inc
∣∣

t=0, ∀x ∈Ω,

pscatt
∣∣

t=0 = 0, ∀x ∈Σ,

uscatt
∣∣

t=0 = 0, ∀x ∈Σ,

ps
∣∣

t=0 = 0, ∀x ∈Σ,

pϕ
∣∣

t=0 = 0, ∀x ∈Σ.

Incident waves are prescribed through the interface conditions onΥ and the initial
conditions inΩ.

This formulation preserves the original equations in Ω, and does not involve
additional terms in the PML. It requires specific interface conditions, which are
well-known in computational electromagnetism (see e.g. [155, section 5.6]).
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Let us note that the equations could be nonlinear in the truncated domain Ω.
Indeed, they must be linear with constant parameters only in the exterior domain
Rn

∖
(Ω∪Σ) in order to write the PML equations with scattered fields. This is not

necessary inΩ, where the equations remain in a total-field formulation.

4.3.2 Numerical scheme based on the DG method

We derive hereafter a numerical scheme for the PML system (2.28) using the dis-
continuous Galerkin (DG) method. The DG scheme corresponding to the scalar
wave system is given in section 1.3.3.2. These two schemes can be used together
for the scattered-field and scattered/total-field formulations of the scattering prob-
lem. The former scheme is obviously used in Σ, while the latter is forΩ.

A weak form of the PML equations is obtained from their conservative form,
which reads

∂p

∂t
+a∇·u =−σps − κ̄ϕσ̄pϕ− κ̄θσ̄(p −ps −pϕ),

∂u

∂t
+b∇p =−σes(es ·u)− κ̄ϕσ̄eϕ(eϕ ·u)− κ̄θσ̄eθ(eθ ·u),

∂ps

∂t
+a∇· [es(es ·u)] =−σps +

(
κϕ

1+κϕs
+ κθ

1+κθs

)
(es ·u),

∂pϕ
∂t

+a∇· [eφ(eφ ·u)] =−κ̄ϕσ̄pϕ−a
κϕ

1+κϕs
(es ·u).

(4.8)

The conservative form of the last two equations is derived in appendix B.1. Multi-
plying the equations of the system (4.8) by the test functions, integrating over an
elementΩe of the layer Σ, and integrating by parts provide the weak form

(
∂p

∂t
, p̂

)
Ωe

− (
au,∇p̂

)
Ωe

+〈
f p , p̂

〉
Γe

= (
Sp , p̂

)
Ωe

, ∀p̂,(
∂u

∂t
, û

)
Ωe

− (
bp,∇· û

)
Ωe

+〈
f u, û

〉
Γe

= (
S u, û

)
Ωe

, ∀û,(
∂ps

∂t
, p̂s

)
Ωe

− (
a (es ·u)es ,∇p̂s

)
Ωe

+〈
f ps , p̂s

〉
Γe

= (
Sps , p̂s

)
Ωe

, ∀p̂s ,(
∂pϕ
∂t

, p̂ϕ

)
Ωe

− (
b

(
eϕ ·u

)
eϕ,∇p̂ϕ

)
Ωe

+〈
f pϕ , p̂ϕ

〉
Γe

= (
Spϕ , p̂ϕ

)
Ωe

, ∀p̂ϕ,

(4.9)

where the fluxes f p , f u, f ps and f pϕ are defined by

f p = a ne ·u,

f u = b ne p,

f ps = a (ne ·es)(es ·u),

f pϕ = a (ne ·eϕ)(eϕ ·u),
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and Sp , S u, Sps and Spϕ contain the source terms written in the right-hand side of
the equations (4.8). Γe and ne are respectively the boundary and the unit outward
normal ofΩe . The test functions are denoted with the hat ˆ.

As explained in section 1.3.3.2, the numerical scheme is obtained by approx-
imating each unknown field over each element by a linear combination of local
basis functions. These basis functions are then used as test functions in the weak
form. Numerical fluxes are finally introduced in boundary terms of each equation.

At the interface between two elements, the numerical fluxes used for the scalar
wave system can be reused for the first two equations of the PML system. We con-
sider upwind fluxes, i.e.

f p,num = a ne ·
{

u
}− c

�
p

�
, (4.10)

f u,num = b ne
{

p
}− c ne

(
ne ·

�
u
�)

. (4.11)

Given the similarity between the first equation and last two of the system (4.8), we
define the numerical fluxes of the last two equations by

f ps ,num = a (ne ·es)(es ·
{

u
}
)− c

�
ps

�
,

f pϕ,num = a (ne ·eϕ)(eϕ ·
{

u
}
)− c

�
pϕ

�
.

At the boundary of the computational domain, the numerical fluxes are adapted.
The strategy of ghost cell is used for f p,num and f u,num (see end of section 1.3.2).
In order to define the last two numerical fluxes, let us study the continuous fluxes.
At the boundary Γ, one has f ps = f p and f pϕ = 0, since ne is parallel to es and
perpendicular to eϕ. Therefore, we use the numerical fluxes f ps ,num = f p,num and
f pϕ,num = 0 at Γ. Note that the same strategy can be used for the lateral boundaries
of a straight PML

Finally, at the interface Υ, the numerical fluxes f p,num and f u,num connect the
scheme of the scalar wave system (in Ω) with the one of the PML system (in Σ).
If these systems are written with the same formulation (scattered-field or total-
field), the same numerical fluxes (4.10)–(4.11) are used on both sides of Υ. For
a scattered/total-field formulation, these fluxes are adapted on each side by us-
ing the relations (4.5)–(4.6). In all cases, the numerical fluxes of the last two PML
equations are f ps ,num = f p,num and f pϕ,num = 0. Since ps and pϕ are defined only
in Σ, these fluxes are defined onΥ only on the side of the layer Σ.
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4.3.3 Convergence of the numerical scheme

The convergence of the numerical scheme proposed above is tested by means of
one- and three-dimensional benchmarks. For the DG schemes of hyperbolic sys-
tems, it is well-known that the L2-norm of the error on the fields decreases asymp-
totically accordingly O (`p+1) (see e.g. [62, 112]), where ` and p denote respectively
the characteristic length and the order of elements.

For both benchmarks, the error on the fields is obtained by comparing the nu-
merical solution with the exact solution of the continuous problem. The time-
average L2-norm of the error is computed over the truncated domainΩ by means
of the relative error ζr defined as

ζr =
√

Eerror

Eexact
,

with

Eerror = 1

t f

∫ t f

0

∫
Ω

(
1

2a

∣∣pnum −pexact
∣∣2 + 1

2b
‖u num −u exact‖2

)
dΩdt ,

Eexact = 1

t f

∫ t f

0

∫
Ω

(
1

2a

∣∣pexact
∣∣2 + 1

2b
‖u exact‖2

)
dΩdt ,

where t f is the duration of the simulation, pexact and u exact correspond to the ex-
act analytical solution (of the problem defined on the unbounded domain), while
pnum and u num correspond to the numerical solution. Eerror and Eexact then rep-
resent the time-average energies associated to the error fields and the exact fields,
respectively. The relative error ζr , as defined, accounts for the numerical errors,
as well as the modeling errors due to the PML (see section 3.2). We use the shifted
hyperbolic absorption function

σsh(x) = α

δ

x

δ−x

with α = c. Since there is normally no modeling error with this absorption func-
tion, the total error is only due to numerical approximations. Therefore, the order
of convergence of the DG method should be recovered with both benchmarks.

One-dimensional case

Let us consider again the dimensionless one-dimensional benchmark introduced
in section 3.2.2. The truncated domain Ω = [−L,0] is extended with a PML Σ =
[0,δ]. A Gaussian pulse moving to the right is prescribed as initial condition on
the second half ofΩ. The analytical solution of this problem reads

pexact(x, t ) = e−(x−L/4−t )2/R2
,

uexact(x, t ) = e−(x−L/4−t )2/R2
.
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The dimensionless parameters are L = 1, R = 0.05 and t f = L/2. The fourth-order
Runge-Kutta scheme is used for the time stepping with∆t = 0.085` (for first-order
elements) and ∆t = 0.045` (for second-order elements).

The convergence of the numerical scheme is first verified for the scalar wave
system without PML. Simulations are performed in a reference case with an exact
condition at x = 0. The exact solution is prescribed with an exact Riemann solver.
The convergence of the numerical solution with the mesh refinement in shown in
Figure 4.3. We see that the convergence O (`p+1) is recovered with both first- and
second-order elements.

In cases with PML, the asymptotic convergence remains O (`p+1). As shown in
Figure 4.4 for different PML thicknesses, the error ζr is greater or equal to the error
obtained in the reference case. The supplementary error is due the approximation
of both solution and equations in the PML. We observe that it varies according to
`p+2. Since this error decreases faster than `p+1 when ` decreases, the error curves
reach the one of the reference case and the asymptotic convergence rate O (`p+1)
is recovered.
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Figure 4.3: Convergence of the numerical solution in the reference case. The one-
dimensional benchmark is tested with first- and second-order elements. The exact so-
lution is prescribed at the boundary. The asymptotic convergence O (`p+1) is recovered.
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(a) with first-order elements
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(b) with second-order elements

10
0

10
1

10
2

10
3

10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Mesh refinement       

R
el

at
iv

e 
er

ro
r 

  ζ
r

PML − δ constant (h decreases, then Nδ increases)

 

 

Exact BC
δ = 1.56 10−2

δ = 7.81 10−3

δ = 3.91 10−3

δ = 1.95 10−3

δ = 9.77 10−4

∼ ℓ4

O (ℓ3)

1/ℓ

Figure 4.4: Convergence of the numerical solution for different PML thicknesses. The
one-dimensional benchmark is tested with first- and second-order elements. The error
decreases asymptotically accordingly O (`p+1). For thin PML and large `, the error varies
as `p+2.
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Three-dimensional case

The convergence of the DG scheme is now tested in a three-dimensional acoustic
case with the system (4.1). A truncated domainΩ shaped as an ellipsoid of revolu-
tion is surrounded by a PML Σ. A Gaussian pulse is prescribed as initial condition
on the pressure p,

p(x,0) = e−‖x−x0‖2/R2
, (4.12)

while other fields are initially equal to zero. As time goes by, a spherical wave ap-
pears and travels towards the exterior of Ω. It reaches the PML with different an-
gles of incidence. The exact solution of this problem reads

pexact(x, t ) = 1

2

(
r − ct

r
e−(r−ct )2/R2 + r + ct

r
e−(r+ct )2/R2

)
,

u exact(x, t ) = 1

2cρ

[(
R2

2r 2 + r − ct

r

)
e−(r−ct )2/R2 −

(
R2

2r 2 + r + ct

r

)
e−(r+ct )2/R2

]
x−x0

r
,

with r = ‖x−x0‖1/2. The parameters are x0 = (−122.5 m, 0, 20 m), R = 7.5 m, c =
1.5 km/s, ρ = 1 kg/m3 and t f = 200 ms. The fourth-order Runge-Kutta scheme is
used for the time stepping with ∆t = 0.021`/c. The axes of the ellipsoid are 330 m
(x−direction) and 120 m (y− and z−directions) in length.

In Figure 4.5, the decay of the relative error ζr with the mesh refinement is
shown for different cases. We consider a reference case, where the exact solu-
tion is prescribed at the artifical boundary, and PMLs with different thicknesses δ.
With the thickest PMLs, the error is similar to the reference case, and the decay
is close to the asymptotic convergence O (`p+1). Unfortunately, with the thinnest
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Figure 4.5: Convergence of the numerical scheme with the three-dimensional benchmark
for the reference case and the PML case. First-order elements are used.
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PMLs, we observe that ζr is greater than in the reference case, and its decrease is
slower than `p+1. The asymptotic convergence is then lost. This difference with
the one-dimensional case could be explained by other errors that can occur in
this benchmark (e.g. the quality of the mesh and/or the approximate evaluation
of s, κϕ, κθ, es , eϕ and eθ in the PML equations (2.28)). Further investigations are
necessary to study the numerical convergence of the scheme is three dimensions.

4.4 Numerical benchmarks

In this section, two scattering examples are presented in physical contexts in order
to illustrate the effectiveness of PMLs: the scattering of electromagnetic waves by
a shield in two dimensions, and the scattering of acoustic waves by a submarine
in three dimensions.

4.4.1 Electromagnetic scattering by a shield

Let us consider the scattering of transverse magnetic (TM) waves by a perfectly
conducting cavity. The geometry and the mesh of the problem are represented in
Figure 4.6. The cavity is rectangular (600 mm×400 mm) of thickness 20 mm with
an aperture of 160 mm in the middle of the left side (this cavity is used in [133]).
The truncated computational domainΩ is rectangular with rounded corners, and
surrounded by a PML Σ of thickness δ= 0.2 m.

The problem is assumed to be invariant in the z−direction. The electric field
is therefore parallel to the z−direction, while the magnetic field is perpendicular
to the z−direction. They are written e = [0,0,ez ] and h = [hx ,hy ,0]. The nonzero
components ez , hx and hy are governed by the system (4.3) in Ω. Considering a
scattered/total-field formulation of the problem, the scattered fields are taken as

Figure 4.6: Electromagnetic scattering benchmark. Geometry and mesh.
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unknowns in Σ, and the incident fields are prescribed through the compatibility
relation at the interfaceΥ.

Evaluation of shielding effectiveness

The present benchmark is an academic problem of electromagnetic compatibil-
ity (EMC), already used by Ojeda and Pichon [133] for a study in a time-harmonic
context. With the increasing use of electrical, electronic and electromagnetic sys-
tems, the study of their undesirable interactions and side effects is an important
aspect to be considered by the design engineers. Numerical methods are devel-
oped and intensively used for such studies. In order to show the validity of our
approach in the time domain, we recover hereafter the resonant modes of the cav-
ity in the same setting as in [133].

Let us consider the modulated incident field

e inc
z (x, t ) = E i sinc

(
2π frθ

)
cos

(
2π fcθ

)
,

with the phase

θ = x −x0

c0
− t ,

where fr = 450MHz, fc = 650MHz and x0 = 50m. This incident signal contains fre-
quencies in the range [400 MHz,1000 MHz]. The time series corresponding to the
incident signal, and the signal effectively measured during the numerical simula-
tion at the center of the cavity, are plotted in Figure 4.7. The second one is called
transmitted signal.

Figure 4.8 shows the snapshot of the z−component of the incident electric field
at the instant t = 7 ns, and the one that is effectively computed by the numerical
scheme. This highlights that, since a total-field formulation is used in domain Ω
and a scattered-field one is used in PML Σ, the computed solution is discontinu-
ous at the interfaceΥ,

In the time-harmonic domain, the ability of the cavity to reduce the transmitted
signal is quantified by the shielding effectiveness (SE), defined by

SEdB = 20log10

∣∣∣∣ E inc

E trans

∣∣∣∣ ,

where E inc and E trans and the amplitudes of the incident wave and the transmitted
one, respectively. They are obtained in the time-domain by means of a Fourrier
transform on the incident signal and the transmitted one.

Figure 4.9 shows the shielding effectiness obtained with our approach for fre-
quencies in the range [400 MHz,1000 MHz] and a simulation of 10.5µs. Two min-
ima and one maximum appear in the curve near the resonant frequencies deter-
mined by Ojeda and Pichon [133].
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Figure 4.7: Electromagnetic scattering benchmark. Time serie of the component ez for the
incident signal (a) and the transmitted signal (b) at the center of the cavity.

(a) Incident field (b) Total field (inΩ) and scattered field (in Σ)
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Figure 4.8: Electromagnetic scattering benchmark. Snapshot of the fields at t = 7 ns.



96 PMLs for Acoustic and Electromagnetic Scattering Problems

400 500 600 700 800 900 1000
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Frequency  [MHz]

S
hi

el
di

ng
 E

ffe
ct

iv
en

es
s 

 [d
B

]

Resonant �frequencies:
466, 632, 835, 888 MHz

[Ojeda & Pichon 2005]

Figure 4.9: Electromagnetic scattering benchmark. Shielding effectiveness as a function
of the frequency. The position of vertical lines corresponds to the resonant frequencies
obtained in [133].

Optimization of absorption functions

In order to assess the results of section 3.3 in a more complicated case, the differ-
ent absorption functions are optimized and compared using this benchmark. The
absorption functions are

σ2(s) =α
( s

δ

)2
, σh(s) = α

(δ− s)
,

σ3(s) =α
( s

δ

)3
, σsh(s) = α

(δ− s)
− α

δ
,

where α is the additional parameter to fit, and s is the distance between the posi-
tion x and the interfaceΥ.

The absorption functions are optimized considering a Gaussian pulse travel-
ing to the right as incident wave, and defining an error associated to the PML to
quantify its effectiveness. The Gaussian incident pulse is prescribed through the
interface condition. The z−component of the incident electric field reads

e inc
z (x, t ) = E i

√
µ0

ε0
exp

(
−

(
(x −x0)− c0t

R

)2)
,

with x0 =−1200 mm, R = 50 mm, c0 = 1/
p
µ0ε0 and E i = 0.5

√
µ0/ε0, where µ0 and

ε0 are the magnetic permeability and the electric permittivity of vacuum. A Crank-
Nicolson scheme is used for the time-stepping, with the time ∆t = 5 10−11 s. The
duration of the simulation is t f = 250∆t . Finally, the effectiveness of the PML is
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(c) second-order elements (d) second-order elements
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Figure 4.10: Electromagnetic scattering benchmark. Relative mean error ξm as a function
of α with different absorption functions. First- and second-order elements are used with
centered or upwind numerical fluxes. Vertical lines indicate α= c0.
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quantified with the relative time-average error ξm defined by

ξm =
√

Eerror

Eref

with

Eerror =
∫ t f

0

∫
Ω

(ε0

2

∥∥epml −eref
∥∥2 + µ0

2

∥∥hpml −href
∥∥2

)
dΩdt ,

Eref =
∫ t f

0

∫
Ω

(ε0

2
‖eref‖2 + µ0

2
‖href‖2

)
dΩdt ,

where eref and href are reference fields computed with a larger computational do-
main.

Figure 4.10 shows the error ξm as a function of α for different absorption func-
tions in different cases: centered or upwind fluxes, with first- or second-order ele-
ments. As in section 3.3, the minimum of each curve corresponds to the optimum
parameterα and the minimum ξm that can be obtained with the absorption func-
tion. In each case, the absorption functions give equivalent results when they are
optimized, except the hyperbolic functionσh which does not perform so well with
upwind fluxes and first-order elements. The smallest error with σh and σsh are al-
ways obtained with a value of α close to the propagation velocity c0. These results
are coherent with those obtained in section 3.3.

4.4.2 Acoustic scattering by a submarine

The effectiveness of our PML formulation is now illustrated in a three-dimensional
acoustic case: the scattering of a spherical wave by a submarine in an ellipsoidal
truncated domain surrounded by a PML. As for the last benchmark of section
4.3.3, the spherical wave is generated by an initial Gaussian pulse of pressure pre-
scribed by the initial condition (4.12). All physical parameters of this benchmark
are reused. The length of the submarine is approximately 120 m, the axes of the
ellipsoid remain 330 m (x−direction) and 120 m (y− and z−directions) in length,
and the PML thickness is δ= 12.5m. The mesh is made of 921,761 tetrahedra with
the characteristic size ` equal to 2.5 m near the PML and 1.25 m in the neighbor-
hood of the submarine. This corresponds to 17,718,896 discrete unknowns, 49.7%
of which are inside the PML. The shifted hyperbolic absorption function is used
without any tuning. The boundary condition n ·u = 0 is prescribed at the external
boundary.

Figures 4.11 and 4.12 show snapshots of the pressure p at different instants. In
the first moments, the spherical wave generated by the initial pulse hits the front
of the submarine, and creates perturbations in the pressure field. This is particu-
larly visible at t = 40 ms. The perturbations, as well as the primary spherical wave,
have correctly left the front zone at t = 80 ms. In the remainder of the simulation,
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t = 0 ms

t = 20 ms

t = 40 ms

t = 60 ms

t = 80 ms

Figure 4.11: Acoustic scattering benchmark. Iso-surfaces of p(x, t ) obtained with a thick
PML (δ= 5`) terminated with the boundary condition n ·u = 0.
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t = 100 ms

t = 120 ms

t = 140 ms

t = 160 ms

t = 180 ms

Figure 4.12: Acoustic scattering benchmark. Iso-surfaces of p(x, t ) obtained with a thick
PML (δ = 5`) terminated with the boundary condition n ·u = 0. Continued from Figure
4.11.
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Table 4.1: Acoustic scattering benchmark. Mesh statistics.

ABC PML (δ= `) PML (δ= 2`) PML (δ= 5`)
Number of tetrahedra inΩ 1,113,462 971,922 898,705 550,421

in Σ 91,914 145,464 371,340
Number of unknowns inΩ 17,815,392 15,550,752 14,379,280 8,806,736

in Σ 2,205,936 3,491,136 8,912,160
Proportion of unknowns inΩ 100% 87.6% 80.5% 49.7%

in Σ 12.4% 19.5% 50.3%

the wavefront propagates along the submarine and is nearly grazing at the bound-
ary of the domain. We observe that the spherical wave is not deformed near the
interface Υ (the interior ellipsoidal surface), as we wished for, and the pressure is
damped inside the layer.

It is instructive to compare this results with what is obtained if the PML is
replaced with the basic absorbing boundary condition (ABC) (2.3) with approx-
imately the same computational cost (17,815,392 discrete unknowns here). As
shown in Figures 4.13 and 4.14, the spherical wave is partly reflected by the ABC
in the first instants of the simulation: a spurious reflected signal appears in the
snapshot corresponding to t = 40 ms. This signal propagates along the submarine
and remains in the domain throughout the simulation. Moreover, a careful look at
the primary spherical wave shows that the wavefront is altered near the ellipsoidal
surface: the field decays near this boundary. Therefore, for this benchmark, even if
the PML is expensive, it is a far better solution than a larger domain with the basic
ABC (2.3), which provides visibly unphysical results. Let us note that alternative
more effective existing ABCs are to be tested to complete this comparison.

In order to evaluate the limitations of the PML, the simulation is repeated with
smaller PML thicknesses: 2.5 m and 5 m, corresponding to ` and 2`, respectively.
All simulations are performed with nearly the same computational cost: the num-
ber of discrete unknowns does not significantly change (see Table 4.1). An increase
of the PML thickness is then done at the price of a smaller domain of interest Ω.
For each case, a zoom of the solution at t = 160 ms is shown in Figure 4.15. We ob-
serve that the effectiveness of the PML diminishes when its thickness decreases:
spurious signals appears for δ= ` and 2` (Figure 4.15, middle). Therefore, the use
of a larger PML with a smaller domain of interest is here a good strategy.

The ABC (2.3) is now considered as an alternative boundary condition for the
external boundary of the PML, instead of n·u = 0. Since this ABC is naturally incor-
porated in the numerical scheme, there is no supplementary computational cost.
The combination of the PML with an ABC termination significantly improves the
effectiveness of thin layers. For δ = ` and 2`, there are indeed much less spu-
rious signals with the ABC termination than with the Dirichlet boundary condi-
tion (Figure 4.15, bottom and middle, respectively). By contrast, for a thicker layer
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t = 0 ms

t = 20 ms

t = 40 ms

t = 60 ms

t = 80 ms

Figure 4.13: Acoustic scattering benchmark. Iso-surfaces of p(x, t ) obtained with the ABC.
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t = 100 ms

t = 120 ms

t = 140 ms

t = 160 ms

t = 180 ms

Figure 4.14: Acoustic scattering benchmark. Iso-surfaces of p(x, t ) obtained with the ABC.
Continued from Figure 4.13.
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ABC

PML with δ= ` PML with δ= 2` PML with δ= 5`

PML with δ= ` and ABC PML with δ= 2` and ABC PML with δ= 5` and ABC

Figure 4.15: Acoustic scattering benchmark. Iso-surfaces of p(x, t ) at t = 160 ms obtained
with the basic ABC (top), PMLs terminated with the boundary condition n ·u = 0 (middle)
and PMLs terminated with the basic ABC (bottom). Three PML thicknesses are considered:
δ= `, 2` and 5`.
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(δ= 5`), the solutions obtained with and without the ABC are very similar: there is
no significant improvement. Therefore, an ABC termination can improve poorly
efficient PMLs, but is not necessary with thick efficient PMLs. This result has been
already highlighted in a finite difference context by Petropoulos [140].

4.5 Conclusion

In this chapter, we have presented numerical results for two scattering bench-
marks with PMLs, in two and three dimensions. In both cases, the results show
the effectiveness of the PML formulation developed in chapter 2 for truncated do-
mains with non-conventional shape. Along the way, we have confirmed the effi-
ciency of the shifted hyperbolic absorption function σsh studied in chapter 3.

We have presented a DG scheme for the PML equations, and studied its con-
vergence by means of one- and three-dimensional reference cases. The classical
asymptotic convergence O (`n+1) of DG schemes is recovered in both cases. Since
the numerical solutions are compared to the exact solutions of the unbounded
problems, this confirms that there is no modeling error with PMLs.

Finally, we have addressed the issue of taking into account signals generated
outside the truncated domain. In particular, we have compared different problem
formulations with PMLs that account for such incoming signals. The scattered/total-
field formulation is very convenient since it preserves the original model equa-
tions inside the domain, and allows one to use the PML equations without any
change. The incoming signals are prescribed by only using a specific interface
condition. The formulation was tested with the two-dimensional scattering bench-
mark.





CHAPTER 5
Absorbing Layers for Oceanography

5.1 Introduction

In regional oceanic numerical modeling, the treatment of artificial boundaries at
open seas, called open boundaries, are often seen as a major source of uncertainty
or even error. There are two reasons for this. First, the boundary treatment is sup-
posed to account for what happens outside the model domain, which is usually
poorly known: unless the model is embedded in a larger scale model or high res-
olution observations are available, climatological mean data are usually used to
force models along their open boundaries. Second, the treatment is supposed to
accurately describe the outward propagation of signals and perturbations of all
kinds generated in the model interior as if the model domain was unbounded.
While the former problem cannot be solved without appropriate data being avail-
able, the latter relies entirely on the mathematical and numerical formulations of
the differential problem. It must therefore be solved by the implementation of
appropriate boundary treatments.

In this context, a large number of boundary conditions, generally called open
boundary conditions (OBCs), have been proposed. The simplest one, used for the
first time by Elvius and Sundström [58] and popularized by Flather [63], consists in
prescribing the value of the ingoing characteristic at the boundary. In this way, an
external forcing is naturally taken into account through the value of the character-
istic. In comparative studies [113, 131, 135, 137], this OBC appears to be the most
robust for a wide range of applications. Many boundary conditions are also de-
rived from the radiation condition, first introduced by Sommerfeld [154], written
as

∂φ

∂t
+ c

∂φ

∂x
= 0,

where φ is any model variable. It has been adapted by various authors in order to
consider dynamics encountered in realistic marine applications, such as ingoing
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tide waves, large scale currents and dispersive waves generated by the topography,
and the stratification or the Earth’s rotation [e.g. 29, 32, 122, 134, 139, 146, 151,
157]. Different more accurate boundary conditions have been investigated [e.g.
30, 59, 115, 117–119, 165]. Particular versions have been designed for models with
embedded grids [e.g. 28, 31, 50, 116, 132]. Extensive reviews of OBCs have been
proposed by Palma and Matano [135, 136] at the end of 90’s, and by Blayo and
Debreu [27] in 2005.

Artificial layers form a second class of open-sea boundary treatments. The ef-
fectiveness of OBCs can be improved when used together with an artificial layer
[33, 96, 150]. However, some layers are already efficient without specific boundary
termination [108, 114]. Among them, layers based on the flow relaxation scheme
(FRS) are widely used and particularly appealing by their simplicity, their effec-
tiveness and their robustness [e.g. 98, 131, 135, 136]. With this scheme, the nu-
merical solution is progressively relaxed towards an external solution in the layer
[46, 47, 114]. It can be interpreted as adding a nudging term to each original model
equation

∂φ

∂t
+F (φ) = 0,

which becomes

∂φ

∂t
+F (φ) =−σ(φ−φext),

whereφ is any model variable, φext is the corresponding external solution andσ is
a positive spatial function. When the external solution φext is zero, the FRS serves
as an absorbing layer, with the single aim of damping waves propagating outwards
without spurious reflexion. In this case, σ corresponds to the absorption function
encountered in previous chapters.

The FRS has received new attention with the introduction of the concept of
perfectly matched layer (PML) by Bérenger [21]. In the oceanographic community,
Darblade et al. [45] and Navon et al. [127] were the first to design PMLs for shallow
water problems. Then, an approximate version of PML, called pretty good sponge
(PGS), has been proposed by Lavelle and Thacker [108]. This layer exhibits better
results than the FRS and requires a lower computational cost than PMLs. Finally,
novel stablilized PML versions have been recently proposed in [13, 14].

This chapter is dedicated to the study of absorbing layers in the perspective of
marine applications. To this aim, three main topics are addressed in the continu-
ation of the previous chapters: the comparison of different absorbing layers; the
choice of the absorption functionσ, which is a common issue for the use of all the
layers; and the ways of prescribing an external forcing through layers. The entire
study is carried out in the context of the shallow water model, which is one of the
fundamental models of oceanography. It describes some important physical dy-
namics encountered in realistic marine applications. Both linear and nonlinear
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versions of the model equations are considered in benchmarks. Numerical sim-
ulations are performed by using a popular finite volume method with structured
grids, or a new generation model based on the discontinuous Galerkin finite ele-
ment method.

The chapter is structured as follows. In section 5.2, the shallow water model
is described, and both classical Flather’s OBC and the equations of absorbing lay-
ers are derived. These open-sea boundary treatments are compared by using a
classical benchmark in section 5.3. Along the way, the comparison of absorption
functions, carried out in chapter 3, is extended in this marine context. Section 5.4
deals with the use of absorbing layers in advection-dominated cases. In section
5.5, ways of prescribing an external forcing through layers are discussed. Finally, a
limitation of open-sea boundary treatments is highlighted in section 5.6.

5.2 Shallow water model with open boundary

In this section, the equations of the mathematical model considered in this chap-
ter are given. After, different open-sea boundary treatments are derived for the
linearized equations.

5.2.1 Shallow water equations

The shallow water model is one of the fundamental models of geophysical fluid
dynamics. It provides a mathematical description of barotropic processes that
occur in oceans and shelf seas [44]. It enables modeling of tsunamis, tides and
dam-breaks, and is a key building block for ocean modeling as well as atmosphere
modeling.

With this model, the free-surface elevation of the water η(x, t ) and the depth-
averaged velocity u(x, t ) are governed by the nonlinear equations [see e.g. 44]

∂η

∂t
+∇· (Hu) = 0,

∂u

∂t
+u · (∇u)+ g∇η+ f ez ×u = τw −τb

ρ0H
+ 1

H
∇· (ν∇(Hu)) .

(5.1)

As illustrated in Figure 5.1, H(x, t ) = η+ h denotes the total depth of the water
column, h(x) is the depth at rest, and the unit vector ez indicates the vertical di-
rection. The physical parameters are the Coriolis parameter f , the gravitational
acceleration g , the surface wind stress τw , the bottom stress τb , the density ρ0

and the horizontal eddy viscosity ν.

At the beginning of the study, a simplified version of the model equations is
first considered in order to design and compare boundary treatments for open
seas. By neglecting the terms corresponding to advection, diffusion and stress,
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Figure 5.1: Notation for the shallow water model.

the equations (5.1) become 
∂η

∂t
+h(∇·u) = 0,

∂u

∂t
+ g∇η+ f ez ×u = 0.

(5.2)

Although simplified, this linear system includes the description of two kinds of
important waves in oceanography: Kelvin and Poincaré waves [e.g. 44]. The for-
mer require the support of a lateral boundary such as a coast. They travel along
the coast with the phase velocity

√
g h and are evanescent offshore, i.e. they are

exponentially decreasing in the direction perpendicular to the coast. The latter
are encountered in unbounded domains and are dispersive, i.e. the phase velocity
depends on the wave number.

In the absence of the Earth’s rotation (i.e. f = 0), the system (5.2) reduces to the
scalar wave system (1.3). Both Kelvin and Poincaré waves become classical pure
gravity waves, which are nonevanescent and nondispersive.

5.2.2 Open-sea boundary treatments

In the context of the shallow water model, classical Flather’s open boundary con-
dition (OBC) reads

η−
√

h

g
n ·u = ηext −

√
h

g
n ·uext, (5.3)

where n is the outward normal, and the fields ηext and uext correspond to the exter-
nal solution that contains external forcing. This OBC amounts to prescribing the
value of the ingoing characteristic variable of the equations at the open boundary,
and can then be considered as a particular derivation of the radiation condition
(see section 2.2.1). Indeed, assuming the fields vary only along n, and considering
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f = 0, the elevation and the normal velocity are then governed by
∂η

∂t
+h

∂(n ·u)

∂xn
= 0,

∂(n ·u)

∂t
+ g

∂η

∂xn
= 0,

where xn is the coordinate along n. Some algebraic manipulations allow to rewrite
this system with the characteristic equations,

∂w1

∂t
+

√
g h

∂w1

∂xn
= 0,

∂w2

∂t
−

√
g h

∂w2

∂xn
= 0,

where the characteristic variables, which are Riemann invariants, are

w1 = η+
√

h

g
(n ·u),

w2 = η−
√

h

g
(n ·u).

The quantity w1 is transported outward the domain at the velocity
√

g h and is
entirely determined by what happens inside. On the contrary, w2 is transported
inwards and then depends on incoming information. Therefore, the boundary
condition (5.3) consists indeed in prescribing the value of the incoming charac-
teristic variable, i.e. w2, with information coming from the exterior.

The idea of the flow relaxation scheme (FRS) is to progressively relax the nu-
merical solution towards an external solution in a layer that surrounds the do-
main. The relaxation is performed by nudging terms that are added to each origi-
nal model equation [46]. In the layer, the linear system (5.2) then becomes

∂η

∂t
+h(∇·u) =−σ(η−ηext),

∂u

∂t
+ g∇η+ f ez ×u =−σ(u−uext),

(5.4)

where σ is a positive spatial function [114]. The full dynamics of the model is then
taken into account in a natural way, and the implementation is also straightfor-
ward, even in complex geometries. The method is therefore applicable to a wide
range of problems. The original equations are easily recovered by using σ = 0 in
the domain of interest.

Using the pretty good sponge (PGS) approach developed by Lavelle and Thacker
[108], the linearized shallow water equations, written in the Cartesian coordinate
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(a) (b) (c)

Domain

Absorbing layers

x

y

Lx δ

Ly

δ

σx 6= 0 σy 6= 0

Figure 5.2: (a) Geometry of the two-dimensional problem with the PGS. (b)-(c) Layers
where the absorption functions σx (x) and σy (y) differ from zero (in gray). Reproduced
from [123] (© 2009 Springer-Verlag).

system, become 

∂η

∂t
+h

(
∂ux

∂x
+ ∂uy

∂y

)
=−(σx +σy )(η−ηext),

∂ux

∂t
+ g

∂η

∂x
− f uy =−σx (ux −uext

x ),

∂uy

∂t
+ g

∂η

∂y
+ f ux =−σy (uy −uext

y ),

(5.5)

where ux and uy are the Cartesian components of u in the x- and the y-directions,
while σx (x) and σy (y) are two positive functions associated to the relaxation of
fields in these directions. As shown in Figure 5.2, σx (resp. σy ) is nonzero only in
layers where the fields are relaxed along the x-direction (resp. y-direction). These
functions vanish in the interior of the domain so that original shallow water equa-
tions are recovered.

A set of PML equations can be obtained for the linearized shallow water equa-
tions by using the strategy described in chapter 2. In the case of a straight PML,
with n as stretch direction, we obtain the PML system

∂η

∂t
+h(∇·u) =−σηn ,

∂u

∂t
+ g∇η+ f ez ×u =−σn [(n ·u)−uc ] ,

∂ηn

∂t
+h(∇n ·u) =−σηn ,

∂uc

∂t
+ f n · (ez ×u) = 0.

(5.6)

This system differs from the one (2.30) obtained for the scalar wave system only
by the introduction of the supplementary field uc . Thanks to this field, the change
of the waves properties due to the Earth’s rotation is taken into account.
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We derive an approximate PML by neglecting the additional field of the PML
system (5.6), i.e. uc ≈ 0, but keeping the Coriolis term in the momentum equation.
The system then becomes

∂η

∂t
+h(∇·u) =−σηn ,

∂u

∂t
+ g∇η+ f ez ×u =−σn(n ·u),

∂ηn

∂t
+h(∇n ·u) =−σηn .

(5.7)

This alternative layer is a true PML when the Earth’s rotation is neglected (i.e. f ≈
0), and the PGS equations are recovered when the additional field ηn is assumed
to be equal to η.

Finally, let us note that all the above layers are perfectly matched for waves with
a normal incidence when f = 0. Indeed, in this case, the systems (5.4)-(5.7) are
equivalent to the system (2.4) with the perfectly matching condition.

5.3 Cases dominated by Poincaré waves

Hereafter, the open-sea boundary treatments presented in the previous section
are compared and studied by means of a classical benchmark of the literature. We
consider the collapse of a mound of water in an open region [108, 115, 127], which
is a case dominated by Poincaré waves. This benchmark is very similar to the one
considered in section 3.3.3.2. The novelty here is the influence of Earth’s rotation
on dynamics, which makes the waves dispersive.

We first present the benchmark. Then, the different open-sea boundary treat-
ments are compared in the basic setting: the flows are governed by the linearized
shallow water equations (5.2), which is the simplest system supporting Poincaré
waves. The impact of adding supplementary (non-dominant) dynamics such as
advection, bottom friction and diffusion is studied by employing the nonlinear
model (5.1). After, the optimum values of the absorption functions are compared
in order to assess the results of the previous chapters in a modified physical set-
ting.

5.3.1 Description of the benchmark

Let us consider a rectangular domainΩ= [−Lx ,Lx ]× [−Ly ,Ly ] with Lx = 1,100 km
and Ly = 510km, where each side is an open boundary. A Gaussian-shaped mound
of water is prescribed as initial condition

η(x,0) = η0e−‖x‖2/R2
,

with η0 = 1 m and R = 50 km. The fluid is initially at rest, and the reference height
h = 100 m. We use the values f = 1.028 10−4 s−1 and g = 9.85 m/s2.
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Figure 5.3(a) shows some snapshots of the reference solution for the collapse of
the initial mound of water and the associated progressive geostrophic adjustment.
This reference solution is computed using an extended computational domain in
order to avoid any reflection at the open boundaries. During the collapse, circular
waves are created and propagate outwards. After about 5h the main wavefront is
expected to reach the upper and lower boundaries of the model domain and to hit
the absorbing layers at normal incidence. As time goes by, the wavefront propa-
gates along the boundaries and approach the absorbing layers with a decreasing
angle of incidence.

In order to highlight the kind of error generated when using an open-sea bound-
ary treatment, snapshots of the error on the elevation are shown in Figure 5.3(b)
for the case where PGSs are added along each side of the domain, according to
Figure 5.2. The thickness of the layers is δ = 130 km and the shifted hyperbolic
absorption function

σsh(s) = α

δ− s
− α

δ
(5.8)

is used in both x- and y-directions with α=√
g h, in agreement with the results of

chapter 3. The absorption functions σx and σy of the PGS system (5.5) are explic-
itly obtained by replacing the variable s of the formula (5.8) by |x|−Lx and |y |−Ly ,
respectively. In this simulation, when the wavefront hits the boundary, the error
is small until time t = 6h. This small error is associated with a weak reflection
of the waves with quasi-normal incidence. The snapshots taken later show that
the error increases as the incidence of the wavefront approaching the boundary
decreases and the waves tend to propagate along the boundary. The initial wave-
front is partly reflected at the open boundary and the reflected (and damped) wave
propagates inside the domain.

5.3.2 Comparison of open-sea boundary treatments

A comparison of boundary treatments is performed in the context of a novel gen-
eration ocean model, which is based on the discontinuous Galerkin method. The
discretization of shallow water equations is detailed in [42], while additional terms
and supplementary equations of PMLs are discretized following the strategy de-
scribed in chapter 4. The shifted hyperbolic absorbing function (5.8) with α =√

g h is used for all the layers. The time-stepping is made with the fourth-order
Runge-Kutta method, and the mesh is unstructured and made of triangles. Since
our PML formulations do not deal with corners, open-sea boundary treatments
are used only on the northern and southern borders of the rectangular domain. A
wall condition (i.e. n ·u = 0) is prescribed at other borders — since circular waves
generated by the barotropic adjustment do not to reach these borders before the
end of the simulation (9h), a specific boundary treatment is not necessary.
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(a) Elevation in the domain for the reference solution.

t = 4 h t = 5 h

t = 6 h t = 7 h

t = 8 h t = 9 h

(b) Error on the elevation with the pretty good sponge (PGS).

t = 4 h t = 5 h

t = 6 h t = 7 h

t = 8 h t = 9 h

Figure 5.3: Simulation of the collapse of a mound of water. Snapshots of the elevation
in the domain in the reference case (a) and of the error on the elevation using the PGS
at each boundary (b). The reference solution is computed with an extended domain. The
thickness of the layers δ is 130km and the absorption functions are shifted hyperbolic with
α=√

g h. Adapted from [123] (© 2009 Springer-Verlag).
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Figure 5.4 shows the snapshot of the final error on the elevation for Flather’s
OBC and the different absorbing layers with the thickness δ= 50km. The OBC, the
FRS and the PGS present the same kind of error that has been already observed
above: the circular waves generated by the collapse of the mound of water are
more and more reflected when the incidence of the wavefront decreases and the
waves tend to propagate along the boundary.

The error is much smaller with the PMLs than with the other boundary treat-
ments. With the complete PML, the error looks like noise (Figure 5.5, right). The
small spurious oscillations observed are caused by the numerical approximation:
numerical errors generated in the layer are propagated towards the domain. For
the approximate PML, the aspect of the error is different and its value is one order
of magnitude larger (Figure 5.5, left). Because the only difference with the com-
plete PML is the approximation uc ≈ 0, the supplementary errors are the result of
this approximation. Therefore, the numerical errors are overtaken by new model-
ing errors.

In order to compare the effectiveness of the different boundary treatments in a
quantitative way, the energy associated with the error fields is computed accord-
ing to

Eerror(t ) =
∫
Ω

(
g

2

∣∣η(x, t )−ηref(x, t )
∣∣2 + h

2
‖u(x, t )−uref(x, t )‖2

)
dx,

where the fields ηref(x, t ) and uref(x, t ) correspond to the final solution of a refer-
ence run in which reflections are avoided by means of a much larger computa-
tional domain. Similarly to our approach of section 3.3.3.2, the relative error

ξr =
√

Eerror with layer(t f )

Eerror with wall(t f )
(5.9)

is used to measure the reflected part of the solution at the final time t f = 9h. Table
5.1 shows the relative error for the different treatments. Different values are used
for both the layer thickness δ and the characteristic length of a mesh cell `.

Both Flather’s OBC and thin FRS (with δ = 50 km) provide similar results: the
relative error is close to 0.15 and does not vary with `. Therefore, the only way
to improve the results of the FRS is to increase the thickness of the layer δ. For a
wider FRS layer, for the PGS and for the approximate PML, a decrease of ` reduces
the relative error. However, the reduction is small: the decrease of ` from 30 km
to 20 km and from 20 km to 10 km reduces the relative error by only about 4−5%
and 2% in all the cases. By contrast, the reductions are greater with the complete
PML: respectively 63% and 89%. Therefore, this corroborates that the results ob-
tained with the complete PML depend strongly on the discretization and relevant
numerical errors, while the error of other boundary treatments is dominated by
modeling errors.
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Flather’s OBC (5.3)

Flow relaxation scheme (FRS) Pretty good sponge (PGS)

Approximate PML (5.7) Complete PML (5.6)

Figure 5.4: Simulation of the collapse of a mound of water with the DG scheme. Error on
the elevation at the end of the simulation using Flather’s OBC and the different absorbing
layers with the thickness δ = 100 km and the shifted hyperbolic absorption function σsh.
The characteristic length size of the mesh cells is `= 20 km and the time step is ∆t = 60 s.
The color bar has been fixed from −0.01 m to 0.01 m.

Approximate PML (5.7) Complete PML (5.6)

Figure 5.5: Simulation of the collapse of a mound of water with the DG scheme. Error
on the elevation at the end of the simulation using the PMLs and the same parameters as
Figure 5.4. The color bar goes now from the minimum to the maximum in each case.
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Table 5.1: Relative error ξr (5.9) for the OBC and different absorbing layers. Three thick-
nesses of the absorbing layers δ and three characteristic lengths of cell ` are considered.
For all simulations, the CFL number is

√
g h (∆t )/`≈ 0.0942.

`= 30 km `= 20 km `= 10 km
Flather’s OBC 1.48 10−1 1.48 10−1 1.50 10−1

Absorbing layers with δ= 50 km
Flow relaxation scheme (FRS) 1.49 10−1 1.49 10−1 1.49 10−1

Pretty good sponge (PGS) 1.17 10−1 1.16 10−1 1.15 10−1

Approximate PML 5.37 10−2 5.04 10−2 4.97 10−2

Complete PML 9.18 10−3 3.49 10−3 1.55 10−3

Absorbing layers with δ= 100 km
Flow relaxation scheme (FRS) 1.17 10−1 1.14 10−1 1.13 10−1

Pretty good sponge (PGS) 8.17 10−2 7.93 10−2 7.84 10−2

Approximate PML 4.30 10−2 4.12 10−2 4.04 10−2

Complete PML 1.50 10−3 5.90 10−4 1.48 10−4

Absorbing layers with δ= 150 km
Flow relaxation scheme (FRS) 8.43 10−2 8.13 10−2 7.99 10−2

Pretty good sponge (PGS) 5.43 10−2 5.22 10−2 5.12 10−2

Approximate PML 3.41 10−2 3.26 10−2 3.20 10−2

Complete PML 6.92 10−4 2.54 10−4 2.89 10−5

For each δ — ` combination, the PGS performs better than the FRS but worse
than the approximate PML. The values of relative error ξr are close in these cases.
By contrast, the values for the PML are lower by one or more orders of magnitude.
The difference is larger with thick layers and finer meshes. The thinnest complete
PML with a coarse mesh provides a smaller relative error (9.18 10−3) than the best
other layer with a fine mesh (3.20 10−2). It demonstrates the accuracy of this layer
for a benchmark dominated by Poincaré waves.

Impact of additional non-dominant dynamics

The relative error slightly changes when advection, bottom friction and diffusion
are included in the simulation. Table 5.2 shows the new values when these dynam-
ics are added separately, and also when they are considered together. Advection
is taken into account by using the nonlinear equations (5.1) instead of the linear
ones. The bottom friction is modeled through the quadratic bottom stress

τb = ρ0g

C 2
‖u‖u, (5.10)

with the Chezy coefficient C = 44.4m1/2/s. When diffusion is added, the horizontal
eddy viscosity is ν= 200 m2/s.

Two options are considered for the absorbing layers. In the first implementa-
tion, labeled ‘without dynamics’, the Coriolis term is neglected and the additional
dynamics are not considered inside the layers. The full dynamics is taken into ac-
count in the variant labeled ‘with dynamics’: the Coriolis, nonlinear advection,



5.3. Cases dominated by Poincaré waves 119

Table 5.2: Relative error ξr (5.9) for the OBC and the different absorbing layers using differ-
ent variations of the benchmark with additional dynamics. The parameters areδ= 100km,
`= 20 km and ∆t = 60 s.

Additionnal dynamics: None Advection Friction Diffusion All
Flather’s OBC 1.48 10−1 1.49 10−1 1.49 10−1 1.48 10−1 1.49 10−1

Absorbing layers ‘without dynamics’
Flow relaxation scheme (FRS) 1.18 10−1 1.18 10−1 1.19 10−1 1.18 10−1 1.19 10−1

Pretty good sponge (PGS) 9.89 10−2 9.92 10−2 9.96 10−2 9.90 10−2 1.00 10−1

Approximate PML 9.03 10−2 9.07 10−2 9.11 10−2 9.05 10−2 9.16 10−2

Absorbing layers ‘with dynamics’
Flow relaxation scheme (FRS) 1.14 10−1 1.15 10−1 1.15 10−1 1.15 10−1 1.15 10−1

Pretty good sponge (PGS) 7.93 10−2 7.96 10−2 7.97 10−2 7.95 10−2 8.01 10−2

Approximate PML 4.12 10−2 4.14 10−2 4.17 10−2 4.13 10−2 4.19 10−2

Complete PML 5.90 10−4 6.00 10−4 7.41 10−4 5.88 10−4 7.58 10−4

Modified PML − 6.38 10−4 6.24 10−4 5.88 10−4 −

bottom friction and diffusion are added in the modified continuity and momen-
tum equations used in the layers.

A quick comparison of both variants listed in Table 5.2 shows that the simpli-
fication of the dynamics in the absorbing layer can lead to a significant increase
of the relative error in all the cases. In order to get the most out of the absorbing
layer, it is important to take advantage of the ability of the absorbing layer to ac-
commodate the full dynamics of the system — which is of course also a sensible
matter from a physical perspective.

The performances of the different layers with additional dynamics are very sim-
ilar to those of the original case. The error increases by less than 1% with respect
to the linear problem in most of the cases. The only exception is for the complete
PML when the friction term is considered: the error increases by about 25%, but
stays lower than values obtained with other layers. Therefore, the conclusions of
the original case remain valid.

In order to improve the performances of the complete PML, a modified version
was tested. Since the governing equation for uc in the system (5.6) contains the
projection of the Coriolis term on n, we add the projection of advection, bottom
friction and diffusion terms in this equation, which becomes

∂uc

∂t
+n ·

[
u · (∇u)+ f ez ×u

]
= n ·

[
− τb

ρ0H
+ 1

H
∇· (ν∇(Hu))

]
.

The obtained values of relative error ξr are given in the last line in Table 5.2. They
show that this strategy works for the friction term (decrease of the error by 15%),
but fails for the others.
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5.3.3 Comparison of absorption functions

The choice of the absorption function σ is a common issue for all the absorbing
layers. This problem has already been addressed in chapter 3 for the scalar wave
system. Since the physical dynamics considered here slightly differ due to Earth’s
rotation, we aim to check if the shifted hyperbolic function σsh remains efficient
with α= √

g h. Let us note that the results of chapter 3 directly apply here for the
PMLs (5.6) and (5.7) when Earth’s rotation is neglected (i.e. f ≈ 0), and for the
FRS (5.4) and the PGS (5.5) in one dimension. Indeed, in these cases, the systems
reduce to the PML scalar wave system.

The comparison of absorption functions is performed with a layer at each side
of the domain. Only the PGS is considered since it is more efficient than the FRS
and, as will be explained in section (5.4), it is more robust that PMLs. The equa-
tions are discretized on an Arakawa C-grid using a finite volume scheme and the
time-stepping is made with a forward-backward strategy [20, 44]. The spatial steps
are ∆x =∆y = 10 km and the time step is ∆t = 150 s. These parameters are similar
to those used by Lavelle and Thacker [108] for the same benchmark (but with a
square domain).

Figure 5.6 shows the error at the end of the simulations (t = 9h) for two different
thicknesses of the PGS and different absorption functions discussed in chapter 3.
We consider the parabolic function σ2 and the hyperbolic function σh, defined by

σ2(s) =α
( s

δ

)2
, σh(s) = α

δ− s
,

where α is a free constant parameter, as well as the shifted hyperbolic function
σsh (5.8) and the constant function σ̄. The value of the constant function σ̄ and
the free parameter α of σ2 are numerically optimized in order to reduce the asso-
ciated error ξr for that particular simulation. As in section 3.3.3.2, an optimization
of hyperbolic and shifted hyperbolic functions by adjustment of a multiplicative
factor is useless: these functions are already optimum when α equals the propa-
gation velocity, which is

√
g h. The results obtained with the parabolic function

with α= 0.9/∆t advocated by Lavelle and Thacker [108] are also shown. The case
where the waves are perfectly reflected is computed using a wall condition at the
boundary of the domainΩ, i.e. u ·n = 0.

The error patterns obtained with the parabolic functions are similar to the ones
shown in Figure 5.3(b) for the absorption function (5.8). The different solutions are
qualitatively similar with very good properties for normal waves and a reduced ef-
fectiveness for tangential waves. The optimum constant function σ̄ gives also bet-
ter results for normal waves than for tangential waves but they are globally worse
than with the spatially varying functions considered.

As expected, the best results are obtained with the thickest absorbing layer
(δ = 13∆x in Figure 5.6). For a thin absorbing layer (δ = 5∆x in Figure 5.6), only
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Impermeability B.C.

Optimum constant σ̄ (δ= 5∆x) Optimum constant σ̄ (δ= 13∆x)

Parabola σ2 with α= 0.9/∆t (δ= 5∆x) Parabola σ2 with α= 0.9/∆t (δ= 13∆x)

Optimum parabola σ2 (δ= 5∆x) Optimum parabola σ2 (δ= 13∆x)

Hyperbola σh (δ= 5∆x) Hyperbola σh (δ= 13∆x)

Shifted hyperbola σsh (δ= 5∆x) Shifted hyperbola σsh (δ= 13∆x)

Figure 5.6: Simulation of the collapse of a mound of water. Error on the elevation at the
end of the simulation with different absorption functions. The width of the absorbing
layer δ is 5∆x (left) or 13∆x (right). The color bar has been fixed from −0.01 m to 0.01 m,
as in Figure 5.4. Adapted from [123] (© 2009 Springer-Verlag).
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Table 5.3: Simulation of the collapse of a mound of water. Relative error ξr (5.9) for differ-
ent absorption functions and for two values of the width of the absorbing layer (5∆x and
13∆x) using the linear shallow water equations.

δ= 5∆x δ= 13∆x
Optimum constant σ̄ 1.82 10−1 1.11 10−1

Parabola σ2 with α= 0.9/∆t 1.21 10−1 9.38 10−2

Optimum parabola σ2 1.15 10−1 7.06 10−2

Hyperbola σh 1.52 10−1 8.75 10−2

Shifted hyperbola σsh 1.14 10−1 5.91 10−2

small differences can be seen between the results obtained with the three spatially
varying absorption functions. Slightly larger differences between the different re-
sults appear when a thicker absorbing layer is used.

The relative error values listed in Table 5.3 confirm the visual impression from
Figure 5.6. The results obtained with the shifted hyperbola are slightly better than
those produced with the optimum parabolic function, especially with the 13∆x
absorbing layer, where the relative error associated with the shifted hyperbola is
smaller than with the optimum parabolic function by about 20%. Increasing the
width of the absorbing layer allows for a more gradual damping of outgoing waves
obtained using smaller absorption functions.

For the 13∆x absorbing layer, the optimum value of the parameter α of the
parabolic function is about 1.5 10−3 s−1 while it reaches 3 10−3 s−1 for the 5∆x ab-
sorbing layer. Relating α to the time step ∆t and not to the width of the absorbing
layer is therefore not the best solution. The value of α = 0.9/∆t = 6 10−3 s−1 esti-
mated using the formula of Lavelle and Thacker [108] is about twice the optimum
value for the 5∆x absorbing layer. This affects however little the relative error in
this numerical experiment. With the thicker 13∆x absorbing layer, there is how-
ever a 25 % difference between the relative errors obtained with the two parabolic
functions.

5.4 Cases dominated by advection

The test case considered above is dominated by the propagation of Poincaré waves.
While the shifted hyperbolic functionσsh gives good results in this case, one might
wonder if the same function can be used in advection-dominated problems. There-
fore, we address the problem of a moving eddy, i.e. the advection on an eddy by a
mean flow and its own velocity field. This test case is also used, in slightly different
forms, by Navon et al. [127], McDonald [115] and Lavelle and Thacker [108].

This section focuses on the comparison of absorption functions for the PGS. It
is well-known that the PML formulations are unstable for advection-dominated
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cases if they are built without a specific strategy (see e.g. [3, 51, 90–92, 126, 156]).
Preliminary simulations (not presented here) show that large spurious oscillations
are generated inside the PML with our formulations, which do not account for
such a strategy. A comparison with these layers is thus not pertinent.

5.4.1 Description of the benchmark

The nonlinear shallow water equations (5.1) are used to describe the movement
of the eddy that is initially in geostrophic balance with the same Gaussian-shaped
mound of water as in the previous test case. Except the depth at rest h that be-
comes 500m, the model parameters and the geometry of the previous benchmark
are reused. To move the eddy, a uniform current of 5 m/s is added in both hori-
zontal directions in the initial velocity fields and is supported by a geostrophic tilt
of the surface elevation (see [108]). The initial fields are then

η(x,0) = η0e−‖x‖2/R2 + f

g

(
xUy − yUx

)
, (5.11)

u(x,0) = 2g

f R2η0e−‖x‖2/R2
(

y
−x

)
+

(
Ux

Uy

)
, (5.12)

where Ux and Uy correspond to the velocities in horizontal directions. In the PGS,
the fields are relaxed towards a stationary external solution using nudging terms.
This solution includes only the uniform current and the associated tilt of the sur-
face elevation corresponding to the last term in equations (5.11) and (5.12). As
time goes by, the eddy is swept out of the open domain by the advecting flow.

The discrete scheme is built considering the conservative form of the nonlinear
equations, that is suitable for a numerical discretization using the finite volume
approach. As claimed in section 5.2.2, one of the advantages of relaxation methods
is that the full nonlinear dynamics can be easily taken into account. In particular,
absorption terms can be easily included in the nonlinear shallow water equations.
When written in conservative form, the resulting equations for a nonlinear PGS
are

∂H

∂t
+ ∂(Hux )

∂x
+ ∂(Huy )

∂y
=−(σx +σy )(H −H ext),

∂(Hux )

∂t
+ ∂(g H 2/2)

∂x
+ ∂(Hu2

x )

∂x
+ ∂(Hux uy )

∂y
− f Huy =−σx (Hux −H extuext

x ),

∂(Huy )

∂t
+ ∂(g H 2/2)

∂y
+ ∂(Hux uy )

∂x
+
∂(Hu2

y )

∂y
+ f Hux =−σy (Huy −H extuext

y ).

(5.13)

These equations include the advection term for momentum and account for the
variability of the water depth. The FBTCS scheme and the Arakawa C-grid are
again used for the numerical computation.

The time evolution of the solution is described and illustrated in [108]. During
the first simulation hours, the amplitude of the Gaussian eddy decreases through
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the generation of adjustment waves, since the initial fields do not achieve a non-
linear balance. Afterwards, the eddy is advected towards the open boundary while
the height of the rotating mound undergoes a small decrease because of numeri-
cal diffusion.

5.4.2 Comparison of absorption functions

The reflection of the outgoing signal on the open boundary can be quantified
by computing the relative error (5.9). This is done here for the different absorp-
tion functions considered above and for two thicknesses of the absorbing layers
(Figure 5.7). The constant function σ̄ and the multiplicative parameter α of both
parabola σ2 and shifted hyperbola σh are tuned to minimize the area under the
curves of Figure 5.7. In all the simulations, the error increases during the first
hours due to the partial reflection of the eddy on the absorbing layer. After some
time, the errors are simply transported by the uniform current and leave the do-
main, so that the global error decreases.

Increasing the thickness of the absorbing layer from 5∆x to 13∆x leads to a sig-
nificant reduction of the error. In the best cases, the error decreases by a factor of
5. Note that the maximum error in Figure 5.7 appears later when the layer length is
increased because the eddy covers then a larger distance in the absorbing layer be-
fore being reflected. For both thicknesses of the absorbing layer, the shifted hyper-
bolic function (5.8) with α=√

g h performs significantly better than the parabolic
function used by Lavelle and Thacker [108]. The error is however much larger than
with numerically optimized absorption functions (uniform, parabolic and shifted
hyperbolic).

The reason for the bad result obtained with the shifted hyperbolic function is
linked to the physics of the problem. With the shifted hyperbolic function, it is im-
plicitly assumed that the signal propagates as surface gravity waves whereas ad-
vection is dominant. The speed α is therefore incorrectly estimated and this has
obviously an adverse effect on the performance of the absorbing layer. The prob-
lem can be easily addressed however by using the normal velocity U in the shifted
hyperbolic function instead of

√
g H . As shown in Figure 5.7, the corresponding

function leads to optimum results that are comparable with those obtained with
numerically tuned functions.

The use of the normal velocity in (5.8) can be justified on theoretical grounds
using the same approach as in section 3.3.3.3. Indeed, if advection dominates, the
dynamics in the absorbing layer can be approached by

∂φ

∂t
+U

∂φ

∂s
=−σ(s)φ

where U > 0 is the advection velocity and σ(s) is the absorption function, which
vanishes in the domain interior. For a constant absorption function, φ undergoes
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Figure 5.7: Simulation of the moving eddy. Evolution of the error in the domain for dif-
ferent absorption functions and two thicknesses of the absorbing layer. The continuous
curves are superimposed. Reproduced from [123] (© 2009 Springer-Verlag).

an exponential damping while advected across the absorbing layer. Such an expo-
nential damping can be made very efficient by using large values of σ but is then
difficult to describe using a numerical model with limited spatial resolution. How-
ever, a linear decrease of the amplitude of outgoing waves can be achieved in the
absorbing layer with the hyperbolic function

σh(s) = U

δ− s
.

Removing any discontinuity of the function at the interface with the model interior
leads then to the modified shifted hyperbolic function

σsh(s) =σh(s)−σh(0) = U

δ

s

δ− s
,
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where s = 0 at the interface between the domain and the PGS. The results ob-
tained with this modified function are clearly comparable to (and even slightly
better than) those obtained with the numerically optimized functions.

5.5 External forcing through an absorbing layer

Forcing an external solution at an open boundary is a critical issue for regional
oceanographic models. Tide waves and large scale currents are indeed taken into
account through such forcing. Among the absorbing layers presented in section
5.2.2, only the FRS and the PGS permit the prescription of an external solution
thanks to the nudging terms. However, they require the knowledge of this solution
over the entire layer, which is a problem if it is only poorly known.

For linear cases, we propose to adapt the strategy developed in section 4.3 in
the context of scattering problems: the external signal can be forced through an in-
terface condition in a particular formulation of the problem. This formulation can
be used together with a FRS or a PGS (instead of forcing through nudging terms),
or even a PML. After an illustration of the formulation in a linear case, we discuss
the limitation of this approach for nonlinear cases, as well as the impact of poorly-
known data.

5.5.1 A strategy for linear cases with complete data

At an open boundary, the fields η and u can be split into two parts: the external
fields ηext and uext (assumed known), and the residual fields η̃ and ũ (unknown),
with

η= ηext + η̃, (5.14)

u = uext + ũ. (5.15)

The fields η̃ and ũ contain the signals that are not taken into account in the exter-
nal solution, i.e. perturbations and waves of all kinds generated inside the domain.
The goal of the absorbing layer is this to allow these signals to leave the domain.

Similarly to the scattered/total-field formulation introduced in section 4.3, a
strategy consists in directly computing η̃ and ũ in the layer (instead of η and u),
and preserving η and u as unknowns in the domain. Since η̃ and ũ must be only
damped inside the layer, the PML systems (5.6) and (5.7) can be directly used (η
and u must be simply replaced by η̃ and ũ inside the equations). For the FRS and
PGS systems, the terms corresponding to external forcing are removed, i.e. the
FRS system (5.4) becomes

∂η̃

∂t
+h(∇· ũ) =−ση̃,

∂ũ

∂t
+ g∇η̃+ f ez × ũ =−σũ,

(5.16)
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and the PGS equations (5.5) become
∂η̃

∂t
+h(∇· ũ) =−(σx +σy ) η̃,

∂ũ

∂t
+ g∇η̃+ f ez × ũ =−diag{σx ,σy } ũ.

(5.17)

A particular condition must be prescribed at the interface between the domain
and the layer, in order to connect the different fields at both sides of the inter-
face. Considering the relations (5.14)-(5.15), one immediately obtains the inter-
face condition {

η|dom = ηext + η̃|lay,
n ·u|dom = n ·uext +n · ũ|lay,

(5.18)

where η|dom and u|dom correspond to the numerical solution computed in the
model domain with the original equations (5.2), while η̃|lay and η̃|lay are computed
in the layer with the layer equations (5.16) or (5.17).

As announced before, with this formulation, the external forcing is taken into
account through the interface condition (5.18). Therefore, only the knowledge of
both elevation ηinc and normal velocity n ·uinc at the interface are required.

Benchmark

The above strategy is tested with a benchmark involving an external forcing. A
circular island with radius 1 km is placed at the center of the rectangular domain
[−Lx ,Lx ]× [−Ly ,Ly ], with Lx = 2.5 km and Ly = 5 km. The northern and southern
borders are coasts, while the others are supposed to be open. A Kelvin wave mov-
ing eastwards enters in the domain by the western border. If the island is removed,
the time evolution of the fields is given by

ηext(t ,x) = e−(x−x0−ct )2/R2
e−( f /c)(y−Ly ),

uext(t ,x) = e−(x−x0−ct )2/R2
e−( f /c)(y−Ly )

√
g

h
ex ,

(5.19)

where the parameters used are x0 =−30km, R = 12km, c =√
g h, f = 1.02810−4s−1,

g = 9.85 m/s2 and h = 100 m.

The external solution (5.19) is forced at the western boundary through open-
sea boundary treatment. Because this solution does not account for the presence
of the island, the fields are modified — the difference is shown in Figure 5.8(c).
Using classical terminology of scattering problems, the external solution contains
the incident fields and the residual fields are the scattered fields. Their sum gives
the total fields.

Simulations are performed with the linear shallow water equations (5.2) and
the DG scheme. The characteristic length of mesh cells is ` = 200 m. The fourth-
order Runge-Kutta time-stepping scheme is used with∆t = 1s. The computational
domain is extended eastward.
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(a) Solution η (b) External solution ηext (c) Difference η̃= η−ηext

(total field) (incident field) (scattered field)

Figure 5.8: Simulation of the scattering of a Kelvin wave by a circular island. Snapshots
of the reference elevation in the domain at t = 12 min with (a) and without (b) the island.
The difference, corresponding to the scattered field, is shown in (c).

Discussion

The snapshots of the field η̃ obtained with Flather’s OBC and the absorbing layers
at t = 12 h are shown in Figure 5.9. Let us recall that the fields η̃ and ũ are directly
computed (and damped) in the layers, while the original fields are considered in
the domain. The field η̃ is then obtained by subtracting the external solution (5.19)
from the solution effectively computed.

The closeness between reference and layer solutions demonstrates the effec-
tiveness of the interface condition (5.18). Moreover, its use does not change the
conclusions of the previous benchmark about boundary treatments. The solution
provided by the Flather’s OBC in Figure 5.9 is slighly different from the reference
solution, especially near the open boundary where the influence of the boundary
condition is larger. By contrast, the fields obtained with both complete and ap-
proximate PMLs cannot be distinguished from the reference field. Finally, results
provided by other layers are coherent with what was obtained before: the FRS is
not so good than the PGS, but slighly better than the OBC.
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Flather’s OBC FRS PGS PMLs

Figure 5.9: Simulation of the scattering of a Kelvin wave by a circular island. Scattered field
provided by the OBC and the different layers with the thickness δ= 1 km. Results of both
complete and approximate PMLs are identical. In the domain, thick lines correspond to
the reference solution shown in Figure 5.8(c).

5.5.2 Extension for nonlinear cases and incomplete external data

The extension of our strategy for more realistic nonlinear cases is not staightfor-
ward. Because of nonlinearities, the external (incident) and residual (scattered)
fields of the decomposition (5.14)–(5.15) are coupled, and the equations govern-
ing residual fields must contain coupling terms that involves the external fields. It
is not clear how to account for such coupling terms in the procedure to design an
absorbing layer. In order to preserve a formulation with an external forcing only
through the interface condition, a first strategy consists in removing these terms
from the equations. However, this approximation must be validated, and further
investigations are needed.

With the formulations proposed above, the knowledge of both elevation and
normal velocity at the open boundary is a requirement. If one of them is unknown,
the interface condition (5.18) cannot be normally used. Since the aim of an open-
sea boundary treatment is not to rebuild external data, we suggest to address this
issue using dedicated existing approaches, such as data assimilation (see e.g. [11,
44]) or embedded models (see e.g. [7, 28]).

5.6 Large domain versus elaborate boundary treatment

Even if more and more accurate open-sea boundary treatments are developed,
increasing the size of the domain sometimes remains the best strategy. In practical
cases, a good compromise must be reached between the size of the domain and
the accuracy (and the complexity) of the boundary treatment. This is illustrated
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in this section with a classical benchmark that has been already used to compare
OBCs by Røed and Cooper [150] and by Palma and Matano [135, 137].

In this benchmark, the open-sea boundary treatments must deal with waves
generated by a real-world wind stress, and influenced by a variable bathymetry.
Since this benchmark involves nonlinear dynamics, only Flather’s OBC, the FRS
and the PGS are considered. The PMLs are excluded for reasons exposed at the
beginning of section 5.4.

Description of the benchmark

Eddies and waves are generated in a zonal channel by a cyclone, that moves from
North to South, as shown in Figure 5.11. The channel is assumed to be infinitely
long and 500 km in width. The bathymetry, represented in Figure 5.10(a), varies
along the meridians according to

h(y) = 200 m+800 m

(
1+ tanh

(
y −150 km

50 km

))
,

where y = 0 and y = 500 km correspond to the southern and the northern coast
of the channel, respectively. It is similar to the one used by Palma and Matano
[135, 137]. Our mesh, shown in Figure 5.10(b), is refined in the shallow part of the
domain.

The unknown fields, η and u, are governed by the complete nonlinear shallow
water equations (5.1). The moving storm induces a wind stressτw = (τx ,τy ) whose
the Cartesian components are

τx =−τ0
yc

Rc
exp

{
1

2
− x2

c + y2
c

2R2
c

}
,

τy = τ0
xc

Rc
exp

{
1

2
− x2

c + y2
c

2R2
c

}
,

(a) Bathymetry (b) Mesh

Figure 5.10: Simulation of a traveling storm. Bathymetry and mesh.
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3 1/3 days
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4 days

Figure 5.11: Simulation of a traveling storm. Snapshots of the elevation at different in-
stants, obtained with a reference simulation. The reference domain is sufficiently long to
remove the influence of its western and eastern borders on the domain of interest (delim-
ited by vertical lines).
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where (xc , yc ) denote the position of the storm center, with

xc = x −x0,

yc = y − y0 +U t ,

(x0, y0) is its initial position, and U is its velocity [150]. By contrast with previous
works, where the storm moved from the northwest to the southeast, the storm here
moves only southwards. The problem parameters are x0 = 500 km, y0 = 917 km,
U = 500 km/day, Rc = 100 km and τ0 = 3 Pa. In addition, we consider the hori-
zontal eddy viscosity ν = 200 m2/s and a linear bottom stress τb = γHρ0u, with
γ= 5 10−5 s−1. We use the DG scheme described in [42] and a fourth-order Runge-
Kutta time-stepping scheme with ∆t = 5 s.

During the first two days of the simulation, the storm travels over the channel
and generates Kelvin waves and eddies (see Figure 5.11). The Kelvin waves prop-
agate westwards along the northern coast, and eastwards along the southern one.
After the storm has gone, topographic waves are generated by the eddies. These
waves slowly move eastwards.

Results and discussion

Open-sea boundary treatments are tested by simulating only a part of the chan-
nel that is 1,000 km in length, exactly like in the previous works [135, 137, 150].
This area is delimited by the vertical lines in Figure 5.11. Both its western and
eastern borders are open boundaries. They correspond to coordinates x = 0 and
x = 1,000 km, respectively. In this configuration, the direct wind forcing on the
open boundaries is negligible.

Snapshots of the elevation obtained with Flather’s OBC, the FRS and the PGS
are shown in Figure 5.12 at two instants: 2 days (when the storm is just gone) and
4 days (after the generation of topographic waves). In all the cases, the elevations
obtained with the OBC and the layers are very close to the reference one (Fig-
ure 5.12). By comparing isovalue curves, small differences can be distinguished
near the open boundaries. The PGS provides a slightly better result than the FRS,
which is itself slightly better than Flather’s OBC. The ranking is therefore the same
than the one of the previous benchmark. The results are coherent, even if the dif-
ferences of effectiveness are here smaller.

The small differences between open-sea treatments can be explained by the
specificity of this benchmark: the solution is clearly dominated by the eddies. A
good modeling of the outgoing waves is less important than a good modeling of
these eddies. This is confirmed by two additional results shown in Figure 5.13: the
snapshots of the elevation for an extended domain (the extended parts have the
same width than the layers), that is ended by a wall condition (i.e. n ·u = 0) or
Flather’s OBC.
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(a) Flather’s OBC
2 days 4 days

(b) flow relaxation scheme (FRS)
2 days 4 days

(c) pretty good sponge (PGS)
2 days 4 days

Figure 5.12: Simulation of a traveling storm. Snapshots of the elevation obtained with
Flather’s OBC (a), the FRS (b) and the PGS (c) at two instants: 2 and 4 days. In the domain
of interest, thick lines correspond to the reference solution shown in Figure 5.11.

The solution obtained with the wall condition (Figure 5.13(a)) is clearly differ-
ent from the reference one, but the shape of the eddies remains. This is surpris-
ing, since the wall condition is the worst condition that could be used at an open
boundary. Therefore, even with this worst condition, the shape of the solution is
coherent. This shows the importance of the storm and the eddies in this bench-
mark, in comparison with open boundaries.

When Flather’s OBC terminates the extended domain, the solution in the do-
main of interest is slightly better than with the FRS and the PGS above (Figure 5.12).
Even if, on the modeling standpoint, both FRS and PGS are better than Flather’s
OBC, adding nudging terms in a domain extension reduces the quality of the solu-
tion. Therefore, a larger domain, which permits a better representation of eddies,
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(a) wall BC with an extension of the domain
2 days 4 days

(b) Flather’s OBC with an extension of the domain
2 days 4 days

Figure 5.13: Simulation of a traveling storm. Snapshots of the elevation obtained using
an extended domain, terminated by a wall (i.e. n ·u = 0) (a) and Flather’s OBC (b) at two
instants: 2 and 4 days. In the domain of interest, thick lines correspond to the reference
solution shown in Figure 5.11.

is here more suitable than the elaborate open-sea boundary treatments consid-
ered in this chapter.

5.7 Conclusion

Because of their easy implementation and their good properties, absorbing layers
are very attractive for numerical ocean models. Introduced at the end of the 80’s,
the FRS exhibits a good efficiency in comparative studies [98, 131, 135, 136, 149].
The PMLs are promising, even if they are considered in only a few comparative
works [108, 127]. Most recently, the so-called PGS has been proposed by Lavelle
and Thacker [108], inspired by both FRS and PML formulations. In this chapter, we
have compared the FRS, the PGS, classical Flather’s boundary condition and two
novel absorbing layers designed with the procedure of chapter 2: the PML (5.6)
and the approximate PML (5.7).

We have observed that the complete PML (5.6) outperforms other boundary
treatments in cases dominated by Poincaré waves. By order of decreasing effec-
tiveness, one then has the approximate PML, the PGS, the FRS and the OBC. How-
ever, the considered PML formulations do not deal with advection-dominated
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problem due to stability problems. In that case, Lavelle and Thacker [108] have
shown the superiority of the PGS on the FRS. As a conclusion, the considered PML
is accurate, but for a small range of applications. By contrast, the PGS is more
robust, even if it is less accurate than the PML.

The choice of the absorption functionσ is a common issue for the use of all the
layers. We have extended the discussion of this function, already done in chapter
3 for pure wave propagation problems, in the marine context. To this end, we have
considered the PGS in benchmarks dominated by Earth’s rotation and advection.
While the conclusion about performing functions does not change when Earth’s
rotation is considered, the results differ when strong advection is present. Indeed,
the shifted hyperbolic function (5.8) remains good, but the parameterαmust now
be choosen close to the mean flow velocity. Therefore, good performances of the
PGS can be achieved by adjusting the absorption function according to the physics
of the problem.

We have discussed ways of forcing an incoming external signal at the open sea
boundary. While an external solution could simply be prescribed throught nudg-
ing terms for both FRS and PGS, the issue is not clear for other layers. Inspired
by the total/scattered-fields formulation introduced in section 4.3.1, we have pro-
posed to use an interface condition to prescribe the external forcing. This method
can be employed together with PMLs, as well as with the FRS and the PGS. Exter-
nal data are then only required at the interface, and not over the whole layer. Since
this strategy applies only to linear cases, further developements are required to
deal with nonlinear cases.

Finally, we have highlighted two limitations when simulating with open bound-
aries. First, the open-sea boundary treatment cannot improve the knowledge of
external data. If data are incomplete, other strategies must be adressed. Second,
the current OBCs and layers cannot simulate all dynamics, and increasing the size
of the domain sometimes still remains the best option.





Conclusion

In order to deal with the numerical simulation of wave-like phenomena occuring
in large or infinite regions, efficient strategies for building and optimizing absorb-
ing layers have been presented. The main achievements and conclusions of this
thesis, already detailed at the end of each chapter, are summarized hereafter. Per-
spectives for future research are then highlighted.

Main achievements and conclusions

Absorbing layers based on PML techniques exhibit interesting properties for sim-
ulating the truncation of unbounded domains. In some cases, PMLs provide an
exact treatment of the truncation, while, in other cases, they constitute a good
starting point to design alternative approximate layers. Therefore, the major part
of this thesis was dedicated to their study.

We have proposed a complete procedure for building PMLs for convex domains
with regular boundary, for both time-harmonic and time-dependent problems.
This permits a greater flexibility when choosing the shape of the truncated do-
main. Since the obtained PML equations are written in Cartesian coordinates,
they are easily implemented in existing codes. The efficiency of this approach
has been shown on time-dependent numerical examples in two and three dimen-
sions. Simulations have been performed with a DG scheme, whose overall numer-
ical convergence O (`n+1) has been verified.

The issue of choosing PML parameters that optimize the layer effectiveness has
been addressed. By means of novel analytical and numerical results, we have high-
lighted the roles of the absorption function σ, the layer thickness δ and the dis-
cretization density. Since taking a better σ improves the effectiveness of the layer
without supplementary computational cost, looking for efficient functions is very
appealing. We have performed a systematic comparison of different absorption
functions with several classical numerical schemes (finite difference, finite vol-
ume and finite elements with both continuous and discontinuous elements). In
most cases, the commonly-used polynomial functions and the shifted hyperbolic
functions provide equivalent results when they are tuned. The great advantage of
the latter is however that neither numerical optimization nor trial and error pro-
cedures are required, as its free parameter has a clear physical interpretation and
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can be adjusted from the knowledge of the dynamics of the problem. This has
been confirmed by numerical simulations in two and three dimensions.

While the PML equations do not a priori account for incoming signals gen-
erated outside the truncated domain, we have detailed and compared different
problem formulations that deal with such forcing. In particular, the hybrid formu-
lation with both scattered and total fields is very appealing. Indeed, the original
model equations hold inside the domain without any change, and the PML equa-
tions inside the layer can also be used unmodified. The incoming signals are then
prescribed by only means of a specific interface condition. This formulation has
been tested in a two-dimensional case.

Modeling open-sea boundaries in regional oceanic models brings new chal-
lenges. Indeed, such models involve various dynamics (linear and nonlinear), and
the external forcing is generally poorly known. In this context, we have compared
and studied some boundary treatments considering additional physics. PML for-
mulations are very efficient in linear cases dominated by wave propagation. How-
ever, taking into account additional physical dynamics requires further develop-
ments. By contrast, the PGS appeared to be more robust and easier to use for a
larger range of problems, and is clearly better than the widely-used Flather condi-
tion. A comparison of absorption functions has emphasized that the shifted hy-
perbolic function remains effective, but its free parameter α must be adapted by
taking into account each particular physical context. We have also tested the forc-
ing of the external solution by an interface condition. Finally, some limitations of
open-sea boundary treatments have been highlighted.

Future prospects

According to Givoli [73], artificial boundary treatments should be built having in
mind the following goals: the well-posedness of the problem, the stability of the
numerical scheme, the accuracy of the boundary treatment in both continuous
and discontinuous levels, the compatibility with the numerical scheme, the ease
of implementation in existing codes and the computational efficiency. In addition,
the formulation should ideally be general and usable in a variety of situations.

In this thesis, we focused on some of the goals listed by Givoli: the accuracy, the
compatibility with various numerical schemes, the ease of implementation and
the computational efficiency. The other points and several other additional diffi-
culties should be investigated further. In particular, the following aspects would
be interesting to investigate:

• Long-term stability and well-posedness.

While the PML formulations presented in this thesis have been successfully
applied in numerical simulations, the well-posedness of the PML equations
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and the stability of the scheme remain to be investigated for long-term sim-
ulations. It is well-known the equations of Bérenger’s PML are only well-
posed in a weak sense [1, 77]. As a consequence, small errors can linearly
grow in the layer [16]. This is not a problem for short-term simulations, but
such perturbations are more dangereous with long times. Since the PML
equations of this thesis are hyperbolic only in a weak sense (see [77]), we
expect the same problem. This should be assessed and overcomed before
considering long-term simulations. Some solutions have been proposed in
[2, 4, 12, 19, 141], but for conventionally-shaped domains.

• Extension of PML formulations to other wave-like equations.

PML formulations that permit generally-shaped truncated domains are very
appealing for various application contexts. Such formulations should be
derived with other wave-like equations, such as equations of aeroacous-
tics, elastodynamics or 3-D electromagnetism. The procedure of section 2.4
could be easily tested with these equations. Further improvements will how-
ever be necessary to deal with evanescent waves, advection or anisotropic
media, which bring some further difficulties (see section 2.3.4 and refer-
ences herein).

• Extensive comparison of boundary treatments.

During the last two decades, numerous absorbing layers (perfectly matched
or not) and hierarchical boundary conditions have been proposed. Rational
comparative studies between available boundary treatments will be help-
ful in the perspective of applications, where one treatment must be chosen.
However, only partial or outdated studies are available. To the best of our
knowledge, no comparisons have been proposed between the two above-
mentioned families of treatments in the time domain.

• Efficient absorbing layers with external forcing in oceanography.

Due to its effectiveness and its robustness, the PGS is very appealing. This
layer should be tested in other cases of oceanography, considering increas-
ingly realistic models (two-layer model, baroclinic model, ...). Since the ex-
ternal solution is generally poorly known, we suggest further investigations
on the design of specific interface conditions for prescribing external forc-
ing. Indeed, as highlighted in this work, this approach requires the lowest
amount of information about the external solution.





APPENDIX A
Plane-wave analysis

in the discrete FD context

When a differential problem is discretized, the properties of the solution change.
In the context of wave-like problems, dispersion and dissipation of waves are al-
tered by the discretization. The properties of PMLs (perfect match and perfect
absorption) are also altered.

In this appendix, the dispersion and dissipation properties of waves are stud-
ied for the scalar wave system (1.2) discretized with the finite difference method.
One dimensional cases are considered, with and without PML terms. For a con-
stant absorption function σ, the discrete reflection coefficients associated to both
infinite and finite layers are computed.

A.1 Discrete scalar wave system without PML terms

Let us consider the finite difference (FD) scheme for the one-dimensional scalar
wave system, 

dp̃i+1/2

dt
+a

ũi+1 − ũi

∆x
= 0,

dũi

dt
+b

p̃i+1/2 − p̃i−1/2

∆x
= 0,

(A.1)

where p̃i+1/2(t ) and ũi (t ) are the semi-discrete fields, and ∆x is the spatial step.

The elementary harmonic plane-wave solution of this system reads

p̃i+1/2(t ) = Pe ı(k(i+1/2)∆x−ωt ),

ũi (t ) =U e ı(ki∆x−ωt ),
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where P and U are the amplitudes of fields, ω is the angular frequency (real and
positive) and k is the wave number (real). Injecting this elementary solution in the
system (A.1) gives 

−ıωP +a
e ık∆x/2 −e−ık∆x/2

∆x
U = 0,

−ıωU +b
e ık∆x/2 −e−ık∆x/2

∆x
P = 0,

⇐⇒


−ω∆x

2
P +a sin

(
k∆x

2

)
U = 0,

−ω∆x

2
U +b sin

(
k∆x

2

)
P = 0.

(A.2)

The last system is true if

ω=±c
2

∆x
sin

(
k∆x

2

)
,

P =±
√

a

b
U , (A.3)

where c =p
ab is the propagation velocity of the physical medium. The plus sign

corresponds to k > 0, while the minus sign is for k < 0. One obtains the phase
velocity and the group velocity of the discrete medium,

cp
def.= ω

|k| = c
2

k∆x
sin

(
k∆x

2

)
,

cg
def.= ∂ω

∂k
=±c cos

(
k∆x

2

)
. (A.4)

Since the phase velocity cp depends on k, the scheme is dispersive. Since the ele-
mentary plane-wave solution is not damped, the scheme is non-dissipative.

A.2 Discrete scalar wave system with PML terms

A.2.1 Constant function σ̄ case

Let us consider the FD scheme for the one-dimensional scalar wave system with
PML terms, 

dp̃i+1/2

dt
+a

ũi+1 − ũi

∆x
=−σ̄ p̃i+1/2,

dũi

dt
+b

p̃i+1/2 − p̃i−1/2

∆x
=−σ̄ ũi .

(A.5)

where p̃i+1/2(t ) and ũi (t ) are the semi-discrete fields and ∆x is the spatial step.
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Discrete plane-wave solution

The elementary harmonic damped plane-wave solution of the system (A.5) reads

p̃i+1/2(t ) = Pe ı(β(i+1/2)∆x−ωt ),

ũi (t ) =U e ı(βi∆x−ωt ),

whereβ is a complexe parameter. The real part ofβ corresponds to the wave num-
ber, while its imaginary part is the damping parameter. Injecting this elementary
solution in the system (A.5) gives

−ıωP +a
e ıβ∆x/2 −e−ıβ∆x/2

∆x
U =−σ̄P,

−ıωU +b
e ıβ∆x/2 −e−ıβ∆x/2

∆x
P =−σ̄U .

⇐⇒


− (ω+ ıσ̄)

∆x

2
P +a sin

(
β∆x

2

)
U = 0,

− (ω+ ıσ̄)
∆x

2
U +b sin

(
β∆x

2

)
P = 0.

The last system is true if

ω+ ıσ̄=±c
2

∆x
sin

(
β∆x

2

)
,

P =±
√

a

b
U . (A.6)

From the first relation, one has an expression for the complex parameter β,

β=± 2

∆x
arcsin

(
∆x

2

ω+ ıσ̄

c

)
.

Reflection coefficient for an infinite layer

Let us consider a one-dimensional problem with a domain Ω = R− extended on
the right side by an infinite PML medium Σ = R+, as shown in Fig. A.1 (a). The
semi-discrete fields p̃i+1/2(t ) and ũi (t ) are governed by the system (A.1) in domain
and the system (A.5) in the layer. At the interface, the field ũ0(t ) is governed by

dũ0

dt
+b

p̃1/2 − p̃−1/2

∆x
=−σ̄u0. (A.7)

The solution of this problem can be written as the superposition of incident,
reflected and transmitted waves. The elementary time-harmonic solution then
reads

p̃i+1/2(t ) =
{

P i e ı(k(i+1/2)∆x−ωt ) +P r e ı(−k(i+1/2)∆x−ωt ),
P t e ı(β(i+1/2)∆x−ωt ),

for i = ...,−2,−1
for i = 0,1, ...

ũi (t ) =
{

U i e ı(ki∆x−ωt ) +U r e ı(−ki∆x−ωt ),
U t e ı(βi∆x−ωt ),

for i = ...,−1,0
for i = 0,1, ...
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(a) Infinite layer

ui−1 ui u−2 u−1 u0 u1

• • • •

pi−1/2 p−3/2 p−1/2 p1/2

(b) Finite layer

ui−1 ui u−2 u−1 u0 u1 uNδ−1 uNδ

• • • • •

pi−1/2 p−3/2 p−1/2 p1/2 pNδ−1/2

Figure A.1: Discrete grid for the one-dimensional problem with (a) an infinite layer and
(b) a finite layer. The orange hatched zone represents the layer.

with k > 0. Injecting this solution in the governing equation of ũ0(t ) (A.7) gives

(σ̄− ıω)(U i +U r )+ b

∆x

(
P t e ıβ∆x/2 −P i e−ık∆x/2 −P r e ık∆x/2

)
= 0.

Using the continuity condition of the field ũi at the interface (i.e. U t = U i +U r )
and the impedance relations (A.3) and (A.6), it becomes

(σ̄− ıω)(P i −P r )+ c

∆x

(
(P i −P r )e ıβ∆x/2 −P i e−ık∆x/2 −P r e ık∆x/2

)
= 0.

Finally, one has the discrete reflection coefficient

r?interf =
∣∣∣∣P r

P i

∣∣∣∣=
∣∣∣∣∣
(
σ̄∆x

c − ı ω∆x
c

)+e ıβ∆x/2 −e−ık∆x/2(
σ̄∆x

c − ı ω∆x
c

)+e ıβ∆x/2 +e ık∆x/2

∣∣∣∣∣ .

Reflection coefficient for a finite layer

Let us consider now a modified version of the problem, with a finite PMLΣ= [0,δ],
as shown in Fig. A.1 (b). The solution can be written as the superposition of inci-
dent waves, their reflections in the domain Ω, transmitted waves in the PML and
their reflections by the outer boundary of the layer (x = δ). Using time-harmonic
plane waves, the elementary solution reads

p̃i+1/2(t ) =
{

P i e ı(k(i+1/2)∆x−ωt ) +P r e ı(−k(i+1/2)∆x−ωt ),
P t e ı(β(i+1/2)∆x−ωt ) +P be ı(−β(i+1/2)∆x−ωt ),

for i = ...,−2,−1
for i = 0,1, ...

ũi (t ) =
{

U i e ı(ki∆x−ωt ) +U r e ı(−ki∆x−ωt ),
U t e ı(βi∆x−ωt ) +U be ı(−βi∆x−ωt ),

for i = ...,−1,0
for i = 0,1, ...

with k > 0 and ℜe(β) > 0.

Relations between amplitudes are obtained with the continuity condition at
the interface domain/layer, the boundary condition at the outer boundary of the
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layer, i.e. ũNδ
= 0 and the governing equation of of u0(t ). The continuity condition

and the boundary condition give

U i +U r =U t +U b ,

U t e ıβδ+U be−ıβδ = 0,

and then

U t = U i +U r

1−e2ıβδ
, (A.8)

U b = U i +U r

1−e−2ıβδ
. (A.9)

The governing equation of u0(t ) (A.7) gives

(σ̄− ıω)(U i +U r )+ b

∆x

(
P t e ıβ∆x/2 +P be−ıβ∆x/2 −P i e−ık∆x/2 −P r e ık∆x/2

)
= 0.

Using the amplitude relations, this relation becomes

(σ̄− ıω)(U i +U r )+ c

∆x

(
U t e ıβ∆x/2 −U be−ıβ∆x/2 −U i e−ık∆x/2 +U r e ık∆x/2

)
= 0.

Using relations (A.8) and (A.9), one has((
σ̄∆x

c
− ı

ω∆x

c

)
+ e ıβ∆x/2

1−e2ıβδ
− e−ıβ∆x/2

1−e−2ıβδ

)
(U i +U r )−U i e−ık∆x/2 +U r e ık∆x/2 = 0.

Finally, the discrete reflection coefficient reads

r?pml =
∣∣∣∣P r

P i

∣∣∣∣=
∣∣∣∣∣∣
(
σ̄∆x

c − ı ω∆x
c

)+ ı cos(βδ−β∆x/2)
sin(βδ) −e−ık∆x/2(

σ̄∆x
c − ı ω∆x

c

)+ ı cos(βδ−β∆x/2)
sin(βδ) +e ık∆x/2

∣∣∣∣∣∣ .

A.2.2 Hyperbolic function σh(x) case

Let us consider the FD scheme for the one-dimensional scalar wave system with
PML terms, 

dp̃i+1/2

dt
+a

ũi+1 − ũi

∆x
=−σi+1/2 p̃i+1/2,

dũi

dt
+b

p̃i+1/2 − p̃i−1/2

∆x
=−σi ũi ,

(A.10)

where p̃i+1/2(t ) and ũi (t ) are the semi-discrete fields, σi+1/2 and σi are the discrete
values of the absorption function at the same positions as semi-discrete fields, and
∆x is the spatial step.
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Following the procedure used in the previous sections, the plane-wave analy-
sis of a discrete system provides dispersion and dissipation properties for plane
waves. For this purpose, the form of the absorption function must be choosen
a priori (constant or spatially varying form with a particular shape). However, a
complete plane-wave analysis of PMLs is very complicated when σi varies spa-
tially. Therefore, the procedure is adapted: the shape of the decay of plane waves
is choosen, and both dispersion relation and discrete function σi must be found.

Let us assume a plane-wave solution with a linear decay,

p̃i+1/2 = P
δ−xi+1/2

δ
e ı(kxi+1/2−ωt ),

ũi =U
δ−xi

δ
e ı(kxi−ωt ).

By replacing this solution in (A.10), one obtains
(σi+1/2 − ıω)P + a

∆x

(
δ−xi+1

δ−xi+1/2

e ık∆x/2 − δ−xi

δ−xi+1/2

e−ık∆x/2
)

U = 0,

(σi − ıω)U + b

∆x

(
δ−xi+1/2

δ−xi
e ık∆x/2 − δ−xi−1/2

δ−xi
e−ık∆x/2

)
P = 0,

⇐⇒


(σi+1/2 − ıω)P + a

∆x

(
2ı sin

(
k∆x

2

)
− ∆x

δ−xi+1/2

cos

(
k∆x

2

))
U = 0,

(σi − ıω)U + b

∆x

(
2ı sin

(
k∆x

2

)
− ∆x

δ−xi
cos

(
k∆x

2

))
P = 0.

The imaginary part of the system gives the system (A.2). Therefore, the dispersion
relation, the amplitude relation, the phase velocity and the group velocity are ex-
actly the same as for the discrete wave system without PML terms. The real part of
the system gives 

σi+1/2 = a

∆x

∆x

δ−xi+1/2

cos

(
k∆x

2

)
U

P
,

σi = b

∆x

∆x

δ−xi
cos

(
k∆x

2

)
P

U
.

Using the amplitude relation, one has immediately

σi =
cg

δ−xi
,

where cg is the group velocity (A.4). A similar expression is obtained for σi+1/2.



APPENDIX B
Additional Material

for Numerical Schemes

B.1 Conservative form of the PML scalar wave system

Let us consider the PML scalar wave system

∂p

∂t
+a∇·u =−σps − κ̄ϕσ̄pϕ− κ̄θσ̄(p −ps −pϕ),

∂u

∂t
+b∇p =−σes(es ·u)− κ̄ϕσ̄eϕ(eϕ ·u)− κ̄θσ̄eθ(eθ ·u),

∂ps

∂t
+a∇es ·u =−σps ,

∂pϕ
∂t

+a∇eϕ ·u =−κ̄ϕσ̄pϕ.

The differential operator of the third equation can be rewritten as

∇es ·u = [es(es ·∇)] ·u,

= (es ·∇)(es ·u)− [(es ·∇)es] ·u,

=∇· [es(es ·u)]− [es(∇·es)+ (es ·∇)es] ·u.

A similar expression is obtained for ∇eϕ ·u and ∇eθ ·u. Using relations between
the basis vectors with the expression of the operator ∇ in curvilinear coordinates
(2.25), one obtains

∇·es = 1

1+κϕs
eϕ · (κϕeϕ)+ 1

1+κθs
eθ · (κθeθ) = κϕ

1+κϕs
+ κθ

1+κθs
,

∇·eϕ = 1

1+κϕs
eϕ · (−κϕes) = 0,

∇·eρ = 1

1+κθs
eθ · (−κθes) = 0,
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and

(es ·∇)es = 0, (eϕ ·∇)eϕ = −κϕ
1+κϕs

es , (eρ ·∇)eρ = −κθ
1+κθs

es .

Finally, the differential operators of additional equations can be written

∇es ·u =∇· [es(es ·u)]−
(

κϕ

1+κϕs
+ κθ

1+κθs

)
(es ·u),

∇eϕ ·u =∇· [eϕ(eϕ ·u)]+ κϕ

1+κϕs
(es ·u),

∇eρ ·u =∇· [eρ(eρ ·u)]+ κθ

1+κθs
(es ·u).

Therefore, the conservative form of the PML scalar wave system reads



∂p

∂t
+a∇·u =−σps − κ̄ϕσ̄pϕ− κ̄θσ̄(p −ps −pϕ),

∂u

∂t
+b∇p =−σes(es ·u)− κ̄ϕσ̄eϕ(eϕ ·u)− κ̄θσ̄eθ(eθ ·u),

∂ps

∂t
+a∇· [es(es ·u)] =−σps +

(
κϕ

1+κϕs
+ κθ

1+κθs

)
(es ·u),

∂pϕ
∂t

+a∇· [eϕ(eϕ ·u)] =−κ̄ϕσ̄pϕ−a
κϕ

1+κϕs
(es ·u).

In two dimensions, this system reduces to

∂p

∂t
+a∇·u =−σps − κ̄σ̄(p −ps),

∂u

∂t
+b∇p =−σes(es ·u)− κ̄σ̄e(e ·u),

∂ps

∂t
+a∇· [es(es ·u)] =−σps +

κϕ

1+κs
(es ·u).

(B.1)

B.2 Numerical schemes for the PML scalar wave system

In this section, numerical schemes based on finite difference (FD) and continu-
ous Galerkin (CG) methods are derived for the two-dimensional PML scalar wave
system. They are used in chapter 3.

B.2.1 Finite difference scheme

The FD scheme is derived for a straight boundary with the outward normal ex .
In this case, the system reduces to the system (2.30), with a single additional un-
known field pn(x, t ).
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The additional field pn(x, t ) is discretized exactly as the original one p(x, t ), i.e.

p̃s
∣∣
i+1/2, j+1/2

(t ) ≈ pn(xi+1/2, j+1/2, t ).

Using central differences to approximate partial derivatives, the scheme then reads

dp̃i+1/2, j+1/2

dt
+a

(
ũi+1, j+1/2 − ũi−1, j+1/2

∆x
+ ṽi+1/2, j+1 − ṽi+1/2, j−1

∆y

)
=−σi+1/2 p̃s

∣∣
i+1/2, j+1/2

,

dũi , j+1/2

dt
+b

p̃i+1/2, j+1/2 − p̃i−1/2, j+1/2

∆x
=−σi ũi , j+1/2,

dṽi+1/2, j

dt
+b

p̃i+1/2, j+1/2 − p̃i+1/2, j−1/2

∆y
= 0,

d p̃s
∣∣
i+1/2, j+1/2

dt
+a

ũi+1, j+1/2 − ũi−1, j+1/2

∆x
=−σi+1/2 p̃s

∣∣
i+1/2, j+1/2

.

where σi = σ(xi ) and σi+1/2 = σ(xi+1/2) are the discrete values of the absorption
function.

B.2.2 Continuous finite element scheme

Multiplying the conservative form (B.1) of the equations by test functions, inte-
grating them overΩ∪Σ and using integration by parts, one gets the weak form:

(
∂p

∂t
,ψi

)
Ω∪Σ

+〈
a (u ·nΩ∪Σ) ,ψi

〉
∂(Ω∪Σ) −

(
au,∇ψi

)
Ω∪Σ =−(

Sp ,ψi
)
Σ ,(

∂u

∂t
,ψi

)
Ω∪Σ

+ (
b∇p,ψi

)
Ω∪Σ =−(

Su,ψi
)
Σ ,(

∂pn

∂t
,ψi

)
Σ

+〈
a (es ·u) (es ·nΣ) ,ψi

〉
∂Σ−

(
a(es ·u)es ,∇ψi

)
Σ =−(

Spn ,ψi
)
Σ ,

(B.2)

where nΩ∪Σ and nΣ are the outward unit normals of Ω∪Σ and Σ, respectively. Sp ,
Spn and Su are the source terms written in the right-hand side of the equations of
the system (B.1).

Unfortunately, the formulation (B.2) generates spurious numerical oscillations.
The pressure-stabilization Petrov-Galerkin method (PSPG method) consists in adding
a stabilization term in the left-hand side of the first equation of (B.2),

−(
κRu,∇ψi

)
Ω∪Σ ,

where κ is the numerical stabilization parameter and Ru is the residue associated
to the momentum equation

Ru = ∂u

∂t
+b∇p +Su.

Considering the similarities between the governing equations of p and pn , a cor-
responding stabilization term is added in the last equations,

−(
κ(en ·Ru)en ,∇ψi

)
Σ .
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