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Abstract

This paper presents an incremental–secant mean-field homogenization (MFH)
procedure for composites made of elasto–plastic constituents exhibiting dam-
age. During the damaging process of one phase, the proposed method can
account for the resulting unloading of the other phase, ensuring an accurate
prediction of the scheme. When strain softening of materials is involved, clas-
sical finite element formulations lose solution uniqueness and face the strain
localization problem. To avoid this issue the model is formulated in a so–
called implicit gradient–enhanced approach, with a view toward macro-scale
simulations. The method is then used to predict the behavior of composites
whose matrix phases exhibit strain softening, and is shown to be accurate
compared to unit cell simulations and experimental results. Then the conver-
gence of the method upon strain softening, with respect to the mesh size, is
demonstrated on a notched composite ply. Finally, applications consisting in
a stacking plate, successively without and with a hole, are given as illustra-
tions of the possibility of the method to be used in a multiscale framework.
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1. Introduction

Homogenization methods can predict the macro or meso–scopic response
of heterogeneous materials from their micro–structure constituents proper-
ties, with an acceptable accuracy, while being much more computationally
efficient than direct numerical simulations. Among those methods, the mean–
field homogenization (MFH) approach is a (semi–)analytical framework for
the modeling of multi–phase composites. MFH methods were first developed
for linear elastic composite materials by extending the Eshelby (1957) sin-
gle inclusion solution to multiple inclusions interacting in an average way in
the composite material. Most common extensions of the Eshelby solution
are the Mori–Tanaka scheme developed by Mori and Tanaka (1973); Ben-
veniste (1987) and the self-consistent scheme pioneered by Kröner (1958);
Hill (1965b). MFH schemes can also be developed in the non-linear range
to account for non–linear behaviors of the composite’s constituents. Most
of these extensions revolve around the definition of a so-called linear com-
parison composite (LCC) (Talbot and Willis, 1985, 1987; Ponte Castañeda,
1991, 1992; Talbot and Willis, 1992; Molinari et al., 2004), which is a virtual
linear composite whose constituents behaviors match the linearized behav-
iors of the real constituents for given strain states. Besides MFH methods,
non-linear effects can be considered by other homogenization methods, such
as the method of cells proposed by Lissenden and Arnold (1997); Aboudi
et al. (2003), the unit cell finite element (FE)–based computations as per-
formed by Wieckowski (2000); Segurado et al. (2002); Ji and Wang (2003);
Carrere et al. (2004), or again such as the multiscale FE2 method pioneered
by Kouznetsova et al. (2002, 2004) as a non-exhaustive list. Kanouté et al.
(2009); Geers et al. (2010) have presented overviews of the different homog-
enization methods.

Although multiscale homogenization methods have achieved an accept-
able level of accuracy to capture the non-linear behavior of composites (Pier-
ard et al., 2007), accounting for material degradation, through damage or
fracture models, remains highly challenging as discussed by Geers et al.
(2010); LLorca et al. (2011). Besides the complexity of formulating such a
multiscale method, the governing partial differential equations lose ellipticity
at strain-softening onset, losing the uniqueness of the FE solution.

Many enhanced physical or phenomenological models, which introduce
higher–order terms in the continuum, were proposed to avoid the strain lo-
calization issue, such as in the Cosserat model reformulated by De Borst
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(1991), the non–local model pioneered by Bažant et al. (1984) or the gradi-
ent model, as exploited by Zbib and Aifantis (1989). Because of the presence
of higher order terms, the interactions between neighboring material points
are reflected in these models through an internal length, which is related to
the micro-structure and the failure mechanisms of the material. An overview
of these methods was presented by De Borst et al. (1993). One possible diffi-
culty, with the existence of higher–order terms in the continuum, lies in the
requirement of developing finite elements with higher-order derivatives con-
tinuity to evaluate explicitly internal variable derivatives, such as the strain
gradient. To alleviate this complexity, the non-local kernel has been refor-
mulated by Peerlings et al. (1996); Geers (1997); Peerlings et al. (1998) in an
implicit way such that a new non-local variable, representative of an internal
variable and its derivatives, results from the resolution of a new boundary
value problem. Besides the advantage of using C0 elements, although the el-
ements have now one additional degree–of–freedom per node, this approach
also possesses the feature of being fully non-local as it is constructed on
the basis of a weighted averaging integral under the form of a new partial
differential equation, contrarily to non-local models constructed on the incor-
poration of higher–order terms as for the models of Aifantis (1992); Svedberg
and Runesson (1997).

Although such high–order and non–local formulations have been widely
used in direct numerical simulations, their applications in multiscale compu-
tations are not commonly developed. When considering semi–analytical ho-
mogenization processes, Liu and Hu (2005) have applied the Cosserat model
in the Mori–Tanaka procedure to study the particle size dependency of com-
posite materials, Dascalu (2009) has connected the locally periodic micro–
crack with the macroscopic damage through an asymptotic homogenization,
and Knockaert and Doghri (1999) have introduced, in a 1D framework, the
gradients of the internal variables, which are obtained from a micro/macro
homogenization procedure, at the macro–scale computation. When consid-
ering numerical computational homogenizations, Massart et al. (2005, 2007)
have considered the non–local approach at the micro–scale in the framework
of the computational homogenization for the problem of masonry, and Co-
enen et al. (2011a,b) have extended this method in a more general setting.

Recently, Wu et al. (2012) –the authors– have proposed a MFH analysis
allowing softening at the micro-scale and at the macro–scale to be captured
without causing localization. In order to avoid the strain/damage localiza-
tion caused by the matrix material softening, the implicit non–local formula-
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tion (Peerlings et al., 2001; Engelen and Baaijens, 2003) was adopted during
the homogenization process. In this formulation, the non–local accumulated
plastic strain of the matrix is defined and depends on the local accumulated
plastic strain and on its derivatives through the resolution of a new boundary
value problem following the developments of Peerlings et al. (1996); Geers
(1997); Peerlings et al. (1998).

The formulation presented by Wu et al. (2012) was based on the incre-
mental–tangent MFH pioneered by Hill (1965a). This formulation defines
the LCC from linearized relations between the stress and strain increments
of the different constituents around their current strain states. Thus, the
classical homogenization techniques for linear responses can still be used on
the strain increments to predict the behaviors of elasto–plastic composites,
as developed by Pettermann et al. (1999); Doghri and Ouaar (2003); Doghri
and Tinel (2005); Pierard and Doghri (2006b). The MFH scheme developed
by Wu et al. (2012), for composites whose matrix phase obeys an elasto–
plastic law with non-local damage enhancement, was shown to have a reduced
accuracy for high volume fractions of fibers when compared to the direct
numerical simulations of a representative volume element (RVE), due to the
recourse to an incremental–tangent formulation. Indeed, during the strain
softening of the matrix, the fibers should see an elastic unloading due to
the damaging process in the matrix, which cannot be modeled using this
incremental–tangent approach. Therefore, it appears clear that the method
should be reformulated within a different MFH framework.

Another existing MFH method is the affine method, which applies the
mean–field homogenization on the total strain field as proposed by Moli-
nari et al. (1987, 2004) for visco-plastic materials, and by Zaoui and Mas-
son (2002); Masson et al. (2000) for elasto–plastic materials. Chaboche
et al. (2005) showed that this method can lead to too stiff results when
an anisotropic tangent operator is considered in the homogenization process.
The accuracy of this method for visco-plastic composites has been improved
by Pierard and Doghri (2006a); Mercier and Molinari (2009); Doghri et al.
(2010). When considering damage, the affine method potentially suffers from
the same over–estimation limitation as the incremental tangent method. The
LCC can also be defined from a secant operator, which is joining the origin to
the current strain/stress state, as initially proposed by Berveiller and Zaoui
(1978) for elasto–plastic materials. However, this secant method is limited
to monotonic and proportional loading paths.

The MFH methods previously described only consider first–statistical–
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moment values of the strain and stress fields during the homogenization pro-
cess. This can lead to poor predictions in the elasto–plastic case, as shown
by Moulinec and Suquet (2003). This motivated to consider the second–
statistical–moment (Ponte Castañeda, 1996) during the homogenization pro-
cess. Such methods have been proposed for the secant formulations by Su-
quet (1995); Ponte Castañeda (2002a,b) and for the incremental–tangent
formulation by Doghri et al. (2011). Suquet (1995) actually showed that
the variational forms pioneered by Ponte Castañeda (1992) correspond to a
second–order secant formulation, which was called modified secant. Finally,
incremental variational formulations, which also correspond to a second–
moment estimation, were recently proposed for visco-elastic composites by
Lahellec and Suquet (2007a,b), for thermo–elastic composites by Lahellec
et al. (2011), for elasto–(visco–)plastic composites by Brassart et al. (2011,
2012) and for elasto–visco–plastic composites with isotropic and kinematic
hardening laws by Lahellec and Suquet (2013). However introducing damage
models in combination with second–moment MFH methods is still an open
area.

In order to remain accurate for materials exhibiting strain softening, it is
mandatory to allow the fibers to be elastically unloaded when the stress
field in the matrix decreases due to the degradation process. Recently,
Wu et al. (Submitted) proposed a new first–moment incremental–secant
MFH approach for elasto–plastic materials. In the formulation, at a given
strain/stress state of the composite material, a virtual unloading step is ap-
plied on the composite level and the residual stresses are evaluated in both
phases. Thus a secant approach is applied from this unloaded stage to define
the LCC. This method was shown to be simple to implement and to predict
results with an accuracy comparable to other MFH schemes for elasto–plastic
materials, for short and long fiber composite materials, and also to be fit for
monotonic and non–monotonic loadings.

It is intended in this paper to extend this incremental–secant MFH to
composites whose matrix exhibits a damaging process. Because of the virtual
elastic unloading step involved in the formulation the method remains highly
accurate during the softening stage of the composite, even for high fiber
volume fractions. This non–local multiscale method is also implemented in
a finite element code to simulate problems at the laminate level.

The paper is organized as follows. Section 2 presents generalities on the
MFH, as well as the main ideas of the incremental–secant MFH approach for
elasto–plastic materials without damage. Section 3 presents the extension of
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the incremental–secant MFH for materials exhibiting damage, after having
recalled the mechanics of elasto–plastic materials exhibiting damage in a non-
local setting. The prediction of the behavior of fiber–reinforced elasto–plastic
matrix is demonstrated, in Section 4, to be more accurate than with the
previously developed non–local incremental–tangent method, as the softening
response is better captured. The model is also validated against experimental
results for a metal matrix composite material. In Section 5, the convergence
of the method with respect to the mesh size is illustrated on a notched
sample. Finally the model is applied to study the response of laminates.
First the material model is validated againt experiment by considering tensile
tests including unloading on unidirectional carbon–fibers reinforced epoxy
coupons. Then specimens made of the same laminate, but having a hole to
force the localization, are considered. In this last example it can be seen
that the damage–enhanced MFH captures the damage path oriented along
the ply fiber directions in agreement with experimental results.

2. Incremental–secant MFH for elasto–plastic composites without
damage

In this section concepts of the MFH for linear and non–linear compos-
ite materials are first presented before introducing the key ideas of the
incremental–secant MFH.

2.1. Generalities on MFH

Macro

ε ε∆

C σ

X
ω

X

Figure 1: Multiscale method.

Figure 1 represents a classical multiscale approach: at each macro-point
XXX the macro-strain ε̄̄ε̄ε is known and the macro-stress σ̄̄σ̄σ is sought through the
resolution of a micro-scale boundary value problem (BVP). Toward this end,
the macro-point is viewed at the micro-level as the center of a RVE of domain
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xxx ∈ ω and boundary ∂ω. Then, the Hill-Mandell condition, expressing the
equality between energies at both scales, transforms the relation between
macro-strains ε̄̄ε̄ε and stresses σ̄̄σ̄σ into a relation between average strains 〈εεε〉
and stresses 〈σσσ〉 over the RVE, with 〈f(xxx)〉 = 1

Vω

∫
ω
f(xxx)dV .

For two–phase composite materials of matrix subdomain ω0 and of inclu-
sions subdomain ωI –subscripts 0 and I refer respectively to the matrix and
to the inclusions, the macro–strains ε̄̄ε̄ε and stresses σ̄̄σ̄σ can be expressed as

ε̄̄ε̄ε = v0〈εεε〉ω0 + vI〈εεε〉ωI
, and (1)

σ̄̄σ̄σ = v0〈σσσ〉ω0 + vI〈σσσ〉ωI
, (2)

with the phase volume ratios satisfying v0 + vI = 1 . For simplicity, in the
following developments, the notations 〈•〉ωi will be replaced by •i.

The relation between the average incremental strains in the two phases in
the case of non–linear behaviors relies on the definition of a so–called linear
comparison composite (LCC), which is characterized by the expressions of the
virtual elastic operators C̄̄C̄CLCC

0 of the matrix phase and C̄̄C̄CLCC
I of the inclusions

phase I, leading to

∆εεεI = BBBε(I, C̄̄C̄CLCC
0 , C̄̄C̄CLCC

I ) : ∆εεε0 . (3)

This equation describes the relation between the averages of the strain incre-
ments per phase through the strain concentration tensorBBBε. Considering the
Mori and Tanaka (1973) (M-T) assumption, the strain concentration tensor
reads

BBBε = {III +SSS : [(C̄̄C̄CLCC
0 )−1 : C̄̄C̄CLCC

I − III]}−1 , (4)

where the Eshelby (1957) tensor SSS(I, C̄CC
LCC
0 ) depends on the geometry of the

inclusions phase and on the virtual elastic operator C̄̄C̄CLCC
0 . The expressions

of the tensors C̄̄C̄CLCC
0 and C̄̄C̄CLCC

I depend on the chosen MFH process, and will
be particularized in the next subsection for the incremental–secant method.

2.2. Incremental–secant MFH for elasto–plastic composites without damage

The development of an incremental–secant MFH formulation was mo-
tivated by the overestimation of the macro–response obtained by the previ-
ously developed incremental–tangent MFH when the matrix exhibits damage.
Thus Wu et al. (Submitted) proposed to consider an unloading step before
applying the MFH process, which leads to an incremental–secant formulation
with per–phase residual strains. Such a formulation has been developed for
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(a) Residual–secant
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(b) Zero–secant

Figure 2: Definition of the incremental–secant formulation, without considering damage.
(a) Definition of the residual strain and stress and of the residual–secant operator. (b)
Definition of the zero–secant operator.

elasto–plastic materials without considering damage, and will be extended
to the damage case in this paper. In this section, the main ideas developed
for elasto–plastic materials that do not exhibit damage are recalled.

Let us consider a time interval [tn, tn+1]. The total strain tensor at time
tn reads εεεn and the strain increment ∆εεεn+1 on the interval results from the
finite element resolution yielding

εεεn+1 = εεεn + ∆εεεn+1 , (5)

at time tn+1, see Fig. 2(a). The key point of the incremental–secant method
is to assume at time tn a residual strain tensor εεεres

n that corresponds to an
elastic unloading from the stress state σσσn to a stress state σσσres

n . Note that
this residual stress does not necessarily correspond to a zero–stress state.
During the homogenization process, the residual stress for the homogenized
composite material will be null while the different phases can have non–zero
values.

2.2.1. Incremental–secant moduli for elasto–plastic phases

Considering an elasto–plastic phase of the composite material, the secant
linearization of the elasto–plastic material is thus carried out in the time
interval [tn, tn+1] with the strain increment ∆εεεr

n+1, such that

εεεn+1 = εεεres
n + ∆εεεr

n+1 . (6)
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In this subsection, the indices related to the composite phase are omitted
to simplify the notations. The stress tensor is now defined from the stress
increment ∆σσσr

n+1 following the incremental–secant approach depicted in Fig.
2(a):

σσσn+1 = σσσres
n + ∆σσσr

n+1 . (7)

The stress increment is computed using CCCSr, the residual–incremental–secant
operator of the elasto–plastic material, and following

∆σσσr
n+1 = CCCSr : ∆εεεr

n+1 . (8)

During the elastic response, this residual–incremental–secant operator
corresponds to the elastic material tensor CCCel. During the plastic flow, this
operator is deduced by solving the following system of equations.

• The von Mises stress criterion reads

f (σσσn+1, pn+1) = σσσeq
n+1 −R(pn+1)− σY = 0 , (9)

where f is the yield surface, σσσeq =
√

3
2
dev (σσσ) : dev (σσσ) is the equivalent

von Mises stress, σY is the initial yield stress, and R(p) > 0 is the
isotropic hardening stress in terms of the accumulated plastic strain p,
which is an internal variable characterizing the irreversible behavior.

• The Cauchy stress at time tn+1 is written as

σσσn+1 = σσσres
n +CCCel : ∆εεεr

n+1 −CCCel : ∆εεεp , with ∆εεεp = ∆pNNNn+1 , (10)

where NNN is the plastic flow direction. Within the incremental–secant
approach, this direction is set to

NNNn+1 =
3

2

(σσσn+1 − σσσres
n )dev

(σσσn+1 − σσσres
n )eq , (11)

which satisfiesNNN : NNN = 3
2

and ∆p =
√

2
3
∆εεεp : ∆εεεp. On the one hand, if

(σσσres
n )dev = 000 this last equation corresponds toNNNn+1 =

(
∂f(σ, p)
∂σσσ

)
n+1

and

we have the classical relation. On the other hand, if (σσσres
n )dev 6= 000, NNNn+1

is a first–order approximation in terms of ∆εεε of the normal to the yield
surface in the stress space. It has been shown in Wu et al. (Submitted)
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that NNNn+1 = NNN tr
n+1, where the trial state “tr” corresponds to an elastic

increment (∆εεεp, tr = 000). The elasto–plastic scheme consists of solving
the equations (10) and f (σn+1, pn+1) = 0, with pn+1 = pn + ∆p, in
terms of ∆p and σσσeq

n+1.

• It has been demonstrated by Wu et al. (Submitted) that the residual–
incremental–secant operator of the linear comparison material, which
can be computed from σσσn+1, is isotropic for J2–plasticity, and that it
reads

CCCSr = 3κrIIIvol + 2µr
sIII

dev . (12)

The bulk modulus κr of the virtual elastic material is directly obtained
as κel and the shear modulus µr

s of the virtual elastic material can be
obtained by decomposing the increments of the stress and strain tensors
into their hydrostatic and deviatoric parts, as detailed in Appendix
B.1.

• The derivative of the operator (12) required during the upcoming MFH
process is obtained following Appendix B.1.

• The incremental–secant–operator (12) can be used to define the LCC
during the MFH process. One alternative proposed by Wu et al. (Sub-
mitted) follows the suggestion in Fig. 2(b). In that case the residual
stress σσσres

n is omitted in the described approach and the plastic flow
direction (11) is rigorously normal to the yield surface. For this latter
approach, the zero–incremental–secant operator of the linear compari-
son material reads

CCCS0 = 3κ0IIIvol + 2µ0
sIII

dev , (13)

where κ0 and µ0
s are the elastic bulk and shear moduli of the virtual

elastic material, respectively, obtained as detailed in Appendix B.1.

2.2.2. Incremental–secant MFH scheme

The stress tensor in the different composite material phases can be com-
puted from a secant approach, following

σσσn+1 =

{
σσσres
n +CCCSr : ∆εεεr

n+1 for the residual–incremental–secant method;
CCCS0 : ∆εεεr

n+1 for the zero–incremental–secant method.
(14)
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The secant operators can then be used in the MFH approach to define the
LCC operators. Using these definitions of the LCCs, the MFH stated by
Eqs. (1), (2) and (3) can thus be applied, and the system of equations is
rewritten as

∆ε̄εεr
n+1 = v0∆εεεr

0n+1 + vI∆εεε
r
In+1 , (15)

σ̄σσn+1 = v0σσσ0n+1 + vIσσσIn+1 , (16)

with the stress tensor deriving from Eq. (14), and the relation between the
strain increments reading

∆εεεr
In+1 = BBBε(III, C̄̄C̄CS

0, C̄̄C̄C
S
I ) : ∆εεεr

0n+1 , (17)

where C̄CC
S

substitutes to either C̄CC
Sr

or to C̄CC
S0

, the per–phase constant secant–
operators resulting from the MFH process. The choice of the residual– or
zero–incremental–secant operators will be discussed in the development of
the MFH with damage. To complete these equations, the unloaded state is
defined using σ̄σσres

n = v0σσσ
res
0 n + vIσσσ

res
I n = 0.

The detailed MFH process is described in Wu et al. (Submitted).

3. Incremental–secant MFH for elasto–plastic composites with dam-
age

In this section the incremental–secant MFH method summarized in Sec-
tion 2.2 is extended to the non–local damage formulation. First the equa-
tions of elasto–plastic materials combined with a Lemaitre and Chaboche
(1991) damage model are given in a non–local setting. Then the secant
approach for one–phase materials is presented before eventually developing
the incremental–secant MFH. The improvement of the prediction accuracy
compared to the incremental–tangent MFH scheme will be illustrated for
problems involving matrix softening in the next section.

3.1. Elasto–plastic materials with non–local enhanced damage models

The non–local implicit approach can be applied to damage models in order
to avoid the loss of ellipticity at the macro-scale. Note that formulating the
MFH in a local form can be done by considering the elasto–plastic model
with damage also in a local form. Only the non–local case is considered
herein, as the local form can be derived easily from the presented equations.
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The damage is introduced with the usual assumption that the strain
tensors observed in the actual body and in its undamaged representation are
equivalent (Lemaitre, 1985), and the usual definition of the effective stress
reads

σ̂σσ =
σσσ

(1−D)
, (18)

where σσσ is the apparent Cauchy stress and where 0 ≤ D < 1 is the damage
variable.

Assuming an elasto–plastic material, which obeys J2–elasto–plasticity,
the von Mises stress criterion (9) is now written f (σ̂σσ, r) 6 0, where r is
an internal variable related to the accumulated plastic strain p and to the
plastic multiplier λ̇ following ṙ = λ̇ = (1−D)ṗ, see (Doghri, 1995) for details.
However in this paper we use the classical approximation that consists in
writing the J2–plasticity in the effective stress space: f (σ̂σσ, p) 6 0.

During the plastic flow f = 0, ∆p > 0 and the plastic strain tensor
increment follows the plastic flow direction

∆εεεp = ∆pNNN , (19)

whereNNN is usually the normal to the yield surface in the effective stress space
NNN = ∂f

∂σ̂σσ
= 3

2
dev(σ̂σσ)
σ̂σσeq . Finally using the coupled damage concept leads to the

stress expression at time tn+1:

σσσn+1 = (1−Dn+1)CCCel :
(
εεεn+1 − εεεp

n+1

)
= (1−Dn+1)CCCel : εεεel

n+1 . (20)

What remains to be defined is the evolution of the damage. Following
the technique proposed by Geers et al. (1998) to develop non–local damage
laws, in this paper the non–local accumulated plastic strain p̃ is applied
to calculate the damage evolution in the Lemaitre and Chaboche (1991)
incremental model1:

∆D =

{
0, if p̃ 6 pC ;

(Yn+α
S0

)s∆p̃, if p̃ > pC .
(21)

1In order to simplify the developments of the method, a scalar damage model is as-
sumed. Although to remain more general, a damage variable should be represented by
a tensor due to the existence of several mechanisms of damage, this is not necessary for
damage induced by meso- or micro-plasticity as pointed out by Lemaitre and Desmorat
(2005), which justifies the use of a simple model.
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In this expression, pC is a plastic threshold for the damage evolution, S0 and
s are the material parameters, Y is the strain energy release rate computed
as

Y =
1

2
εεεel : CCCel : εεεel , (22)

and α is an interpolation parameter ranging from 0 to 1.
In this gradient enhanced damage model, the non–local accumulated plas-

tic strain p̃ is computed from the implicit formulation

p̃− O · (cccg · Op̃) = p , (23)

where cccg is the characteristic lengths tensor as defined by Wu et al. (2013).
For isotropic materials this tensor reads cccg = diag (c), with c = l2 the square
of the characteristic size. For composite materials, the anisotropy can be
accounted for in this definition. As an example, for the matrix phase of a
unidirectional (UD) continuous fiber-reinforced composite material, ci = (li)2

is different in the directions parallel and transverse to the inclusions. The
tensor is thus computed from the rotation tensor RRR describing the inclusions
orientation

cccg = RRRT · diag
(
ci
)
·RRR . (24)

Relation (23) is completed by the natural boundary condition

(cccg · Op̃) · nnn = 0 . (25)

The linearizations of the model with respect to εεε and p̃ are provided in
Appendix C.

3.2. Incremental–secant moduli with damage

The secant formulation described in Section 2.2 is extended herein to the
non–local damage enhanced elasto–plastic case. We are still considering a
time interval [tn, tn+1], with the total strain tensor εεεn at time tn and the
strain increment ∆εεεn+1 resulting from the FE resolution and satisfying (5).

At time tn, one can define an elastic unloading from the stress state σσσn
–or from the effective stress state σ̂σσn– that corresponds to a residual strain
tensor εεεres

n , see Fig. 3. The main idea of the incremental–secant method, is to
define a LCC, subjected to a strain increment ∆εεεr

n+1, satisfying (6), and from
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Figure 3: Definition of the incremental–secant formulation when damage is considered.
(a) Definition of the residual strain and stress and of the residual–secant operator. (b)
Definition of the zero–secant operator.

which the stress tensor is computed. As for the case without damage, the two
methods illustrated in Fig. 3 will be considered: the residual–incremental–
secant method, which evaluates the effective stress tensor from the residual
effective stress arising upon virtual unloading, and the zero–incremental–
secant method, which evaluates the effective stress tensor from a zero–stress
state.

3.2.1. Residual–incremental–secant approach

In the case of damage enhanced elasto–plastic materials, the secant for-
mulation has to account for the effective and current stress tensors, with,
σ̂σσn = σσσn/(1−Dn) at time tn. After the elastic unloading process the residual
stress in each phase can be computed from, see Fig. 3(a)

σσσres
n = (1−Dn) σ̂σσres

n = (1−Dn) σ̂σσn − (1−Dn)CCCel : ∆εεεunload
n . (26)

During the time interval [tn, tn+1] the stress reaches σσσn+1, and the damage
reaches Dn+1. Following the method pictured on Fig. 3(a), the effective stress
tensor at time tn+1 can be rewritten as

σ̂σσn+1 = σ̂σσres
n + ∆σ̂σσr

n+1 and σσσn+1 = (1−Dn+1) σ̂σσn+1 , (27)

where
∆σ̂σσr

n+1 = CCCSr : ∆εεεr
n+1 . (28)
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Figure 4: Plastic corrections in the effective stress space (a) Radial return mapping (b)
Approximation (31).

In this last equation CCCSr is the residual–incremental–secant operator of the
undamaged linear comparison material.

During the elastic regime, the elastic tensorCCCel can be used as undamaged
residual–incremental–secant operator. During elasto–plastic flow, the effec-
tive stress tensor σ̂σσn+1 is computed from the unloaded state in the following
way:

• Evaluate the trial effective stress tensor from an elastic response:

σ̂σσtr
n+1 = σ̂σσn +CCCel : ∆εεεn+1 = σ̂σσres

n +CCCel : ∆εεεr
n+1 . (29)

• If the trial effective stress tensor does not respect the von Mises criterion
(9), i.e. f

(
σ̂σσtr
n+1, pn

)
> 0, then apply the plastic correction

σ̂σσn+1 = σ̂σσtr
n+1 −CCCel : ∆εεεp , with ∆εεεp = ∆pNNNn+1 . (30)

In this last equation, NNN is the plastic flow direction, which, extending
the assumption discussed by Wu et al. (Submitted) from undamaged
elasto–plasticity to damage coupling, reads

NNNn+1 =
3

2

(
CCCSr : ∆εεεr

n+1

)dev(
CCCSr : ∆εεεr

n+1

)eq =
3

2

(σ̂σσn+1 − σ̂σσres
n )dev

(σ̂σσn+1 − σ̂σσres
n )eq , (31)
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and which satisfies NNN : NNN = 3
2
. When (σ̂σσres

n )dev 6= 0, NNNn+1 is a first
order approximation of the normal to the yield surface in the effective
stress space, see Fig. 4. Using Eqs. (29), (30) and (31), one can deduce

NNN =
3

2

(
CCCel : ∆εεεr

n+1

)dev(
CCCel : ∆εεεr

n+1

)eq , (32)

as well as the system of equations to be solved as

(σ̂σσn+1 − σ̂σσres
n )eq + 3µel∆p =

(
σ̂σσtr
n+1 − σ̂σσ

res
n

)eq
, and (33)

f (σ̂n+1, pn+1) = 0 , (34)

with pn+1 = pn + ∆p.

• Knowing σ̂σσn+1, and using Eqs. (28), (29), and (30) compute the residual–
incremental–secant operator of the undamaged linear comparison ma-
terial from

∆σ̂σσr
n+1 = CCCSr : ∆εεεr

n+1 = CCCel : ∆εεεr
n+1 − 2µel∆pNNNn+1 , (35)

which becomes after using Eq. (32)

∆σ̂σσr
n+1 =

[
CCCel − 3µel∆p

IIIdev : CCCel(
CCCel : ∆εεεr

n+1

)eq

]
: ∆εεεr

n+1 = CCCSr : ∆εεεr
n+1 .

(36)

For J2–elasto–plastic materials, since CCCel is isotropic, the residual–
incremental–secant operator of the undamaged linear comparison ma-
terial CCCSr is also isotropic. Moreover, as CCCel = 3κelIIIvol + 2µelIIIdev, one
can directly deduce

CCCSr = 3κrIIIvol + 2µr
sIII

dev , (37)

with

κr = κel , and (38)

µr
s = µel − 3µel2∆p(

CCCel : ∆εεεr
n+1

)eq = µel − 3µel2∆p

(σ̂σσn+1 − σ̂σσres
n )eq . (39)
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• Practically the undamaged shear moduli of the virtual undamaged elas-
tic comparison material can be obtained by decomposing the incre-
ments of the effective stress and strain tensors into their hydrostatic
and deviatoric parts:

∆σ̂σσr = ∆σ̂m111 + ∆ŝss and ∆εεεr = ∆εm111 + ∆eee , (40)

where ∆σ̂m = 1
3
tr(∆σ̂σσr), ∆ŝss = ∆σ̂σσr − ∆σ̂m111, ∆εm = 1

3
tr(∆εεεr), and

where ∆eee = ∆εεεr−∆εm111, see Appendix A for the notations. Indeed, the
increments of the von Mises equivalent stress and strain are respectively
given by

∆σ̂eq =

√
3

2
∆ŝss : ∆ŝss and ∆εeq =

√
2

3
∆eee : ∆eee , (41)

and one has directly2

µr
s =

∆σ̂eq

3∆εeq
. (42)

• Evaluate the damage Dn+1 following the non–local Lemaitre–Chaboche
model described in Section 3.1.

• Compute the final stress σσσn+1 from σ̂σσn+1. Using Eq. (27), one also
deduces

σσσn+1 = (1−Dn+1) σ̂σσres
n + (1−Dn+1)CCCSr︸ ︷︷ ︸

CCCSDr

: ∆εεεr
n+1 , (43)

where the residual–incremental–secant operator of the damaged isotropic–
linear comparison material reads

CCCSDr = 3κDrIIIvol + 2µDr
s III

dev , (44)

with the equivalent damaged bulk and shear elastic moduli κDr and µDr
s

directly obtained from

κDr = (1−Dn+1)κel , and (45)

µDr
s = (1−Dn+1)µr

s = (1−Dn+1)
∆σ̂eq

3∆εeq
. (46)

We need to clarify that the equivalent damaged bulk elastic modulus
κDr is not constant although the plastic flow is incompressible.

2If ∆εeq = 0, the indefiniteness is solved by considering µr
s = µel
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• Evaluate the derivation of the operator (44) following Appendix B.2.

3.2.2. Zero–incremental–secant approach

As lengthy discussed by Wu et al. (Submitted), when defining the LCC,
it can be advantageous to modify the residual–incremental–secant approach
by neglecting the residual stress –but not the residual strain– in the matrix
phase. The modification follows the suggestion illustrated in Fig. 2(b) and
consists in neglecting σ̂σσres

n in the formalism described here above, in which
case

CCCSD0 = (1−Dn+1)CCCS0

= 3 (1−Dn+1)κ0︸ ︷︷ ︸
κD0

IIIvol + 2 (1−Dn+1)µ0
s︸ ︷︷ ︸

µD0
s

IIIdev , (47)

is the zero–incremental–secant operator of the damaged isotropic–linear com-
parison material expressed in terms of the equivalent damaged bulk and shear
elastic moduli κD0 and µD0

s . These values are readily obtained from

κD0 =
σm

3∆εm
=

(1−Dn+1)σ̂m

3∆εm
= (1−Dn+1)κel , and (48)

µD0
s =

σeq

3∆εeq
=

(1−Dn+1)σ̂eq

3∆εeq
. (49)

The linearization of CCCSD0 is given in Appendix B.2.

3.2.3. Incremental–secant approach summary

Two incremental–secant models have been considered, the first one ac-
counting for the residual stress, see Fig. 3(a), and the other one formulated
from a stress-free state, see Fig. 3(b), with

σ̂σσn+1 =

{
σ̂σσres
n +CCCSr : ∆εεεr

n+1 for the residual–incremental–secant;
CCCS0 : ∆εεεr

n+1 for the zero–incremental–secant.
(50)

In the current stress state, these two models read

σσσn+1 =


(1−Dn+1) σ̂σσres

n +CCCSDr : ∆εεεr
n+1 for the residual–

incremental–secant;
CCCSD0 : ∆εεεr

n+1 for the zero–incremental–secant.
(51)
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Note that in case of elastic response, the secant operator is the elastic
tensor CCCel.

As lengthy described by Wu et al. (Submitted) when no damage is con-
sidered, for composites with inclusions exhibiting an elasto–plastic behavior
with a hardening coefficient lower than or of the same order as the one of the
elasto–plastic matrix material, using the residual–incremental–secant opera-
tor for both phases leads to accurate predictions. However, for composites
whose inclusions phase is much stiffer than the matrix material, such as
elastic inclusions embedded in an elasto–plastic matrix or elasto–plastic in-
clusions with a high hardening compared to the one of the embedding elasto–
plastic matrix, the zero–incremental–secant operator should be used in the
matrix phase to avoid predicting over–stiff responses. With this restriction
on the choice of the matrix operator, the method has been shown to predict
the macro-stress with an accuracy level at least similar to those of the first–
order incremental–tangent MFH method, or even advanced MFH schemes
using per–phase statistical–second-moments of strain and stress fields. In
the present case, we will keep the same combination of secant operators.

3.3. MFH scheme with non–local damage

In this section the incremental–secant MFH scheme presented in Section
2.2 is extended to the case of non–local elasto–plastic materials with damage,
using the incremental–secant operators of the isotropic–linear comparison
materials as defined in Section 3.2 to construct a LCC. Unless the expressions
need to be particularized to the residual–incremental–secant or to the zero–
incremental–secant forms, the isotropic linear comparison operator

CCCSD = 3κDIIIvol + 2µD
s III

dev , (52)

will substitute to either CCCSDr or CCCSD0. Similarly, µD
s holds for either µDr

s or
for µD0

s , and κD holds for either κDr or for κD0. In this paper, we consider a
damage model only in the matrix phase.

Considering a time interval [tn, tn+1], the system of governing equations
of the homogenized material using the implicit gradient–enhanced elasto–
plasticity is stated at time tn+1 by

∇ · σσσTn+1 + fffn+1 = 000 for the homogenized material, (53)

p̃n+1 −∇ · (cg · ∇p̃n+1) = pn+1 for the matrix material only, (54)
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where fff represents the body force vector, and where p̃ is a homogenized
representation of the non-local accumulated plastic strain of the matrix ma-
terial. This set of equations can be solved using a weak finite element form
combined to a Newton-Raphson linearization procedure, see Wu et al. (2012)
for details.

During that time interval, the known data are the macro-total strain
tensor ε̄εεn, the macro–strain increment ∆ε̄εεn+1 and the internal variables at
tn, which include the usual internal variables of the constituents material
models and the residual variables computed from the elastic unloading step:
the residual strains in the composite, in the inclusions phase, in the matrix
phase and the residual stresses in the inclusions and matrix phases. The
strain increment ∆ε̄εεn+1 resulting from the iterations at the weak form level
is different from the strain increment ∆ε̄εεr

n+1 applied to the LCC used in the
MFH procedure. Combining (5) and (6) for the homogenized material, one
has

∆ε̄εεr
n+1 = ε̄εεn + ∆ε̄εεn+1 − ε̄εεres

n . (55)

The explicit evaluation of ε̄εεres
n is described in the details of the MFH process

reported here below. Thus, based on the definition of CCCSD (52) for damage-
enhanced elasto–plastic materials, the operators C̄̄C̄CLCC

0 and C̄̄C̄CLCC
I of the LCCs

can be defined to apply the MFH scheme stated by Eqs. (1), (2) and (3).
Eventually, the MFH process is summarized by the following equations

∆ε̄εεr
n+1 = v0∆εεεr

0n+1 + vI∆εεε
r
In+1 , (56)

σ̄σσn+1 = v0σσσ0n+1 + vIσσσIn+1 , (57)

∆εεεr
In+1 = BBBε(III, C̄̄C̄CSD

0 , C̄̄C̄CS
I ) : ∆εεεr

0n+1 , (58)

where the stress tensors are evaluated in each phase following Eq. (51), with-
out damage for the inclusions phase. To complete this set, at the unloaded
state, we have

σ̄σσres
n = v0σσσ

res
0 n + vIσσσ

res
I n = 0 . (59)

In this paper, a “first-order moment” method is considered, and the MFH
process is described as follows. Note that during the MFH process, the strain
increment of the composite ∆ε̄εεn+1, and the non–local plastic strain increment
of the matrix ∆p̃n+1 – required to evaluate the damage – are constant, as
they result from the FE iterations formulated from the strong form (53-54).

Practically, the resolution of Eqs. (55-59) is achieved as follows
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• Initialize the strain increment in the inclusions phase: ∆ε̄εεr
n+1 → ∆εεεr

In+1.

• Follow the iterations process (upper indices (i) for values at iteration i
of time tn+1 are omitted for simplicity):

1. Call the constitutive material function of the real inclusions mate-
rial with the strain tensor increment in the inclusions phase ∆εεεr

In+1

and the internal variables at time tn as input. After having ap-
plied the constitutive model described in Section 3.2, but without
considering damage, the output is the updated stress σσσIn+1, the
internal variables at time tn+1, the “consistent”3 (anisotropic) op-

erator C̄̄C̄Calg
I n+1 =

∂σσσIn+1

∂∆εεεIn+1

4, see Appendix C for details, and the

incremental–secant operator C̄̄C̄CS
I n+1 for the inclusions phase. In

case there is no plastic flow, we use C̄̄C̄CS
I n+1 = CCCel

I .

2. Compute the average strain in the matrix phase:

∆εεεr
0n+1 = (∆ε̄εεr

n+1 − vI∆εεε
r
In+1)/v0 . (60)

3. Call the constitutive material function of the real matrix material
with the strain tensor increment in the matrix phase ∆εεεr

0n+1 and
the internal variables at time tn as input. After having applied
the constitutive model described in Section 3.2, the output is the
updated stress σσσ0n+1, the damage Dn+1, the internal variables at
time tn+1, the “consistent” (anisotropic) operators C̄̄C̄Calg

0 n+1 and

C̄̄C̄CalgD
0 n+1 = (1−Dn+1) C̄̄C̄Calg

0 n+1, see Appendix C for details, and
the incremental–secant operator C̄̄C̄CSD

0 n+1 for the matrix phase. In
case there is no plastic flow, we use C̄̄C̄CSD

0 n+1 = (1−Dn+1)CCCel
0 .

4. Predict the Eshelby tensor SSS(III, C̄̄C̄CSD
0 n+1) using the isotropic dam-

aged secant–operator of the matrix phase.

5. For a time interval [tn, tn+1] both ∆ε̄εεr
n+1 and ∆p̃n+1 are constant

and verifying Eq. (58) corresponds to satisfying FFF = 0, where
FFF is the stress residual vector developed in Appendix D, which

3In this paper we will use the term “consistent” operator for the derivative of the stress
state with respect to the deformation increment

4The derivative with respect to ∆εεεrIn+1 is the same as the derivative with respect to
∆εεεIn+1

21



reads

FFF = C̄̄C̄CSD
0 n+1 : [∆εεεr

In+1 −
1

v0

SSS−1 : (∆εεεr
In+1 −∆ε̄εεr

n+1)]

−C̄̄C̄CS
I n+1 : ∆εεεr

In+1 . (61)

6. Check if the residual |FFF | ≤ Tol. If so exit the loop.

7. Else, compute the Jacobian matrix at constant ∆ε̄εεr
n+1, such that

dFFF = JJJ : dεεεr
I
5 following Appendix D.

8. Correct the strain increment in inclusions

∆εεεr
In+1 ← ∆εεεr

In+1 + cccεεεI with cccεεεI = −JJJ−1 : FFF , (62)

then start a new iteration (go to step 1).

• After convergence, compute

1. The homogenized stress

σ̄σσn+1 = v0σσσ0n+1 + vIσσσIn+1 , (63)

and the internal variables.

2. The “consistent” linearization of the homogenized stress

δσ̄σσ = C̄CC
alg

: δε̄εε+CCC p̃δp̃ , (64)

with the “consistent” tangent operators C̄CC
alg

and CCC p̃ given in Ap-
pendix E.

• An unloading step is thus applied here to fit the incremental–secant
process, and the obtained results will be kept as history variables at
time step tn+1. The required residual variables from unloading are the
residual strains in the composite ε̄εεres

n+1, in the inclusions phase εεεres
I n+1

and in the matrix phase εεεres
0 n+1, as well as the residual stress in the

inclusions phase σσσres
I n+1 and the effective residual stress in the matrix

phase σ̂σσres
0 n+1, respectively.

5Note that the derivative with respect to ∆εεεrr has the same expression as the derivative
with respect to εεεr for a phase r
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1. The residual strain ε̄εεres
n+1 (the strain at σ̄σσres

n+1 = 0) of the composite
is calculated from an unloading step, which is assumed to be a
purely elastic process. The unloading operator of the damaged
composite is

C̄̄C̄CelD
n+1 =

[
vICCC

el
I n+1 : BBBε + v0CCC

elD
0 n+1

]
: [vIBBB

ε + v0III]−1 , (65)

with

BBBε = {III +SSS : [
(
(1−Dn+1)CCCel

0 n+1

)−1
: CCCel

I n+1 − III]}−1 .

(66)

Note that CCCelD
0 n+1 = (1−Dn+1)CCCel

0 n+1 is used in the Eshelby
tensor of the elastic unloading step. The residual strain of the
composite satisfying (59) can be calculated by

ε̄εεres
n+1 = ε̄εεn+1 −∆ε̄εεunload

n+1

= ε̄εεn+1 − (C̄̄C̄CelD
n+1)−1 : σ̄σσn+1 . (67)

2. The residual strains in the inclusions and in the matrix phases are
computed following the M-T method, yielding

εεεres
I n+1 = εεεIn+1 −∆εεεunload

I n+1

= εεεIn+1 −BBBε : [vIBBB
ε + v0III]−1 : ∆ε̄εεunload

n+1 , (68)

εεεres
0 n+1 = εεε0n+1 −∆εεεunload

0 n+1

= εεε0n+1 − [vIBBB
ε + v0III]−1 : ∆ε̄εεunload

n+1 . (69)

3. The residual (effective) stresses in the inclusions and matrix phases
can be obtained, respectively, from

σσσres
I n+1 = σσσIn+1 −CCCel

I n+1 : ∆εεεunload
I n+1 , (70)

σ̂σσres
0 n+1 = σ̂σσ0 n+1 −CCCel

0 n+1 : ∆εεεunload
0 n+1 . (71)

Note that by expressing Eqs. (67-69) at time tn, one has

ε̄εεres
n = v0εεε

res
0 n + vIεεε

res
I n . (72)

Moreover, Eqs. (55) and (56) yield

v0∆εεεr
0n+1 + vI∆εεε

r
In+1 = ∆ε̄εεr

n+1 = v0εεε0n + vIεεεIn + ∆ε̄εεn+1 − ε̄εεres
n , (73)
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which becomes, after using Eq. (72),

∆ε̄εεn+1 = v0

(
∆εεεr

0n+1 − εεε0n + εεεres
0 n

)
+ vI

(
∆εεεr

In+1 − εεεIn + εεεres
I n

)
. (74)

This relation demonstrates that the process still satisfies

∆ε̄εεn+1 = v0∆εεε0n+1 + vI∆εεεIn+1 . (75)

These relations can be used in a FE implementation. More details about
the FE implementation of a non-local MFH were discussed by Wu et al.
(2012) for an incremental–tangent approach, and can be directly adapted for
this incremental–secant approach.

4. Model validation

In this section, the accuracy and the reliability of the proposed incre-
mental–secant method with non–local damage are first assessed through the
comparison with direct FE simulations on representative unit cells of the
micro-structure. In particular it is shown that the new incremental–secant
MFH method reaches a higher accuracy than the incremental–tangent MFH
scheme previously developed by Wu et al. (2012). The model is then validated
against experimental results for a metallic composite material.

4.1. Comparison with direct FE simulations

The example studied by Wu et al. (2012), using an incremental–tangent
MFH and with FE simulations of a periodical cell, is considered herein. This
consists of continuous elastic isotropic fibers embedded in a matrix mate-
rial, which follows the elasto–plastic behavior model enhanced by a non-local
damage setting, as described in Section 3.1. The material parameters are

• Inclusions: EI = 238GPa, νI = 0.26.

• Matrix: E0 = 2.89GPa, ν0 = 0.3, σY 0 = 35MPa, h0 = 73MPa, m0 =
60, S0 = 2MPa, s = 0.5 and pC = 0,

which follows the hardening law (76)

R0(p) = h0

(
1− e−m0p

)
, (76)

and the damage law (21). The volume fraction of the continuous fibers is
vI = 50%. The test consists in a transverse loading of the composite under
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constrained strain (with plane–stress state in the other transverse direction
and plane–strain state in the longitudinal direction), followed by a complete
unloading until reaching a zero-strain state. As the inclusions remain elastic,
the matrix obeys to the zero–incremental–secant formulation while the in-
clusions phase follows the residual–incremental–secant formulation. For the
FE cell simulations, the characteristic length of the matrix phase is taken
such that l2 = 2 mm2. This value was calibrated from experimental results
by Geers et al. (1999) for short fiber composites and is used herein for the
matrix phase. For the MFH results, as the fields remain uniform, the results
are independent on this characteristic length.

Figures 5(a) and 5(b) compare the macro–stress evolution, respectively
along the loading direction and along the fibers direction, obtained with
the new incremental–secant MFH and the previously developed incremental–
tangent MFH to the FE results. Clearly, the tangent method overestimates
the results. This is in agreement with what was stated by Wu et al. (2012):
the accuracy of the incremental–tangent method decreases after strain soft-
ening of the matrix as the fibers cannot see the elastic unloading which should
arise due to the damaging process in the matrix. This is clearly illustrated
in Fig. 5(c) where the average stress along the loading direction in the fibers
keeps increasing during the loading process. As expected, the new method
does not suffer from this limitation: the fibers are unloaded during the soft-
ening process, see Fig. 5(c), and the method predicts the macro-stress with
a higher accuracy, see Fig. 5(a). The average stress state in the matrix is
also predicted with a better accuracy as shown in Fig. 5(d).

Figure 5(e) compares the average value of the effective equivalent von
Mises stress in the matrix. For the FE simulations, the value is obtained by
averaging the effective von Mises stress computed at each integration point.
For the first–order MFH schemes, by definition, this value is obtained as
the equivalent von Mises value of the average effective stress tensor in the
matrix. Results obtained by the three methods are comparable during the
plastic flow, except during the unloading in the vicinity of the point at which
the composite stress along the loading direction vanishes. At that stage, the
stresses in the matrix and in the fibers phases are close to zero for the FE sim-
ulations and for the incremental–secant MFH. As a consequence the effective
von Mises stress in the matrix phase predicted by the incremental–secant
MFH is also close to zero. As the stress distribution in the matrix phase
of the direct FE simulation is not uniform –parts are in tension and parts
are in compression, the average of the matrix average effective von Mises
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Figure 5: Results for continuous-elastic fibers embedded in a matrix following an elasto–
plastic behavior with damage. Comparison of the values obtained with the direct FE
simulations and with the MFH schemes. (a, b) Average stresses in the composite material
along the loading direction and along the fiber direction. (c, d) Average stresses in both
phases along the loading direction. (e) Effective von Mises stress in the matrix phase. (f)
Damage in the matrix phase –the minimum, average, and maximum damage values are
reported.

stress is never equal to zero. This is a limit of the first–order method as
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〈σσσeq〉ω0
6=
(
〈σσσ〉ω0

)eq
. Note that results obtained by the incremental–tangent

MFH are actually not more accurate. Indeed in the vicinity of the point at
which the composite stress along the loading direction vanishes, the average
stress along the fibers direction is overvalued with the incremental–tangent
method, see Fig. 5(b), which explains why the von Mises stress in the ma-
trix does not vanish. This is actually due to the unability of the incremental
method to consider non–monotonic loadings as shown by Wu et al. (Submit-
ted).

Finally, Fig. 5(f) illustrates the damage evolution in the matrix. For the
FE prediction, the minimum, average and maximum values of the damage
reached in the matrix are reported. It can be seen that the damage predicted
by the MFH methods lies between the average and maximum damage pre-
dicted by the FE simulations. This comes from our definition of the damage
of the MFH, which does not correspond to the average damage. During the
decrease of the strain to zero, the composite material is first unloaded and
then enters into compression. This compression induces an increase of the
accumulated plastic strain and of the damage.

4.2. Comparison with experimental results
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Figure 6: SiC particles–reinforced AL–Si–Mg alloy. (a) Comparison between the damage-
enhanced MFH prediction and the experimental results. (b) Damage evolution predicted
in the matrix.

The presented model is now applied to predict the macro-mechanical
response of a metal matrix composite material in tension. The considered
material consists of SiC particles–reinforced AL–Si–Mg alloy (A356) with T61
ageing. The experimental results presented by Corbin and Wilkinson (1994)
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are used as the reference. The SiC spherical particules are modeled with a
linear elastic material without damage and their properties were reported by
Christman et al. (1989). The constitutive equation of the matrix material
follows a Ramburg–Osgood equation,

ε =
σ

E
+ α

σ0

E
(
σ

σ0

)1/N , (77)

where ασ0
E

= 0.002 according to the definition of the yielding stress, E the
is elastic modulus, σ0 is the yield strength defined at an offset of 0.2%, and
where N is the strain hardening exponent. The matrix material experiences a
linear plastic damage evolution according to the experimental result obtained
by Corbin and Wilkinson (1994) on the un–reinforced A356–T61 alloy. The
material parameters are

• Inclusions: EI = 450GPa, νI = 0.17.

• Matrix: E0 = 70GPa, ν0 = 0.33, σ0 = 220MPa, N = 0.1, and damage
law D = 0.875p,

where p is the accumulated plastic strain and where the damage evolution
law is obtained through a curve fitting of the experimental data reported by
Corbin and Wilkinson (1994) (Fig. 7 of this reference).

The resulting experimental data obtained by Corbin and Wilkinson (1994)
for a uni-axial tension on a material with vI = 10% volume fraction of spher-
ical inclusions are compared to the results obtained by the the presented
MFH model in Fig. 4.2, where a good agreement can be seen. The damage
evolution in the matrix predicted by the homogenization model is illustrated
in Fig. 4.2. Note that in our model we assume that the particles are uni-
formly distributed, which is not always the case in real materials but remains
reasonable for vI = 10% volume fraction of inclusions.

5. Applications

In this section, the developed non-local MFH model is applied to study
meso- and macro–scale problems. At first the convergence of the method
with respect to the mesh size upon strain softening is demonstrated on a
notched composite ply. Then, a composite laminate is studied. In a first set
of studies the predictions of the damage–enhanced MFH model are compared
with experimental results on coupon tensile tests. These tests include an
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unloading stage to validate the damage model. Then the same laminate is
used on a specimen with a hole. In this last example it can be seen that the
damage–enhanced MFH captures the damage path oriented along the fibers
directions in each ply, accordingly to experimental results.

5.1. Notched sample
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Figure 7: Sample with a notch. (a) Schematics of the sample test. (b) Force per unit ply
length vs. displacement of the sample for different meshes.

In this section, the two-dimensional example proposed by Wu et al.
(2012), the authors, to study the convergence of the non-local damage–
enhanced MFH method with respect to the mesh size, is considered. In par-
ticular the effect of the mesh size upon strain softening is analyzed using the
developed incremental–secant MFH formulation. Results are also compared
to the ones previously obtained by Wu et al. (2012) with the incremental–
tangent MFH method.

The specimen, whose geometry is illustrated in Fig. 7(a), represents
the transverse section of a unidirectional reinforced ply. In order to study
the effect of the non-local damage model, notches are added to force strain
localization. The same material system as in Section 4.1 is considered herein
but with a fiber volume ratio vI = 0.3 and with the characteristic length
l2 = 2.0 mm2. It should be noted that these values are the ones studied
by Wu et al. (2012) for comparison purpose. The fibers are assumed to be
perpendicular to this section. Thus plane-strain conditions are applied in the
fiber direction (z–direction), and traction-free conditions are applied along
the ply-thickness (y–direction).
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softening onset
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Figure 8: The damage distribution in the matrix phase for the mesh –mesh size=0.15 mm–
obtained at (a-b) strain softening onset, (c-d) 0.825 mm–displacement, and with the (a),
(c) incremental–secant MFH scheme, (b), (d) incremental–tangent MFH scheme.

Because of the symmetry, only one quarter of the structure is considered
in the finite element simulations. The mesh of the quarter specimen is refined
in the weak zone of 8.0 × 8.0 mm (see the shadow area in Fig. 7(a)), and
four meshes are successively considered:

• Coarsest mesh of 182 elements and with a mesh size of about 0.43 mm
at the notch ;

• Intermediate mesh of 360 elements and with a mesh size of about 0.3
mm at the notch;

• Fine mesh of 1120 elements and with a the mesh size of about 0.15 mm
at the notch.

• Finest mesh of 2540 elements and with a the mesh size of about 0.1
mm at the notch.

Bi–linear quadrangular elements with locking control are used.
The load-displacement curves are extracted for the four mesh sizes and

are presented in Fig. 7(b). When considering both the incremental–tangent
and the incremental–secant MFH, a good convergence can be seen with the
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decrease of the mesh size. Indeed, the difference between the curves for mesh
sizes of 0.15 mm and 0.3 mm is much smaller than the difference between
the curves for mesh sizes of 0.3 mm and 0.43 mm, despite a larger difference
in the mesh reduction. The results for a mesh–size of 0.1 mm are ever closer
to the 0.15 mm mesh–size curve.

As expected, with the incremental–tangent MFH scheme the predicted
strain softening onset is over–estimated compared to the results obtained
with the incremental–secant MFH method, which allows the fibers to be
unloaded during the damaging process. Also with the incremental–tangent
method, during the softening part for a displacement close to 1 mm, the
matrix phase is totally unloaded but not the inclusion phase explaining the
kink. The incremental–secant method does not suffer from the limitation and
allows a complete unloading of the homogenized material to be achieved.

This stress overestimation predicted by the incremental–tangent method
is also observed when analyzing the matrix damage distributions obtained
for the finest mesh with the two methods at strain softening onset, Figs.
8(a) and 8(b), and at the maximum displacement reached (0.825 mm), Figs.
8(c) and 8(d). The damage reached with the incremental–secant method
is higher than with the incremental–tangent method, especially during the
strain softening part of the curve.

5.2. Tensile tests on laminates
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Figure 9: Geometry schematics of the tensile specimens (units in mm).

In this section, the anisotropic gradient enhanced MFH model is used to
investigate the response of laminates made of a unidirectional (UD) [−45o2 /
45o2]S stacking sequence, and subjected to a uni–axial tension. The geometry
of the sample is illustrated in Fig. 9.

In order to validate the damage model, experiments are conducted in
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XY
Z
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Z

Figure 10: Mesh of the [45o2/ − 45o2]S laminate. Arrows indicate the grips of the exten-
someter.

which the samples are loaded up to 0.56%-strain6 before being unloaded and
then reloaded a second time to reach the same stress level. The specimens
of carbon fibers reinforced epoxy composite are manufactured from prepreg
Hexply M10.1/38%/UD300/HS (R), with a [−45o2/45o2]S stacking sequence.
The total thickness of the specimens is 2.19±0.05 mm. After curing, the
resulting fiber volume fraction is νI = 60%7. The specimens are cut from an
autoclave consolidated unidirectional laminate panel of 300×300 mm2, and
their geometry schematic is shown in Fig. 9. To prevent gripping damage,
aluminum tabs are glued at both extremities of each specimen. The static
tensile tests are carried out on a 1185 no H4573(ME002) Instran machine in
displacement control mode with a constant cross–head speed of 2 mm/min,
according to the specification of ISO–527–4 standard. An extensometer mea-
sures the average strain in the 50–mm band.

A numerical model is made by meshing the different plies of the laminate
sample, and is illustrated in Fig. 10. Each ply orientation is meshed by
915 bi–linear quadrangular elements with locking control. In each ply, the
MFH model is used as a material law with the proper fiber orientations.
Constrained displacements are applied along the x–axis at both laminate
extremities and the deformations are measured from the displacements at
the nodes corresponding to the extensometer grips positions (arrows on Fig.
10) .

6Before failure of the specimens happens
7The percentage is a mean value obtained from a microscopic imaging process of the

cured laminates
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In this application, the following length scales are considered: c3 = 2.0
mm2 as suggested by Geers et al. (1999) for short fiber composites along the
fiber directions, and c1 = c2 = 8.45 × 10−5 mm2 in the transverse direction.
In this direction c1 = c2 is equal to l2

2
, where l is the maximum distance

of possible interaction between material points (Peerlings et al., 2001). In
our case, this distance corresponds to the distance between fibers, which
are obstacles to the interaction, and can be statistically computed from the
volume fraction of fibers (60%) and from the fibers diameter (10 µm). Note
that an artificial spreading of the damaged zone orthogonal to the direction
of a possible crack propagation has been observed by Geers et al. (1998,
1999) in the numerical simulations involving damage to fracture transition
with constant l, but this is beyond the scope of this paper.
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Figure 11: Tensile stress–strain results predicted with the considered elasto–plastic model
with damage for the epoxy matrix. (a) Stress–strain curve, the linear response, the tensile
strength, and the maximum tensile strain given by the manufacturer are reported in dotted
lines. (b) Evolution of the accumulated plastic strain. (c) Evolution of the damage.

In order to conduct the numerical simulations, the material properties, of
the different phases are identified as follows. The carbon fibers are assumed
to be linear elastic and transversely isotropic. Typical material constants
(Byström, 2009, e.g) for T300 carbon fibers are considered. The cured epoxy
matrix properties reported by the manufacturer are a tensile modulus of 3.2
GPa, and a tensile strength of 85 MPa at 0.035–strain. By lack of elasto–
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plastic data, an exponential hardening law (76) and a power damage law (21)
are considered. The material properties used are thus

• Inclusions: Longitudinal Young modulus EL = 230 GPa, transverse
Young modulus ET = 40 [GPa], transverse Poisson ratio νTT = 0.20,
longitudinal–transverse Poisson ratio νLT = 0.256, transverse shear
modulus GTT = 16.7 [GPa], longitudinal–transverse shear modulus
GLT = 24 [GPa].

• Matrix: E0 = 3.2GPa, ν0 = 0.3, σY 0 = 15MPa, h0 = 300MPa, m0 =
100, S0 = 0.1MPa, s = 2 and pC = 0.

The corresponding stress–strain curve of the epoxy matrix is illustrated on
Fig. 11(a), where the manufacturer data are also reported. With the con-
sidered law, it was not possible to reach the maximum stress at an exact
0.035–strain, and the maximum strain is reached during the softening part.
Moreover, to account for the non–local framework for which the damage is
computed from a non-local accumulated plastic strain, the matrix law was
fitted using a damage threshold at pC=0.0025 instead of the used value of
0. From the damage evolution on Fig. 11(c), it can be seen that softening
onset is reached for a damage value around 0.032.

Five samples are tested and their stress-strain curves are compared to the
numerical predictions. The first loading strain–stress curves and the curves
extracted from the unloading/second loading8 are reported in Figs. 12(a)
and 12(b). It can be seen that the model is in excellent agreement with the
experiments. In particular, the MFH model with damage allows predicting
the unloading with a high accuracy, and the residual strain is in perfect
agreement with the experiments, as it can be observed on Fig. 12(b).

Remark that for these tests, the values of the damage reached are low
because the geometry is perfectly regular and because the non-local approach
avoids spurious localization. For a real geometry the imperfection will cause
a shear band. In order to demonstrate that the approach can initiate such a
band we consider in the next section an application in which a strain gradient
naturally exists.
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Figure 12: Results for 60-% volume UD transverse-isotropic fibers reinforced epoxy tensile
test with unloading and reloading on the [45o2/− 45o2]S stacking sequence. The experimen-
tal strain corresponds to the average strain value measured by a 50–mm long extensometer.
The average values obtained for the experimental tests are reported with their discrepancy
range and are compared to the numerical curves.

5.3. Laminate with a hole

In the previous section, the localization of damage during the experiments
was not controlled. In this section, the response of an open hole specimen
made of the same UD [−45o2/45o2]S stacking sequence, and subjected to a
uni–axial tension is studied. The presence of the hole allows a comparison
of the localization effects happening during the experiments and predicted
by the numerical model. The geometry of the sample is illustrated in Fig.
13(a). For the numerical model, although the plate is not symmetrical locally
because of the material anisotropy, the global behavior is symmetrical on the
width of the sample as the stacking sequence is balanced. Thus the numerical
model considers only half of the plate, with 1280 x 8 elements, see Fig. 13(b).

8As during unloading dynamic effects affect the strain–stress curves, the classical
method which consists in linearizing between the unloading and the second loading is
used.

35



 
50 

39 O13
45°

(a) Geometry

XY
Z

XY
Z

(b) Mesh

Figure 13: Model of the [−45o2/45o2]S–laminate with a hole. Units are expressed in mm,
and the total thickness is 2.2 mm.

This approximation is valid as the local behavior of interest issues from the
hole, which is not on the “pseudo” symmetrical axis. Bi–linear quadrangular
elements with locking control are used.
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Figure 14: Geometry schematics of the specimens used during experiments.

In this application, the numerical and material parameters are identical
as the ones reported in Section 5.2. The tests are conducted on specimens,
whose geometry schematic is shown in Fig.14, manufactured as described in
Section 5.2. The tensile tests also follows the same protocol.

Numerical predictions and experimental results are compared in Fig.
15(a). The stress evolution, evaluated by dividing the tensile load by the
cross–section area, is in excellent agreement up to 0.2 % deformation. Upon
this state the stress is over–predicted, with a maximum discrepancy near the
fracture onset, see Fig. 15(a). The difference between the numerical predic-
tion and the experimental results comes from the other damaging mechanisms
such as delamination, fiber pull-out etc, which are not taken into account in
the simulation. To illustrate this point we have also reported the solution
predicted for independent plies on Fig. 15(a), meaning as if the plate was
fully delaminated, and it can be seen that the experimental results get closer
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Figure 15: Results for 60-% volume UD transverse-isotropic fibers reinforced epoxy tensile
tests on the [45o2/− 45o2]S stacking sequence with a hole. (a) Stress–strain curve. The
experimental strain corresponds to the average strain value measured by a 50–mm long
extensometer. We have also reported the solution predicted for independent plies, meaning
as if the plate was fully delaminated. (b) Damage evolution in the internal and external
plies.

from this last curve during the tensile tests. Finally the damage evolution is
reported in Fig. 15(b), and Figs. 16 exhibit the damage distributions in the
external and internal plies. It can be seen that the maximum damage location
of the numerical predictions is in good agreement with the crack initiation
location in the different plies observed for the experimental results, see Fig.
17. Moreover, the damage bands propagate along directions parallel to the
fibers orientations and the damage reaches a value close to one when fracture
is experimentally observed. Note that experimentally the cracks propagate
with a −45–degree angle in the outer plies (Fig. 17) and with a 45–degree
angle in the inner plies. These two orientations can be seen simultaneously
in the numerical predictions under the form of damage bands in both the
inner and in the outer plies (as the displacements are continuous at plies
interfaces), see Fig. 16, but the high damage concentrations (close to one)
follow the respective −45–degree direction in the outer plies, see Fig. 16(a),
and the 45–degree direction in the inner plies, see Fig. 16(b).
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Figure 16: Snapshots of the damage distribution (logarithmic scale) for an average 0.65%
strain (a) Outer ply, (b) Inner ply.

  

Figure 17: Broken open hole sample. The cracks follow the ±45o–directions in each ply
and originate from the predicted locations.

6. Conclusions

In this work, a new incremental–secant MFH process for composites made
of elasto–plastic constituents exhibiting damage was proposed. In this ap-
proach, an unloading of the composite material is virtually performed to esti-
mate the residual strains in each phase, before applying a secant approach on
the strain increments, which differ in each phase. In order to define the LCC,
two secant operators were defined. The first one, the residual–incremental–
secant operator, is defined from the phase residual stress. The second opera-
tor, the zero–incremental–secant operator, is defined from a stress-free state
in the phase.

The main advantage of this secant approach is made obvious when con-
sidering a composite whose matrix phase exhibits a damaging process. In
this case, the inclusions phase can be unloaded during the softening stage
of the matrix, ensuring an accurate prediction of the scheme. In particular,
it was shown that for a composite with 50% volume ratio of fibers, the new
incremental–secant–method is much more accurate than the incremental–
tangent approach previously developed.
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As classical FE formulations lose solution uniqueness and face the strain
localization problem when strain softening of materials is involved, the model
was formulated in a so-called implicit non–local approach. It was shown in a
numerical example that the numerical simulations converges with the mesh
size during the strain softening response.

Finally the model has been applied to study the response of laminates.
First the material model has been validated by considering tensile tests in-
cluding unloading on coupons. Then specimens made of the same laminate,
but with a hole forcing the localization, have been considered. As a result
we have a multiscale model that can predict the damage evolution in each
ply of a composite stack. It was shown that the predicted damage evolution
follows the fibers direction accordingly to the experimental results.

In the future it is intended to account for more degradation processes,
such as delamination, but also to formulate the incremental–secant method
in a second–moment framework to improve its accuracy even further.

Appendix A. Tensorial operations and notations

• Dots and colons are used to indicate tensor products contracted over
one and two indices respectively:

uuu · vvv = uivi, (aaa · uuu)i = aijuj ;

(aaa · bbb)ij = aikbkj, aaa : bbb = aijbji ;

(CCC : aaa)ij = Cijklalk, (CCC : DDD)ijkl = CijmnDnmkl . (A.1)

• Dyadic products are designated by ⊗:

(uuu⊗ vvv)ij = uivj, (aaa⊗ bbb)ijkl = aijbkl . (A.2)

• Symbols 111 and III designate the second- and fourth–order symmetric
identity tensors respectively:

111ij = δij, III ijkl =
1

2
(δikδjl + δilδjk) , (A.3)

where δij = 1 if i = j, δij = 0 if i 6= j.
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• The spherical and deviatoric operators are IIIvol and IIIdev respectively:

IIIvol ≡ 1

3
111⊗ 111, IIIdev = III − IIIvol , (A.4)

so that for symmetric tensors aij = aji we have:

IIIvol : aaa =
1

3
amm111 , IIIdev : aaa = aaa− 1

3
amm111 = dev(aaa) . (A.5)

Appendix B. Derivation of the closed-form expressions for the
incremental–secant method

Appendix B.1. Incremental–secant operator CCCS

During MFH process, in order to identify κ and µs –standing for either κr

and µr
s or κ0 and µ0

s– the elastic bulk and shear moduli of the virtual elastic
material, the increments of the stress and strain tensors are decomposed into
their hydrostatic and deviatoric parts:

∆σσσ = ∆σm111 + ∆sss and ∆εεε = ∆εm111 + ∆eee , (B.1)

where ∆σm = 1
3
tr(∆σσσ), ∆sss = ∆σσσ − ∆σm111, ∆εm = 1

3
tr(∆εεε), and ∆eee =

∆εεε−∆εm111. Note that ∆σσσ = σσσ when the zero–incremental–secant operator
CCCS0 is used in the MFH process.

Following the developments of Wu et al. (Submitted), the elastic bulk
modulus κ = κel remains constant because of the incompressible nature of
the plastic flow, and

3µs =
∆σeq

∆εeq
, (B.2)

with

∆σeq = (
3

2
∆sss : ∆sss)1/2 and ∆εeq = (

2

3
∆eee : ∆eee)1/2 . (B.3)

The derivative of the tensor –with CCCS standing for either CCCSr or CCCS0– is
expressed as

∂CCCS

∂εεε
= 2IIIdev ⊗

[
1

6µs (∆εeq)2 ∆sss : CCCalg − 2

3
µs

∆eee

(∆εeq)2

]
, (B.4)

where the “consistent” operator CCCalg is the derivative of the stress increment
with respect to the strain increment, which is obtained from the constitutive
law of the material, see Appendix C.
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Appendix B.2. Damaged incremental–secant operator CCCSD

In order to apply the MFH scheme we need to know ∂CCCSD

∂εεε
–with CCCSD

standing for either CCCSDr or CCCSD0. One has directly

∂CCCSD

∂εεε
= (1−D)

∂CCCS

∂εεε
−CCCS ⊗ ∂D

∂εεε
, (B.5)

where ∂CCCS

∂εεε
has the same expression as in Appendix B.1, and where ∂D

∂εεε
is

given in Appendix C.
As the non-local variable p̃ is used during the damage evaluation, we also

have to determine

∂CCCSD

∂p̃
= −∂D

∂p̃
CCCS , (B.6)

where ∂D
∂p̃

is given in Appendix C.

Appendix C. Linearization of the Lemaitre–Chaboche ductile dam-
age model in the non–local form

During a finite incremental process, the constitutive equations are dis-
cretized in time intervals [tn, tn+1], and the constitutive equations are dif-
ferentiated at tn+1. Remembering that for the non–local formulation the
damage depends on both εεε and on p̃, this linearization reads

δσσσn+1 = CCCalgD : δεεεn+1 −
(
σ̂σσn+1 ⊗

∂D

∂εεε

)
: δεεεn+1 − σ̂σσn+1

∂D

∂p̃
δp̃n+1 , (C.1)

where
CCCalgD = (1−Dn+1)CCCalg . (C.2)

In these last expressions, CCCalg = ∂σ̂σσn+1

∂εεε
= ∂σ̂σσn+1

∂∆εεεr
is the derivative of the

effective stress increment with respect to the strain increment9, which ensures
quadratic convergence, as shown by Simo and Taylor (1985).

This expression is now derived for the residual–incremental–secant ap-
proach presented in Section 3.2.1. In particular the effect of the assumption

9In this non–local formalism, we explicitly write the dependence of the stress in D and
εεε and linearize with respect to both terms. We use symbol CCCalg for the derivative of the
effective stress increment with respect to the strain increment.
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in the plastic flow direction is accounted for. From Eqs. (29) and (30) one
has directly

CCCalg = CCCel − 2µelNNN ⊗ ∂∆p

∂εεε
− 2µel∆p

∂NNN

∂εεε
. (C.3)

On the one hand, using ∂aaaeq

∂aaa
= 3

2
aaadev

aaaeq
, the two Eqs. (33-34) of the system

related to the yield surface evolution lead to

3

2

(σ̂σσn+1 − σ̂σσres
n )dev

(σ̂σσn+1 − σ̂σσres
n )eq :

1

3

(
3

2

(σ̂σσn+1)dev

(σ̂σσn+1)eq

)−1
∂R

∂p
δp

+ 3µelδp =

3

2

(
σ̂σσtr
n+1 − σ̂σσ

res
n

)dev(
σ̂σσtr
n+1 − σ̂σσ

res
n

)eq : CCCel : δεεε , (C.4)

which can be rewritten, using Eqs. (31) and (32) and calling NNN0 = 3
2

(σ̂σσn+1)dev

(σ̂σσn+1)eq

the normal to the yield surface, as

∂p

∂εεε
=

2µel

h
NNN , (C.5)

with h = 1
3
NNN : (NNN0)

−1 ∂R
∂p

+ 3µel. On the other hand, using ∂aaadev

∂aaa
= IIIdev, Eq.

(32) yields
∂NNN

∂εεε
=

3

2

IIIdev : CCCel(
CCCel : ∆εεεr

n+1

)eq −
2µelNNN ⊗NNN(
CCCel : ∆εεεr

n+1

)eq . (C.6)

Finally, combining Eqs. (C.3), (C.5) and (32) leads to the final expression of
the “consistent” operator

CCCalg = CCCel −
(
2µel

)2

h
NNN ⊗NNN −

(
2µel

)2
∆p(

σ̂σσtr
n+1 − σ̂σσ

res
n

)eq

(
3

2
IIIdev −NNN ⊗NNN

)
. (C.7)

For the zero–incremental–secant approach presented in Section 3.2.2 the
same way of proceeding results in

CCCalg = CCCel − (2µel)2

h0

NNN ⊗NNN − (2µel)2∆p(
σ̂σσtr
n+1

)eq

(
3

2
IIIdev −NNN ⊗NNN

)
, (C.8)

with h0 = 3µel + dR
dp

> 0 and NNN = NNN0. In this case the direction of the
normal corresponds strictly to the radial return mapping assumption, and
the classical expression of CCCalg is recovered, e.g. (Doghri, 2000, chapter 12).
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Moreover, it can be easily deduced from (21) that

∂Y

∂εεεe
:
∂εεεe

∂εεε
: δεεε = εεεe : CCCalg : δεεε , (C.9)

leading to

δD(εεε, p̃) ≈ ∂∆D

∂Y

∂Y

∂εεεe
:
∂εεεe

∂εεε
: δεεε+

∂∆D

∂p̃
δp̃

= s∆p̃
(Yn+α)s−1

Ss0

∂Y

∂εεεe
:
∂εεεe

∂εεε
: δεεε+ (

Yn+α

S0

)sδp̃

= αs∆p̃
(Yn+α)s−1

Ss0
εεεe : CCCalg : δεεε+ (

Yn+α

S0

)sδp̃ . (C.10)

Appendix D. Stress residual vector

The equation to be satisfied at the end of the MFH procedure is Eq. (17).
Multiplying Eq. (15) by BBBε

(
III, C̄̄C̄CSD

0 , C̄̄C̄CS
I

)
and using (17) lead to

v0∆εεεr
In+1 + vIBBB

ε(III, C̄̄C̄CSD
0 , C̄̄C̄CS

I ) : ∆εεεr
In+1 = BBBε(III, C̄̄C̄CSD

0 , C̄̄C̄CS
I ) : ∆ε̄εεr

n+1 . (D.1)

With the M-T assumption the strain concentration tensor follows from (4),
and Eq. (D.1) reads

∆εεεr
In+1 + v0SSS :

[(
C̄̄C̄CSD

0

)−1
: C̄̄C̄CS

I − III
]

: ∆εεεr
In+1 = ∆ε̄εεr

n+1 , (D.2)

or again FFF = 0 with

FFF = C̄̄C̄CSD
0 :

[
∆εεεr

In+1 −
1

v0

SSS−1 :
(
∆εεεr

In+1 −∆ε̄εεr
n+1

)]
− C̄̄C̄CS

I : ∆εεεr
In+1 .

(D.3)

In order to satisfy FFF = 0, Eq. (D.3) is linearized as10

dFFF =
∂FFF

∂εεεI

: d∆εεεr
I +

∂FFF

∂εεε0

: d∆εεεr
0 +

∂FFF

∆ε̄εε
: d∆ε̄εεr +

∂FFF

∂p̃
dp̃ . (D.4)

10Note that the derivative with respect to ∆εεεrr has the same expression as the derivative
with respect to εεεr
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When solving FFF = 0 at constant ∆ε̄εεr and constant p̃, as v0∆εεεr
0 + vI∆εεε

r
I is

also constant, the iteration process relies on dFFF = JJJ : dεεεI with

JJJ =
∂FFF

∂εεεI

+
∂FFF

∂εεε0

:
∂εεε0

∂εεεI

= C̄̄C̄CSD
0 n+1 :

[
III −SSS−1

]
− C̄̄C̄CS

I n+1 −
∂C̄̄C̄CS

I n+1

∂εεεI

: ∆εεεr
In+1 −

vI

v0

(
∂C̄̄C̄CSD

0 n+1

∂εεε0

+
∂C̄̄C̄CSD

0 n+1

∂D

∂D

∂εεε0

)
:[

∆εεεr
In+1 −SSS

−1 :

(
∆εεεr

In+1 −∆ε̄εεr
n+1

)
v0

]
−

vI

v2
0

C̄̄C̄CSD
0 n+1 ⊗ (∆εεεr

In+1 −∆ε̄εεr
n+1) ::

(SSS−1 ⊗SSS−1) ::

(
∂SSS

∂εεε0

+
∂SSS

∂D

∂D

∂εεε0

)
− vI

v0

C̄̄C̄CSD
0 n+1 : SSS−1 , (D.5)

where
∂C̄̄C̄CS

I

∂εεεI
results from (B.4), and where

dC̄̄C̄CSD
0

dεεε0
=

∂C̄̄C̄CSD
0 n+1

∂εεε0
+

∂C̄̄C̄CSD
0 n+1

∂D
∂D
∂εεε0

results

from (B.5). The derivative of the Eshelby tensor ∂SSS
∂εεε0

=
(
∂SSS
∂εεε0

+ ∂SSS
∂D

∂D
∂εεε0

)
is

reported in Appendix F.
Once FFF = 0 is satisfied, the effect on the strain increment in each phase

of a variation d∆ε̄εεr at constant ∆p̃ can directly be obtained by constraining
dFFF = 0, and Eq. (D.4) leads to

0 =
∂FFF

∂εεεI

: d∆εεεr
I +

∂FFF

∂εεε0

: d∆εεεr
0 +

∂FFF

∂ε̄εε
: d∆ε̄εεr , (D.6)

or again

∂εεεI

∂ε̄εε
= −JJJ−1 :

∂FFF

∂ε̄εε
. (D.7)

As under these circumstances dε̄εεr = v0dεεεr
0 + vIdεεε

r
I, this last equation is com-

pleted by

∂εεε0

∂ε̄εε
=

1

v0

(III − v1
∂εεεI

∂ε̄εε
) . (D.8)

The same relations can be obtained for a linearization with respect to p̃
at constant ∆ε̄εεr.
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Appendix E. “Consistent” linearization of the homogenized stress

The “consistent” linearization of the homogenized stress can be rewritten
using Eqs. (57) and (C.1) for the homogenized material, leading to

δσ̄σσ = vIδσσσI + v0δσσσ0

= vICCC
alg
I : δεεεI + v0

(
CCCalgD

0 − σ̂σσ0 ⊗
∂D

∂εεε0

)
: δεεε0 − v0σ̂σσ0

∂D

∂p̃
δp̃

= vICCC
alg
I :

(
∂εεεI

∂ε̄εε
: δε̄εε+

∂εεεI

∂p̃
δp̃

)
+ v0

(
CCCalgD

0 − σ̂σσ0 ⊗
∂D

∂εεε0

)
:(

∂εεε0

∂ε̄εε
: δε̄εε+

∂εεε0

∂p̃
δp̃

)
− v0σ̂σσ0

∂D

∂p̃
δp̃ , (E.1)

with, see Appendix D,

∂εεεI

∂ε̄εε
= −JJJ−1 :

∂FFF

∂ε̄εε
,

∂εεε0

∂ε̄εε
=

1

v0

(III − v1
∂εεεI

∂ε̄εε
) , (E.2)

∂εεεI

∂p̃
= −JJJ−1 :

∂FFF

∂p̃
, and

∂εεε0

∂p̃
= − vI

v0

∂εεεI

∂p̃
. (E.3)

Thus, the consistent tangent operators read

C̄̄C̄Calg
n+1 = vICCC

alg
I :

∂εεεI

∂ε̄εε
+ v0

(
CCCalgD

0 − σ̂σσ0 ⊗
∂D

∂εεε0

)
:
∂εεε0

∂ε̄εε
, (E.4)

CCC p̃ = vICCC
alg
I :

∂εεεI

∂p̃
δp̃+

v0

(
CCCalgD

0 − σ̂σσ0 ⊗
∂D

∂εεε0

)
:
∂εεε0

∂p̃
− v0σ̂σσ0

∂D

∂p̃
. (E.5)

Appendix F. Eshelby Tensor and its derivative

The derivative of the Eshelby tensor can be written as

∂SSS

∂∆εεεr
=

∂SSS

∂ν
⊗ (

∂ν

∂κ

∂κ

∂∆εεεr
+

∂ν

∂µs

∂µs
∂∆εεεr

) . (F.1)

If damage is not considered, we have

∂κ

∂∆εεεr
= 0 , (F.2)
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therefore,

∂SSS

∂∆εεεr
=

∂SSS

∂ν
⊗ ∂ν

∂µs

∂µs
∂∆εεεr

. (F.3)

When damage is considered, the secant moduli with damage need to be used
(see Eqs. (44-49)) to compute the Eshelby tensor, and its derivative reads

∂SSS

∂∆εεεr
=

∂SSS

∂ν
⊗
(
∂ν

∂κD
∂κD

∂∆εεεr
+

∂ν

∂µDs

∂µDs
∂∆εεεr

)
=

∂SSS

∂ν
⊗
[
∂ν

∂κD

(
∂κD

∂∆εεεr
+
∂κD

∂D

∂D

∂∆εεεr

)
+

∂ν

∂µDs

(
∂µDs
∂∆εεεr

+
∂µDs
∂D

∂D

∂∆εεεr

)]
.

(F.4)
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Mécanique 337, 645 – 652.

De Borst, R., 1991. Simulation of strain localization: a reappraisal of the
Cosserat continuum. Eng. Comput. 8, 317 – 332.

47
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Kanouté, P., Boso, D., Chaboche, J., Schrefler, B., 2009. Multiscale meth-
ods for composites: A review. Arch. Comput. Methods Eng. 16, 31–75.
10.1007/s11831-008-9028-8.

Knockaert, R., Doghri, I., 1999. Nonlocal constitutive models with gradients
of internal variables derived from a micro/macro homogenization proce-
dure. Comput. Methods Appl. Mech. Eng. 174, 121 – 136.

Kouznetsova, V., Geers, M., Brekelmans, W., 2004. Multi-scale second-order
computational homogenization of multi-phase materials: a nested finite
element solution strategy. Comput. Methods Appl. Mech. Eng. 193, 5525
– 5550. Adv. Comput. Plasticity.

Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M., 2002. Multi-
scale constitutive modelling of heterogeneous materials with a gradient-
enhanced computational homogenization scheme. Int. J. Numer. Meth.
Eng. 54, 1235–1260.

49
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