

Deformation Capacity and Resilience of Structures

Boyan Mihaylov

University of Liege, February 4th, 2013

Seismic Hazard Map of New Zealand 2010

Deformation Capacity and Resilience of RC Structures

Devastation of Christchurch

12:51pm Feb 22nd 2011

182 people killed 50% of roads destroyed 600 buildings had to be demolished 6000 homes destroyed 80% without power 80% of water and sewerage damaged

Horizontal PGA 1.0g Vertical PGA 1.8g Return period 2500 years (design PGA=0.22g)

Design for Rare Events?

Structural resilience

non-resilient structure

resilient structure

• Need for displacement-based **analysis of failure mechanisms** for direct assessment / design for structural resilience

Building in Christchurch

SOUTH ELEVATION

Failure Mechanisms and Deformation Capacity of Structural Members

Pushover Analysis by Ruggiero: Augustus-II

Deep Transfer Girder

Photograph: Bentz 2008

Deep Transfer Girder

Photograph: Russell Berkowitz, Christchurch 14.03.2011

εt

Tests of Deep Beams

Tests of Deep Beams

▲

 Δ =0 mm

 Δ =4.3 mm

Ρ

 Δ

Ρ

 Δ

Measured Load-Displacement Response

FE Modeling of Deep Beams

Program VecTor2, F.J. Vecchio, University of Toronto

Modeling of Deep Beams – Kinematic Approach

N

Slender Beams

Measured deformations

Plane sections remain plane hypothesis Robert Hooke 1678

Deep Beams

Measured deformations

Simple kinematic conditions for deep beams?

Boyan Mihaylov

М

Two Parameter Kinematic Model

Below the crack:

$$U_{x}(x,z) = V_{t,avg} x$$
$$U_{z}(x,z) = \frac{V_{t,avg} x^{2}}{h-z}$$

Above the crack:

$$\mathsf{u}_{x}(x,z) = \mathsf{v}_{t,avg}(h-z) \cot \mathsf{r}$$

$$\mathsf{u}_{z}(x,z) = \mathsf{v}_{t,avg} x \cot \mathsf{r} + \Delta_{c}$$

2PKT for Complete Response of Deep Beams

2PKT for Ultimate Response of Deep Beams

Predicted Displacement Capacity, 53 Tests

Double-Curvature Bending of Deep Beams

Continuous Deep Beam in Building

Specimen Construction

Double-Curvature Bending of Deep Beams

Predicted Deformed Shapes

Short Coupling Beams

D Regions in Slender Beams/Columns

Tests by Yoshida, U of Toronto, 2000

Wall Type Bridge Piers

Passerelle, Liège

Passerelle, Liège

Pont d'Ougrée, Standard

Deformation Capacity and Resilience of RC Structures

Wall Type Bridge Piers

Empirical Models for Deformation Capacity

$$\theta_{u}^{pl} = a_{st}^{hbw} (1 - 0.525a_{cy})(1 + 0.6a_{sl}) \left\{ 1 - 0.052 \max \left[1.5; \min \left(10; \frac{h}{b_{w}} \right) \right] \right\} (0.2)^{\nu} \left(\frac{\max(0.01; \omega_{2})}{\max(0.01; \omega_{1})} \min \left(9; \frac{L_{s}}{h} \right) \right)^{1/3} \mathbf{f}_{c}^{0.2} 25^{\left[\left(a_{\rho_{w}} \mathbf{f}_{yw} \right) / \mathbf{f}_{c} \right]} 1.225^{100\rho_{d}} \mathbf{f}_{s}^{0.2} \mathbf{f$$

Biskinis and Fardis, 2010

3PKT for Wall Type Piers

Test by Bischas and Dazio, 2010

Macro Models for D Regions Combined with Sectional Models for B regions to Study Structural Resilience

Structural Resilience Analysis

T wards More Resilient Urban Infrastructure

Toronto Canada

Deformation Capacity and Resilience of RC Structures

Merci!

