

Influence of soluble proteins on the adherence of particulate soils

Y. Touré, P.G. Rouxhet and M. Sindic

yetioman.toure@doct.ulg.ac.be

Heat Exchanger Fouling and Cleaning x – 2013 June 09 - 14, 2013

Presentation outline

1. Introduction

Background

Objectives

2. Experimental aspects

Material

Methods

3. Results

4. Discussion

5. Conclusion

1. Introduction

Background

Concern ? Particulate deposition-drying surface →natural environments →industrial equipments

Where ?

- Storage tanks
- Ducts
- Plates of heaters
 - coolers

➔ Food and pharmaceutical processing

Main constituents:

 Biopolymers, biomolecules polysaccharides lipids proteins → bacteria initial attachment

1. Introduction

Background

Soil attachment and removal

Detry et al. (2011): starch deposit

- presence of macromolecules (polysaccarides, proteins) at particule-substrate interface
- accumulation at substrateparticulate interface
- influence of:
 - details in the mode of drying
 - exposure to moisture

Liu et al. (2006): tomato paste

baking
 → effect on the subsequent removal of soils

20 µm

Understanding the influence of soluble macromolecules at interfaces on particulate soils adherence and removal

- practical information on
 - incidence of surface properties of soil and substrate
 - influence of biomacromolecules
- physico-chemical mechanisms involved :
 - interactions solid-solution, solid-solid
 - biomacrolecules at interfaces
- designing easy-to-clean surfaces

Objectives

Assess the influence of dissolved proteins on adhesion of particulate soils

Improve:

- understanding mechanisms affecting soiling
- cleanability

Material

Model of soluble proteins : - β-LGB

- BSA

Model of substrates : - glass (hydrophilic)

- stainless steel (intermediate)
- polystyrene (hydrophobic)

Model of particulate soils :

suspension of quartz particles (10-30 µm)

Substrate pretreatment

Soil preparation

Soiling procedure

Cleaning test

• At given flow rate:

Larger critical detachment radius ⇔lower hydrodynamic drag force required to detach soiling

• Increasing the flow rate

increasing drag force at critical detachment radius

Characterization

Interfacial properties

• liquid surface tension

• static contact angle on substrate

	Water contact angle (°)			
Substrate	not troated	cleaned	UVO	
		ethanol	treatment	
Glass	24 ± 2	17 ± 1	< 10	
Stainless steel	43 ± 4	30 ± 1	10 ± 1	

Surface analysis, XPS

→ presence of carbon (Gerin et al., 1995; Rouxhet, 2013)

Surface pre-cleaning

- ethanol → water contact angle higher than expected
- UVO treatment

→more effective removal of organic contaminants by oxidation

Contact angle

Detachment radius

Water and BSA:

same as Glass treated by piranha

➔ Robust data

Detachment radius

Results for glass and polystyrene reproduced after a time interval of 17 months

- ➔ differences significant
 - robust observations

Detachment radius

Detachment radius

Detachment radius

	Adherence
• Soil in water :	Glass > StSteel-UVO > StSteel-Eth > Polystyrene
Glass and StSteel-UVO:	water > protein solution
• StSteel-Eth :	water < protein solution
Polystyrene :	water \approx protein solution

4. Discussion

Relation with wetting

Adherence **7** as water contact angle **2** excepted StSteel-UVO

• droplet spreading: shape of dried soil, efficiency of shear force
• strength of capillary forces: strength of particle-substrate contact

4. Discussion

Soil with proteins

Adherence **\\$** as solution contact angle **7** excepted Polystyrene

4. Discussion

Comparison protein solution/water

	contact angle	adherence		
Glass, StSteel-UVO	*	protein << water		
StSteel-Eth, Polystyrene	\approx	protein > water		
⇐⇒? liquid surface tension, adsorbed or accumulated proteins,				
receding contact angle?				

5. Conclusion

Different substrates,

suspension in water

substrate hydrophobicity **7**, particle adherence **a** droplet spreading and capillary force upon drying

Different substrates (excepted polystyrene) suspension in protein solution

contact angle **7**, particle adherence **7**

Suspension in protein solutions vs water

- contact angle about the same
- adherence: Glass, StSteel-UVO: protein << water StSteel-Eth, Polystyrene: protein > water

Not simple relation with contact angle

Possible explanation

- suspending medium surface tension
- proteins behavior at interfces
 - during drying
 - rehydration during cleaning
- role of receding contact angle

4. Conclusion

Possible explanation

- suspending medium surface tension
- proteins behavior at interfces
 - during drying
 - rehydration during cleaning
- role of receding contact angle

Broader study, including protein denaturation, is under way

Remark on influence of substrate on soiling

To be kept in mind:

high surface energy solids (metals, oxides)

• contaminated in contact with air \rightarrow hydrophobicity decreased

Thank you for your attention !