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September 2014

1 / 235



Practical informations
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General considerations

I Linear framework → non-linear frameworks

I A world of trade-offs (computational load ↔framerate, etc).

I Never forget the acquisition step

I There is no unique, universal, solution

I More and more machine learning in computer vision
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Outline

1 Image representation and fundamentals

2 Unitary transforms and coding

3 Linear filtering

4 Mathematical morphology

5 Non-linear filtering

6 Feature extraction

7 Texture analysis

8 Segmentation

9 Motion analysis
Motion analysis by tracking
Motion analysis by background subtraction

10 Template matching

11 Application: pose estimation
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Image representation and fundamentals

I Elements of visual perception

Colors: representation and colorspaces
Transparency

I Data structure for images

I Resolution

I Examples of industrial applications:

Segmentation
Optical character recognition
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Human visual system, light and colors I

Figure : Lateral view of the eye globe (rods and cones are receptors
located on the retina).
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Human visual system, light and colors II

color wavelength interval λ [m] frequency interval f [Hz]

violet ∼ 450–400 [nm] ∼ 670–750 [THz]

blue ∼ 490–450 [nm] ∼ 610–670 [THz]

green ∼ 560–490 [nm] ∼ 540–610 [THz]

yellow ∼ 590–560 [nm] ∼ 510–540 [THz]

orange ∼ 635–590 [nm] ∼ 480–510 [THz]

red ∼ 700–635 [nm] ∼ 430–480 [THz]

Figure : Visible colors (remember that λ = 3×108

f ).
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Human visual system, light and colors III
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Figure : Colors on the visible spectrum.
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Frequency representation of colorsˆ
λ

L(λ) dλ (1)

Impossible from a practical perspective because this would require
one sensor for each wavelength.
Solution: use colorspaces

Figure : Equalization experiment of colors. The aim is to mix A, B, and
C to get as close as possible to X .
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The RGB additive colorspace

Three fundamental colors: red R (700 [nm]), green G (546, 1 [nm])
and blue B (435, 8 [nm]),

Figure : Equalization curves obtained by mixing the three fundamental
colors to simulate a given color (wavelength). 12 / 235



CIE chromatic diagram for RGB
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Notion of intensity

Figure : Pyramid derived from an RGB color representation.
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Towards other colorspaces: the XYZ colorspace I

 X
Y
Z

 =

 2, 769 1, 7518 1, 13
1 4, 5907 0, 0601
0 0, 0565 5, 5943


 R

G
B

 (2)

x =
X

X + Y + Z
(3)

y =
Y

X + Y + Z
(4)

z =
Z

X + Y + Z
(5)

x + y + z = 1 (6)

15 / 235



Towards other colorspaces: the XYZ colorspace II

y

x

Figure : Approximative chromatic colorspace defined by two chrominance
variables x and y .
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Luminance

Luminance: Y = 0.2126×R + 0.7152×G + 0.0722×B

Figure : xy chromatic diagram and maximal luminance for each color.
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Luminance + two chrominances

Figure : Acquisition of a Y Cb CR signal [Wikipedia]

There are variations, such as the Y U V colorspace, mainly
developed for compression:

1 information concentration in the Y channel ⇒ better
compression.

2 better decorrelation between channels).
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The HSI colorspace

Colorspace that has a better physical meaning:
I hue
I saturation
I intensity
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Other colorspaces

I a subtractive colorspace: Cyan, Magenta, and Yellow (CMY)

I Luminance + chrominances ( YIQ, YUV or YCbCr )

In practice,

Hexadecimal R G B
00 00 00 0 0 0
00 00 FF 0 0 255
00 FF 00 0 255 0
00 FF FF 0 255 255
FF 00 00 255 0 0
FF 00 FF 255 0 255
FF FF 00 255 255 0
FF FF FF 255 255 255

Table : Definition of color values and conversion table between an
hexadecimal and an 8-bits representation of colors.
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Bayer filter I

A Bayer filter mosaic is a color filter array for arranging RGB color
filters on a square grid of photo sensors.

Figure : The Bayer arrangement of color filters on the pixel array of an
image sensor. [Wikipedia]
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Bayer filter II

Figure : Profile/cross-section of sensor. [Wikipedia]

22 / 235

http://en.wikipedia.org/wiki/Bayer_filter


Bayer filter: practical considerations

I Most mono-sensor cameras use the Bayer pattern, except for
professional 3CCD cameras (three sensor planes + prism to
divide the incoming light)

I The filter pattern is 50% green, 25% red and 25% blue. Why?

I We only have one value per pixel. Other values are re-built by
interpolation, but they might not even exist... !

I For compression or processing,

1 sensor plane ⇒ normally only one byte to process. Possible if
the processing is very close to the sensor. Otherwise, there is
no information about the real observed values.
3 sensor planes ⇒ 3 planes to process or to compress.
Expected compression rate: 3 × lower than for a single sensor.

I It might be wiser, for processing, to have a black-and-white
(or a monochromatic, such as red) camera, instead of a color
camera.
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What defines the color of an object?

Figure : A synthetic 3D object. Shadows and surfaces with varying
reflective coefficients model a 3D object.
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Visual effects

Figure : Illustration of a masking visual effect.
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Transparency bits

Let
I i(x , y) be the value of the image at location (x , y)
I t(x , y) be the transparency (defined by 1 to 8 bits)
I o(x , y) be the output value, after applying transparency

Applying transparency consists to calculate: o(x , y) = t(x ,y)
255 i(x , y)

Figure : Transparency bits have been applied inside a rectangle. 26 / 235



Sampling grid and frame organization

I Each sample located on a grid is named a pixel (which stands
for picture element).

I There are two common sampling grids and they induce certain
types of connectivity.

Square grid Hexagonal grid

4-connectivity 8-connectivity 6-connectivity

Table : Types of grid and associated connectivities.
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Typology of images and videos

2D. This types refers to a “classic” image and is usually
expressed as a 2D array of values. It might represent
the luminance, a color, depth, etc.

3D. 3D images are obtained with devices that produce 3D
images (that is with x , y , z coordinates). Medical
imaging devices produce this type of images.

2D+t. t refers to time. Therefore, 2D + t denotes a video
composed over successive 2D images, indexed by t.

3D+t. 3D + t images are in fact animated 3D images. A
typical example is that of animated 3D graphical
objects, like that produced by simulations.
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Data structure for dealing with images

I Typical data structure for representing images: matrices (or
2D tables), vectors, trees, lists, piles, . . .

I A few data structures have been adapted or particularized for
image processing, like the quadtree.
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Resolution
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The bitplanes of an image

Table : An original image and its 8 bitplanes starting with the Most
Significant Bitplane (MSB).
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Objective quality measures and distortion measures

Let f be the original image (whose size is N × N) and f̂ be the image
after some processing.

Definition

[Mean Square Error]

MSE =
1

N2

N−1∑
j=0

N−1∑
k=0

(
f (j , k)− f̂ (j , k)

)2

(7)

[Signal to noise ratio]

SNR =

∑N−1
j=0

∑N−1
k=0 (f (j , k))2∑N−1

j=0

∑N−1
k=0

(
f (j , k)− f̂ (j , k)

)2 (8)

[Peak signal to noise ratio]

PSNR =
N2 × 2552∑N−1

j=0

∑N−1
k=0

(
f (j , k)− f̂ (j , k)

)2 (9)
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Images can be seen as topographic surfaces

Figure : An image (left-hand side) and a view of its corresponding
topographic surface (right-hand side).
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Depth cameras

There are two acquisition technologies for depth-cameras, also
called range- or 3D-cameras:
I measurements of the deformations of a pattern sent on the

scene (structured light).

first generation of the Kinects

I measurements by time-of-flight (ToF). Time to travel forth
and back between the source led (camera) and the sensor
(camera).

Mesa Imaging, PMD cameras
second generation of Kinects
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Illustration of a depth map acquired with a range camera
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Image segmentation

36 / 235



Character recognition

Several successive stages:
I Selection of a Region of Interest (ROI). Processing is limited

to that area.
I Detection of edges (contours).
I Identification and classification of characters.
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Unitary transforms

I Computations on matrices

I Selection of well-known transforms

Discrete Fourier transform
Hadamard transform
Discrete Cosine Transform (DCT)
The continuous Fourier transform (only to express some
properties)
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What is the purpose of an image transform?

I Provide some insight on the image itself, by going into an
equivalent space.

I Easy to compute and interpretable.

I Must be reversible. For example, the known continuous
Fourier transform is reversible.
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Transformation ≡ computations on matrices

Let us model a sampled image f , as a matrix composed of M × N
points or pixels

f =

 f (0, 0) · · · f (0,N − 1)
...

...
f (M − 1, 0) · · · f (M − 1,N − 1)

 . (10)

Let P et Q be two matrices of dimension M ×M and N × N
respectively:

F = Pf Q (11)

This might be expressed as

F (u, v) =
M−1∑
m=0

N−1∑
n=0

P (u,m) f (m, n) Q (n, v) . (12)

Then, also,
f = P−1F Q−1. (13)
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Discrete Fourier transform I

The basis function for Fourier transforms is the imaginary
exponential

W = e2πj/N (14)

We define a J × J transformation matrix, ΦJJ , as

ΦJJ (k, l) =
1

J
exp

(
−j

2π

J
kl

)
k, l = 0, 1, . . . , J − 1. (15)

Definition

Assuming the two following P = ΦMM and Q = ΦNN matrix
transforms, then the Discrete Fourier Transform (DFT) is defined
as

F = ΦMM f ΦNN . (16)
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Discrete Fourier transform II

Another, explicit, form of the DFT:

F (u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

f (m, n) exp

[
−2πj

(
mu

M
+

nv

N

)]
, (17)

where

u = 0, 1, . . . , M − 1 v = 0, 1, . . . , N − 1. (18)

Inverse? Let us define the inverse matrix transformation, Φ−1
JJ , as

Φ−1
JJ (k, l) = exp

(
j
2π

J
kl

)
. (19)

The, the inverse DFT is obtained as

f (m, n) =
M−1∑
u=0

N−1∑
v=0

F (u, v) exp

[
2πj

(
mu

M
+

nv

N

)]
(20)
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Visualization

Figure : The Lena image and the module of its Discrete Fourier
Transform.
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Properties I

Why is studying properties so important?

I They highlight the behavior of an operator.

I They are part of the design of a vision problem.

I They guide a practitioner towards a solution.

Periodicity
F (u, −v) = F (u, N − v) F (−u, v) = F (M − u, v) (21)

f (−m, n) = f (M −m, n) f (m, −n) = f (m, N − n) (22)

More generally,

F (aM + u, bN + v) = F (u, v) f (aM + m, bN + n) = f (m, n)
(23)
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Properties II

F(0,M-1)=F(0,-1)

F(0,0)

F(M-1,0)=F(-1,0) F(M-1,M-1)=F(-1,-1)

F(0,0)

Figure : Reorganizing blocks (according to the periodicity) to center the
spectrum.
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Centered spectrum

Figure : Spectrum of the Fourier transform before and after reorganizing
the blocks to center the origin.
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Hadamard transform

The second order Hadamard matrix is defined as

H22 =

[
1 1
1 −1

]
(24)

The Hadamard matrix of order 2k is generalized as

H2J2J =

[
HJJ HJJ

HJJ −HJJ

]
(25)

The inverse Hadamard matrix transform is given by

H−1
JJ =

1

J
HJJ . (26)

Definition

The direct and inverse Hadamard transforms are defined
respectively as

F = HMM f HNN f =
1

MN
HMMF HNN . (27)

48 / 235



Discrete Cosine Transform (DCT) I

Let us define the following transform matrix CNN (k, l)

CNN (k, l) =


1√
N

l = 0,√
2
N cos

[
(2k+1)lπ

2N

]
otherwise.

(28)

Figure : Basis functions of a Discrete Cosine Transform.
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Discrete Cosine Transform (DCT) II

Definition

The Discrete Cosine Transform (DCT) and its inverse are defined
respectively as

F = CNN f CT
NN f = CT

NNF CNN . (29)

In an extended form, the DCT is expressed as

F (u, v) =
2c (u) c (v)

N

N−1∑
m=0

N−1∑
n=0

f (m, n) cos

(
2m + 1

2N
uπ

)
cos

(
2n + 1

2N
vπ

)
.

(30)

Why the DCT?

I a nearly optimal transform for compression

I used in the JPEG and MPEG compression standards
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Continuous Fourier transform

Definition

Assuming a continuous image f (x , y), its Fourier transform is
defined as

F (u, v) =

ˆ +∞

−∞

ˆ +∞

−∞
f (x , y) e−2πj(xu+yv)dxdy . (31)

We use this expression for studying the properties.
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Inverse transform

f (x , y) =

ˆ +∞

−∞

ˆ +∞

−∞
F (u, v) e2πj(ux+vy)dudv (32)

Interpretation: the image is decomposed as a weighted sum of basic
spectral components defined over [−∞,+∞]× [−∞,+∞]. So
f (x , y) and F (u, v) form a pair of related representations of a
same information:

f (x , y)
 F (u, v) . (33)

In general, F (u, v) is a function of u and v with complex values.
It can be expressed as

F (u, v) = ‖F (u, v)‖ e jθ(u,v). (34)
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Particular case: f (x , y) is real-valued function

F (−u,−v) = F∗ (u, v) (35)

Or,
‖F (−u,−v)‖ = ‖F (u, v)‖ (36)

θ (−u,−v) = −θ (u, v) . (37)

This leads to two important characteristics (for real-valued
functions):

1 the spectrum is symmetric in the u − v plane. Therefore, half
the plane suffices.

2 the angle (phase) is anti-symmetric with respect to the origin
of u − v .
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Properties I

Why would we use linear transforms?

I to some extend, we may assume that some phenomena in
image processing are linear (later we will challenge this
assumption).

I Fourier transforms, and more generally linear transforms, are
used because of their interesting properties.

1 Separability
By permuting the integration order

F (u, v) =

ˆ +∞

−∞

[ˆ +∞

−∞
f (x , y) e−2πjxudx

]
e−2πjyvdy (38)
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Properties II

2 Linearity
Let f1 (x , y)
 F1 (u, v) and f2 (x , y)
 F2 (u, v). Then, for
every constants c1 and c2,

c1f1 (x , y) + c2f2 (x , y)
 c1F1 (u, v) + c2F2 (u, v) (39)

3 Zoom [up to a factor, the output is scale-invariant]
If f (x , y)
 F (u, v), then

f (ax , by)

1

|ab|
F
(

u

a
,

v

b

)
(40)

4 Spatial translation [up to a phase, the norm of the output is
translation-invariant]
If f (x , y)
 F (u, v), then

f (x − x0, y − y0)
 F (u, v) e−2πj(x0u+y0v)
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Properties III

5 Spectral translation
If f (x , y)
 F (u, v), then

f (x , y) e j2π(u0x+v0y) 
 F (u − u0, v − v0) (41)

6 Convolution
The convolution of f (x , y) by g (x , y) is defined as

(f ⊗ g) (x , y) =

ˆ +∞

−∞

ˆ +∞

−∞
f (α, β) g (x − α, y − β) dαdβ.

(42)
If f (x , y)
 F (u, v) and g (x , y)
 G (u, v), then

(f ⊗ g) (x , y)
 F (u, v)G (u, v) (43)

The important result is that the convolution of two images
can be obtained as the inverse Fourier transform of the
product of the Fourier transform of both functions.
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Rectangular function I

Consider the rectangular function f (x , y) defined as

f (x , y) = ARecta,b (x , y) (44)

where

Recta,b (x , y) =

{
1 |x | < a

2 , |y | <
b
2

0 elsewhere
(45)

F (u, v) =

ˆ +a/2

−a/2
dx

ˆ +b/2

−b/2
dyAe−2πj(xu+yv) (46)

= Aab

(
sin (πau)

πau

)(
sin (πbv)

πbv

)
(47)
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Rectangular function II

x

y

f (x , y)

Figure : Rectangular function.
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Rectangular function III

u

v

‖F(u, v)‖

Figure : Module of the Fourier transform of the rectangular function.
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Compression

Definition

The compression ratio is defined as

bitrate prior to compression

bitrate after compression
. (48)
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Recent developments

H264 H.264/MPEG-4 Part 10 or AVC (Advanced Video
Coding) is one of the most used format (Blu-ray
compression for example).

H265 High Efficiency Video Coding (HEVC) is a video
compression standard, a successor to H.264/MPEG-4
AVC (Advanced Video Coding) that was jointly
developed by the ISO/IEC Moving Picture Experts
Group (MPEG) and ITU-T Video Coding Experts
Group (VCEG) as ISO/IEC 23008-2 MPEG-H Part 2
and ITU-T H.265. It can support resolutions up to
8192Ö4320!
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Linear filtering

I The notion of “ideal” filter

I Categories of ideal filters

I Typical filters:

Low-pass filters
High-pass filters
Gabor filters
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Notion of “ideal” filter

A filter is said to be “ideal” if every transform coefficient is
multiplied by 0 or 1.

Definition

[Ideal filter] An ideal filter is such that its transfer function is
given by

∀(u, v), H(u, v) = 0 or 1. (49)

The notion of ideal filter is closely related to that of idempotence.
The idempotence for a filter is to be understood such that, for an
image f (x , y),

F(u, v)H(u, v) = F(u, v)H(u, v)H(u, v) (50)
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Typology of ideal filters I

For one-dimensional signals (such as the image function along an
image line):

1

u

‖H(u)‖

Low-pass High-passBand-pass

Figure : One-dimensional filters.
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Typology of ideal filters II

There are three types of circular ideal filters:

I low-pass filters:

H (u, v) =

{
1

√
u2 + v 2 ≤ R0

0
√

u2 + v 2 > R0
(51)

(a) Original image (b) Low-pass filtered image
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Typology of ideal filters III

I High-pass filters:

H (u, v) =

{
1

√
u2 + v 2 ≥ R0

0
√

u2 + v 2 < R0
(52)

I pass-band filters. There are equivalent to the complementary
of a low-pass filter and a high-pass filter:

H (u, v) =

{
1 R0 ≤

√
u2 + v 2 ≤ R1

0 otherwise
(53)
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Typology of ideal filters IV

u

v

H(u, v)

Figure : Transfer function of pass-band filters.
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Effects of filtering

Figure : Fourier spectra of images filtered by three types of circular filters.
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An image that passes through a linear filter

An two-dimensional filter is characterized by its two-dimensional
impulse function h (x , y). Theory shows that the filtered output
image g (x , y) can be computed as the convolution product
between the impulse function and the input image f (x , y)

g (x , y) =

ˆ +∞

−∞

ˆ +∞

−∞
f (α, β) h (x − α, y − β) dαdβ, (54)

which is denoted as

g (x , y) = (f ⊗ h) (x , y) . (55)

It can be shown that the convolution is the (x , y) plane is
equivalent, in the Fourier domain, to

G (u, v) = H (u, v)F (u, v) .
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Low-pass filters I

A typical low-pass filter is the Butterworth filter (of order n)
defined as

H (u, v) =
1

1 +
(√

u2+v2

R0

)2n . (56)
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Low-pass filters II

u

v

H(u, v)

Figure : Transfer function of a low-pass Butterworth filter (wih n = 1).
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Low-pass filters III

(a) Input image (b) Spectrum of the filtered image

Figure : Effects of an order 1 Butterworth filter (cut-off frequency:
fc = 30).
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Effect of a low-pass filter (with decreasing cut-off
frequencies)
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High-pass filters I

H (u, v) =
1

1 +
(

R0√
u2+v2

)2n (57)

(a) Filtered image (b) Spectrum of (a)

Figure : Effects of an order 1 Butterworth filter 1 (cut-off frequency: fc = 50).
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Effect of a high-pass filter (with increasing cut-off
frequencies)
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Gabor filters I

Definition
Gabor filters are particular class of linear filter. There are directed
filters with a Gaussian-shaped impulse function:

h(x , y) = g(x ′, y ′)e2πj(Ux+Vy) (58)

I (x ′, y ′) = (x cosφ+ y sinφ ,−x sinφ+ y cosφ), these are the
(x , y) coordinates rotated by an angle φ, and

I g(x ′, y ′) = 1
2πσ2 e(−(x ′/λ)2+y ′2)/2σ2

.

The corresponding Fourier transform is given by

H(u, v) = e−2π2σ2[(u′−U′)2λ2+(v ′−V ′)2] (59)

I (u′, v ′) = (u cosφ+ v sinφ ,−u sinφ+ v cosφ), and

I (U ′,V ′) is obtained by rotating (U,V ) with the same angle φ.
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Gabor filters II

Figure : Transfer function of Gabor filter. The white circle represents the

−3 [dB] circle (= half the maximal amplitude).
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Gabor filters III

Figure : Input image and filtered image (with an filter oriented at 135o).
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Implementation

There are mainly 4 techniques to implement a Gaussian filter:

1 Convolution with a restricted Gaussian kernel. One often
choose N0 = 3σ or 5σ

g1D [n] =

{
1√
2σ

e−(n2/2σ2) |n| ≤ N0

0 |n| > N0
(60)

2 Iterative convolution with a uniform kernel:

g1D [n] ' u[n]⊗ u[n]⊗ u[n] (61)

where

u[n] =

{
1

(2N0+1) |n| ≤ N0

0 |n| > N0
(62)

3 Multiplication in the Fourier domain.

4 Implementation as a recursive filter.
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Outline
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Motion analysis by tracking
Motion analysis by background subtraction

10 Template matching

11 Application: pose estimation
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Mathematical morphology

I Reminders of the set theory

I Basic morphological transforms

I Neighboring transformations

I Geodesy and reconstruction

I Grayscale morphology
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Reminders of the set theory I

Sets will be denoted with capital letters, such as A, B, . . ., and
elements of these sets by lowercase letters a, b, . . .

I Set equality
Two sets are equal if they contain the same elements:
X = Y ⇔ (x ∈ X ⇒ x ∈ Y and x ∈ Y ⇒ x ∈ X ). The
empty set is denoted as ∅.

I Inclusion
X is a subset of Y (that is, X is included in Y ) if all the
elements of X also belong to Y : X ⊆ Y ⇔ (x ∈ X ⇒ x ∈ Y ).

I Intersection
The intersection between X and Y is the set composed of the
elements that belong to both sets:
X ∩ Y = {x such that x ∈ X and x ∈ Y }.
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Reminders of the set theory II

I Union
The union between two sets is the set that gathers all the
elements that belong to at least one set:
X ∪ Y = {x such that x ∈ X or x ∈ Y }.

I Difference
The set difference between X and Y , denoted by X − Y or
X\Y is the set that contains the elements of X that are not
in Y : X − Y = {x |x ∈ X and x 6∈ Y }.
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Reminders of the set theory III

I Complementary
Assume that X is a subset of a E space, the complementary
set of X with respect to E is the set, denoted X c , given by
X c = {x such that x ∈ E and x 6∈ X}.

X X c

I Symmetric
The symmetric set, X̌ , of X is defined as X̌ = {−x |x ∈ X}.
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Reminders of the set theory IV

I Translated set
The translate of X by b is given by {z ∈ E|z = x + b, x ∈ X}.

X Xb

o b
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Basic morphological operators I

Erosion

Definition

Morphological erosion

X 	 B = {z ∈ E|Bz ⊆ X}. (63)

The following algebraic expression is equivalent to the previous
definition:

Definition

X 	 B =
⋂
b∈B

X−b. (64)

B is named “structuring element”.
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Basic morphological operators II

X

b1

b2

0

X

XX
X−b2 X−b2

X−b1

X−b1

X 	 B

Figure : Algebraic interpretation of the erosion.

88 / 235



Erosion with a disk

B

X

X 	 B

Figure : Erosion of X with a disk B. The origin of the structuring
element is drawn at the center of the disk (with a black dot).
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Dilation I

Definition

From an algebraic perspective, the dilation (dilatation in French!),
is the union of translated version of X :

X ⊕ B =
⋃
b∈B

Xb =
⋃
x∈X

Bx = {x + b|x ∈ X , b ∈ B}. (65)
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Dilation II

X

X

b1

b2

0

X

Xb2

Xb2

Xb1

Xb1

X ⊕ B

Figure : Illustration of the algebraic interpretation of the dilation
operator.
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Dilation III

B

X

X ⊕ B

Figure : Dilation of X with a disk B.
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Properties of the erosion and the dilation

Duality
Erosion and dilation are two dual operators with respect to
complementation:

X 	 B̌ = (X c ⊕ B)c (66)

X 	 B = (X c ⊕ B̌)c (67)

Erosion and dilation obey the principles of “ideal” morphological
operators:

1 erosion and dilation are invariant to translations:
Xz 	 B = (X 	 B)z . Likewise,Xz ⊕ B = (X ⊕ B)z ;

2 erosion and dilation are compatible with scaling:
λX 	 λB = λ(X 	 B) and λX ⊕ λB = λ(X ⊕ B);

3 erosion and dilation are local operators (if B is bounded);

4 it can be shown that erosion and dilation are continuous
transforms.
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Algebraic properties

I erosion and dilation are increasing operators: if X ⊆ Y , then
(X 	 B) ⊆ (Y 	 B) and (X ⊕ B) ⊆ (Y ⊕ B);

I if the structuring element contains the origin, then the erosion
is anti-extensive and the dilation is extensive, that is
X 	 B ⊆ X and X ⊆ X ⊕ B.
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Morphological opening I

Definition

The opening results from cascading an erosion and a dilation with
the same structuring element:

X ◦ B = (X 	 B)⊕ B. (68)
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Interpretation of openings (alternative definition)

The interpretation of the opening operator (which can be seen as
an alternative definition) is based on

X ◦ B =
⋃
{Bz |z ∈ E and Bz ⊆ X}. (69)

In other words, the opening of a set by structuring element B is
the set of all the elements of X that are covered by a translated
copy of B when it moves inside of X .
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Morphological closing

Definition

A closing is obtained by cascading a dilation and an erosion with a
unique structuring element:

X • B = (X ⊕ B)	 B. (70)

Opening and closing are dual operators with respect to set
complementation: indeed,

(X ◦ B)c = X c • B̌ (71)

and
(X • B)c = X c ◦ B̌. (72)
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Illustration

Figure : Opening and closing of X with a disk B.
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Opening and closing properties

By construction, the opening and closing follow the “ideal”
principles of morphological operators.
The most important algebraic properties of X ◦ B and X • B are

1 opening and closing are increasing. If X ⊆ Y , then

(X ◦ B) ⊆ (Y ◦ B) and (X • B) ⊆ (Y • B) (73)

2 opening is anti-extensive, and closing is extensive

X ◦ B ⊆ X , X ⊆ X • B (74)

3 opening and closing are idempotent operators (projective
operators). This means that

(A ◦ B) ◦ B = A ◦ B and (A • B) • B = A • B (75)
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General properties I

I Dilation is commutative and associative

X ⊕ B = B ⊕ X (76)

(X ⊕ Y )⊕ C = X ⊕ (Y ⊕ C ) (77)

I Dilation distributes the union

(
⋃
j

Xj)⊕ B =
⋃
j

(Xj ⊕ B) (78)

I The erosion distributes the intersection

(
⋂
j

Xj)	 B =
⋂
j

(Xj 	 B) (79)

I Chain rule (≡ cascading rule):

X 	 (B ⊕ C ) = (X 	 B)	 C (80)
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General properties II

I The opening and closing are not related to the exact location
of the origin (so they do not depend on the location of the
origin when defining B). Let z ∈ E

X ◦ Bz = X ◦ B (81)

X • Bz = X • B (82)
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A practical problem: dealing with borders I

X X

Image

border

Physical assumption 1 Physical assumption 2

Figure : Two possible physical assumptions for borders.
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A practical problem: dealing with borders II

X X

X 	 B X 	 B

Physical assumption 1 Physical assumption 2

Some pixels added to X
B

Figure : Comparison of the effects of two physical assumptions on the
computation of the erosion of X .
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Neighboring transforms

The Hit or Miss transform is defined such as
X ⇑ (B,C ) = {x |Bx ⊆ X , Cx ⊆ X c} (83)

If C = ∅ the transform reduces to an erosion of X by B.
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Geodesy and reconstruction I

Geodesic dilation
A geodesic dilation is always based on two sets (images).

Definition

The geodesic dilation of size 1 of X conditionally to Y , denoted

D
(1)
Y (X ), is defined as the intersection of the dilation of X and Y :

∀X ⊆ Y , D
(1)
Y (X ) = (X ⊕ B) ∩ Y (84)

where B is usually chosen according to the frame connectivity (a
3× 3 square for a 8-connected grid).
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Geodesy and reconstruction II
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(a) Set to be dilated (b) Geodesic mask

(c) Elementary dilation (d) Geodesic dilation

Figure : Geodesic dilation of size 1.
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Geodesy and reconstruction III

Definition

The size n geodesic dilation of a set X conditionally to Y , denoted

D
(n)
Y (X ), is defined as n successive geodesic dilation of size 1:

∀X ⊆ Y , D
(n)
Y (X ) = D

(1)
Y (D

(1)
Y (. . . D

(1)
Y︸ ︷︷ ︸

n times

(X ))) (85)

where B is usually chosen according to the frame connectivity.
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Morphological reconstruction

Definition

The reconstruction of X conditionally to Y is the geodesic dilation
of X until idempotence. Let i be the iteration during which
idempotence is reached, then the reconstruction of X is given by

RY (X ) = D
(i)
Y (X ) with D

(i+1)
Y (X ) = D

(i)
Y (X ). (86)

(a) Blobs (b) Marking blobs (c) Reconstructed blobs

Figure : Blob extraction by marking and reconstruction.
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Grayscale morphology I

Notion of a function
Let G be the range of possible grayscale values. An image is
represented by a function f : E → G, which projects a location of a
value of G. In practice, an image is not defined over the entire
space E , but on a limited portion of it, a compact D.

We need to define an order between functions.

Definition

[Partial ordering between functions] Let f and g be functions.
f is inferior to g ,

f ≤ g if f (x) ≤ g(x), ∀x ∈ E (87)
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Grayscale morphology II

Definition

[Infimum and supremum] Let fi be a family of functions, i ∈ I .
The infimum (respectively the supremum) of this family, denoted
∧i∈I fi (resp. ∨i∈I fi ) is the largest lower bound (resp. the lowest
upper bound).

In the practical case of a finite family I , the supremum and the
infimum correspond to the maximum and the minimum
respectively. In that case,

∀x ∈ E ,
{

(f ∨ g)(x) = max(f (x), g(x))
(f ∧ g)(x) = min(f (x), g(x))

(88)
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Grayscale morphology III

Definition

The translate of a function f by b, denoted by fb, is defined as

∀x ∈ E , fb(x) = f (x − b). (89)

111 / 235



Additional definitions related to operators I

Definition

[Idempotence] An operator ψ is idempotent if, for each function,
a further application of it does not change the final result. That is,
if

∀f , ψ(ψ(f )) = ψ(f ) (90)

Definition

[Extensivity] An operator is extensive if the result of applying the
operator is larger that the original function

∀f , f ≤ ψ(f ) (91)
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Additional definitions related to operators II

Definition

[Anti-extensivity] An operator is anti-extensive if the result of
applying the operator is lower that the original function

∀f , f ≥ ψ(f ) (92)

Definition

[Increasingness] An increasing operator is such that it does not
modify the ordering between functions:

∀f , g , f ≤ g ⇒ ψ(f ) ≤ ψ(g) (93)

By extension, an operator ψ1 is lower that an operator ψ2 if, for
every function f , ψ1(f ) is lower to ψ2(f ):

ψ1 ≤ ψ2 ⇔ ∀f , ψ1(f ) ≤ ψ2(f ) (94)
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Erosion and dilation

Definition

Let B be the domain of definition of a structuring element. The
grayscale dilation and erosion (with a flat structuring element) are
defined, respectively as,

f ⊕ B =
∨
b∈B

fb(x) (95)

f 	 B =
∧
b∈B

f−b(x) (96)
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Numerical example (B = {−1, 0, 1})

f (x) 25 27 30 24 17 15 22 23 25 18 20

f (x − 1) 25 27 30 24 17 15 22 23 25 18

f (x) 25 27 30 24 17 15 22 23 25 18 20

f (x + 1) 27 30 24 17 15 22 23 25 18 20

f 	 B(x) = min 25 24 17 15 15 15 22 18 18

f ⊕ B(x) = max 30 30 30 24 22 23 25 25 25

Typical questions:

I best algorithms? (note that there is some redundancy
between neighboring pixels)

I how do proceed around borders?
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Algorithms

I Based on the decomposition of the structuring element:

f 	 (H ⊕ V ) = (f 	 H)	 V
f 	 (B ⊕ B) = (f 	 B)	 ∂(B)

I Appropriate structure for storing and propagating the local
min and max

queues
histogram
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Illustration I

f
f ⊕ B

f 	 B

B

Figure : Erosion of a function.
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Illustration II

Figure : Erosions with squares of increasing sizes.
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Illustration III

Figure : Dilations with squares of increasing sizes.
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Morphological opening and closing I

The opening f ◦ B is obtained by cascading an erosion followed by
a dilation. The closing f • B is the result of a dilation followed by
an erosion.

Definition

[Morphological opening and closing]

f ◦ B = (f 	 B)⊕ B (97)

f • B = (f ⊕ B)	 B (98)
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Morphological opening and closing II

B

f

f ◦ B

Figure : Opening of a function.
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Morphological opening and closing III

B

f
f • B

Figure : Closing of a function.
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Morphological opening and closing IV

Figure : Opening with squares of increasing sizes.
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Morphological opening and closing V

Figure : Closing with squares of increasing sizes.
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Morphological opening and closing VI

(a) Original image f (b) Erosion with a square

(c) Dilation with a square (d) Opening with a square

Figure : Morphological operators on a grayscale image.
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Properties of grayscale morphological operators

Erosion and dilation are increasing operators

f ≤ g ⇒
{

f 	 B ≤ g 	 B
f ⊕ B ≤ g ⊕ B

(99)

Erosion distributes the infimum and dilation distributes the
supremum

(f ∧ g)	 B = (f 	 B) ∧ (g 	 B) (100)

(f ∨ g)⊕ B = (f ⊕ B) ∨ (g ⊕ B) (101)

Opening and closing are idempotent operators

(f ◦ B) ◦ B = f ◦ B (102)

(f • B) • B = f • B (103)

Opening and closing are anti-extensive and extensive operators
respectively

f ◦ B ≤ f (104)

f ≤ f • B (105)
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Reconstruction of grayscale images I

Definition

The reconstruction of f , conditionally to g , is the geodesic dilation
of f until idempotence is reached. Let i , be the index at which
idempotence is reached, the reconstruction of f is then defined as

Rg (f ) = D(i)
g (f ) with D(i+1)

g (f ) = D(i)
g (f ). (106)
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Reconstruction of grayscale images II

Figure : Original image, eroded image, and several successive geodesic
dilations.
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Reconstruction of grayscale images III

Figure : Original image, eroded image, reconstructed image starting from
the eroded image, and difference image (reverse video).
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Reconstruction of grayscale images IV

Figure : Original image, dilated image, reconstructed image starting from
the dilated image (dual reconstruction), and difference image (reverse
video).
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Outline

1 Image representation and fundamentals

2 Unitary transforms and coding

3 Linear filtering

4 Mathematical morphology

5 Non-linear filtering

6 Feature extraction

7 Texture analysis

8 Segmentation

9 Motion analysis
Motion analysis by tracking
Motion analysis by background subtraction

10 Template matching

11 Application: pose estimation

131 / 235



Non-linear filtering

I Rank filters

Median

I Morphological filters

Algebraic definition
How to build a filter?
Examples of filters

Alternate sequential filters
Morphological filter
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Introduction to rank filters

f (x) 25 27 30 24 17 15 22 23 25 18 20

f (x − 1) ? 25 27 30 24 17 15 22 23 25 18

f (x) 25 27 30 24 17 15 22 23 25 18 20

f (x + 1) 27 30 24 17 15 22 23 25 18 20 ?

f 	 B(x) = min 25 24 17 15 15 15 22 18 18

f ⊕ B(x) = max 30 30 30 24 22 23 25 25 25

We could order the values

f (x) 25 27 30 24 17 15 22 23 25 18 20

1 25 24 17 15 15 15 22 18 18 18

2 25 27 27 24 17 17 22 23 23 20 20

3 27 30 30 30 24 22 23 25 25 25

f 	 B(x) = min 25 24 17 15 15 15 22 18 18

f ⊕ B(x) = max 30 30 30 24 22 23 25 25 25
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Definition of rank filters

Let k ∈ N be a threshold.

Definition

[Rank filter] The operator or k-order rank filter, denoted as
ρB,k(f )(x), defined with respect to the B structuring element, is

ρB,k(f )(x) =
∨
{t ∈ G|

∑
b∈B

[f (x + b) ≥ t] ≥ k} (107)

The simplest interpretation is that ρB,k(f )(x) is the k-est value
when all the f (x + b) values are ranked in decreasing order.
Rank filters are ordered. Let ](B), be the surface of B, then

ρB,](B)(f )(x) ≤ ρB,](B)−1(f )(x) ≤ . . . ≤ ρB,1(f )(x) (108)
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Median filter I

If n is odd, the k = 1
2 (](B) + 1) choice leads to the definition of a

self-dual operator, that is a filter that produces the same result as
if applied on the dual function. This operator, denoted medB , is
the median filter.

f (x) 25 27 30 24 17 15 22 23 25 18 20

1 25 24 17 15 15 15 22 18 18 18

medB 25 27 27 24 17 17 22 23 23 20 20

3 27 30 30 30 24 22 23 25 25 25

f 	 B(x) = min 25 24 17 15 15 15 22 18 18

f ⊕ B(x) = max 30 30 30 24 22 23 25 25 25
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Median filter II

(a) Original image f + noise (b) Opening with a 5× 5 square

(c) Low-pass Butterworth (fc = 50) (d) Median with a 5× 5 square

Figure : Comparison of filters on a noisy image.
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Effect of the size of the median filter

(a) Image f (b) 3× 3 median (c) 5× 5 median
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Notes about the implementation

The median filter is not idempotent. Successive applications can
result in oscillations (theoretically if the domain of the function is
infinite)

...

...

...

...

...

...

Figure : Repeated application of a median filter.

Also,
med5×5(f ) 6= med1×5(med5×1(f )) (109)

but it’s an acceptable approximation.
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Morphological filters

Definition

By definition, a filter is an algebraic filter iff the operator is
increasing and idempotent:

ψ is an algebraic filter ⇔ ∀f , g

{
f ≤ g ⇒ ψ(f ) ≤ ψ(g)
ψ(ψ(f )) = ψ(f )

(110)

Definition

An algebraic opening is an operator that is increasing, idempotent,
and anti-extensive. Formally,

∀f , g , f ≤ g ⇒ ψ(f ) ≤ ψ(g) (111)

∀f , ψ(ψ(f )) = ψ(f ) (112)

∀f , ψ(f ) ≤ f (113)

An algebraic closing is defined similarly, except that the operator is
extensive. 139 / 235



How to build a filter? I

By combining know filters!

X
B C

Figure : The composition of two openings is not an opening.
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How to build a filter? II

New filters can be built starting from openings, denoted αi , and
closings, denoted φi . The rules to follow are:

1 the supremum of openings is an opening: (
∨

i αi ) is an
opening;

2 the infimum of closings is a closing: (
∧

i φi ) is a closing.
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Composition rules: structural theorem

Let ψ1 and ψ2 be two filters such that ψ1 ≥ I ≥ ψ2 (for example,
ψ1 is a closing and ψ2 an opening).

Theorem

[Structural theorem] Let ψ1 and ψ2 be two filters such that
ψ1 ≥ I ≥ ψ2, then

ψ1 ≥ ψ1ψ2ψ1 ≥ (ψ2ψ1 ∨ ψ1ψ2) ≥ (ψ2ψ1 ∧ ψ1ψ2) ≥ ψ2ψ1ψ2 ≥ ψ2

(114)
ψ1ψ2, ψ2ψ1, ψ1ψ2ψ1, ψ2ψ1ψ2 are all filers (115)

Note that there is no ordering between ψ1ψ2 and ψ2ψ1.
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Examples of filters I

Alternate Sequential Filters (ASF)
Let γi (φi ) be an opening (resp. a closing) of size i and I be the
identity operatog (i.e. I (f ) = f ). We assume that there is the
following order:

∀i , j ∈ N, i ≤ j , γj ≤ γi ≤ I ≤ φi ≤ φj , (116)

For each index i , we define these operators:

mi = γiφi , ri = φiγiφi ,

ni = φiγi , si = γiφiγi .
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Examples of filters II

Definition

[Alternate Sequential Filters (ASF)] For each index i ∈ N, the
following operators are the alternate sequential filters of index i

Mi = mimi−1 . . .m2m1 Ri = ri ri−1 . . . r2r1 (117)

Ni = nini−1 . . . n2n1 Si = si si−1 . . . s2s1 (118)
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Examples of filters III

Theorem

[Absorption law]

i ≤ j ⇒ MjMi = Mj but MiMj ≤ Mj (119)

(a) Image f (b) M1(f ) (c) M2(f ) (d) M3(f )

(e) 5× 5 median (f) N1(f ) (g) N2(f ) (h) N3(f )

Figure : Use of alternate sequential filters to remove some noise.
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Toggle mappings I

The morphological center is a typical example of toggle mapping.

Definition

[Morphological center] Let ψi be a family of operators. The
morphological center β of a function f with respect to the ψi

family is defined, for each location x of the domain of f as follows:

β(f )(x) = (f (x) ∨ (
∧
i

ψi (x))) ∧ (
∨
i

ψi (x)) (120)
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Toggle mappings II

Figure : Morphological center of a one-dimensional signal.
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Feature extraction and border/contour/edge detection

I Linear operators

First derivate operators
Second derivate operators
Sampling the derivate

Residual error
Synthesis of operators for a fixed error

Practical expressions of gradient operators and convolution
masks

I Non-linear operators

Morphological gradients
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What’s a border/contour/edge?

Figure : An image (diagonal ramp) and its contours (in black).
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Can we locate edge points?

x1 20

transition

f (x)

Figure : Problem encountered to locate an edge point.
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Linear operators I

For derivate operators, we have to address two problems:

1 find the best approximate for the derivate

2 avoid an excessive amplification of the noise

These are two apparent contradictory requirements ⇒ trade-offs
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Linear operators II

Figure : Images (left-hand side) and gradient images (right-hand side)
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First derivate operator I

Let us consider the partial derivate of a function f (x , y) with
respect to x . Its Fourier transform is given by

∂f

∂x
(x , y)
 2πjuF(u, v) (121)

In other words, deriving with respect to x consists of multiplying
the Fourier transform of f (x , y) by the following transfer function
Hx(u, v) = 2πju, or of filtering f (x , y) with the following impulse
function:

hx(x , y) =

ˆ +∞

−∞

ˆ +∞

−∞
(2πju) e2πj(xu+yv)dudv (122)

If we adopt a vectorial notation of the derivate, we define the
gradient ∇f of image f by

∇f =
∂f

∂x
−→ex +

∂f

∂y
−→ey = (hx ⊗ f )−→ex + (hy ⊗ f )−→ey (123)
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First derivate operator II

Definition

[Gradient amplitude]

|∇f | =
√

(hx ⊗ f )2 + (hy ⊗ f )2 (124)

The amplitude of the gradient is sometimes approximated by

|∇f | ' |hx ⊗ f |+ |hy ⊗ f | (125)

which introduces a still acceptable error (in most cases) of 41%!

Definition

[Gradient orientation]

ϕ∇f = tan−1
(

hy ⊗ f

hx ⊗ f

)
(126)
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Second derivate operator

Definition

[Laplacian]

∇2f =
∂2f

∂x2
+
∂2f

∂y 2
= (hxx ⊗ f ) + (hyy ⊗ f ) (127)

As the first derivate, it can be shown that in the Fourier domain,
the Laplacian consists to apply the following filter

∇2f 
 −4π2(u2 + v 2)F(u, v) (128)

As can be seen, high frequencies tend to be amplified.
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Sampling the gradient and residual error I

In order to derive practical expressions for the computation of a
derivate, we adopt the following approach:

I develop some approximations and compute the resulting error,

I study the spectral behavior of these approximations, and

I discuss some practical approximations expressed in the terms
of convolution masks.

Centered approximations?
An approximation of the first derivate is given by

f ′a(x) =
f (x + h)− f (x − h)

2h
(129)

where h is the distance between two samples and index a denotes
that it is an approximation. Please note that his approximation
consists to filter f (x) by the following convolution mask

1

2h

[
−1 0 1

]
(130)
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Sampling the gradient and residual error II

For the second derivate, one possible approximation is

f ′′a (x) =
f (x + h)− 2f (x) + f (x − h)

h2
(131)

Computation of the residual error. Let’s consider the following
Taylor extensions

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(x) + . . .+

hn

n!
f (n)(x) + . . . (132)

f (x − h) = f (x)− h f ′(x) +
h2

2
f ′′(x) + . . .+ (−1)n

hn

n!
f (n)(x) + . . .(133)

First derivate. By subtraction, member by member, these two
equalities, one obtains

f (x +h)−f (x−h) = 2h f ′(x)+
2

3!
h3f (3)(x)+. . . = 2h f ′(x)+O(h3)

(134)
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Sampling the gradient and residual error III

After re-ordering,

f ′(x) =
f (x + h)− f (x − h)

2h
+ O(h2) (135)

Second derivatee. Like for the first derivate, we use the Taylor
extension by add them this time (so we sum up (132) and (133)),

f (x + h) + f (x − h) = 2f (x) + h2f ′′(x) +
2

4!
h4f (4)(x) + . . . (136)

As a result:

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2
+ O(h2) (137)

The f ′′a (x) approximation is also of the second order in h.
Synthesis of expressions with a pre-defined error. Another
approximation, of order O(h4), can be built. It corresponds to

f ′a(x) =
−f (x + 2h) + 8f (x + h)− 8f (x − h) + f (x − 2h)

12h
(138)
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Spectral behavior of discrete gradient operators I

Consider the one-dimensional continuous function f (x) and the
following first derivate:

f ′a(x) =
f (x + h)− f (x − h)

2h
(139)

Its Fourier is given by

f (x + h)− f (x − h)

2h



e2πjuh − e−2πjuh

2h
F(u) (140)

which can be rewritten as

f (x + h)− f (x − h)

2h

 (2πju)

sin(2πhu)

2πhu
F(u) (141)

where the (2πju) factor corresponds to the ideal (continuous)
expression of the first derivate.
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Spectral behavior of discrete gradient operators II

Let us now consider the approximation of the second derivate

f ′′a (x) =
f (x + h)− 2f (x) + f (x − h)

h2
(142)

Its Fourier is given by

f (x + h)− 2f (x) + f (x − h)

h2

 (−4π2u2)

(
sin(πhu)

(πhu)

)2

F(u)

(143)
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Spectral behavior of discrete gradient operators III
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Figure : Spectral behavior of the derivate approximations (for h = 1).
Left: first derivate, right: second derivate.
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Practical expressions of gradient operators and convolution
masks I

[
1 −1

]
(144)

corresponds to the following non-centered approximation of the
first derivate:

f (x + h, y)− f (x , y)

h
(145)

This “convolution mask” has an important drawback. Because it is
not centered, the result is shifted by half a pixel. One usually
prefers to use a centered (larger) convolution mask such as[

1 0 −1
]

(146)
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Practical expressions of gradient operators and convolution
masks II

In the y direction, this becomes 1
0
−1

 (147)

But then, it is also possible to use a diagonal derivate: 1 0 0
0 0 0
0 0 −1

 (148)
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Practical expressions of gradient operators and convolution
masks III

Figure : (a) original image, (b) after the application of a horizontal mask, (c)

after the application of a vertical mask, and (d) mask oriented at 1350.
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Practical problems

The use of convolution masks has some drawbacks:

I Border effects. Solutions:

(i) put a default value outside the image;
(ii) mirroring extension: copy inside values starting from the
border;
(iii) periodization of the image –pixels locate on the left are
copied on the right of the image,
(iv) copy border values to fill an artificial added border.

I The range (dynamic) of the possible values is modified.

I It might be needed to apply a normalization factor.
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Prewitt gradient filters

[hx ] =
1

3

 1 0 −1
1 0 −1
1 0 −1

 =
1

3

 1
1
1

⊗ [ −1 0 1
]

(149)

[hy ] =
1

3

 1 1 1
0 0 0
−1 −1 −1

 =
1

3

 1
0
−1

⊗ [ 1 1 1
]

(150)

Figure : Original image, and images filtered with a horizontal and vertical
Prewitt filter respectively.
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Sobel gradient filters

[hx ] =
1

4

 1 0 −1
2 0 −2
1 0 −1

 =
1

4

 1
2
1

⊗ [ −1 0 1
]

(151)

Figure : Original image, and images filtered with a horizontal and vertical
Sobel filter respectively.

168 / 235



Second derivate: basic filter expressions

[
1 −2 1

]  1
−2
1


 0 1 0

1 −4 1
0 1 0


 1 1 1

1 −8 1
1 1 1



Figure : Results after filtering with the second derivate mask filters.
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Non-linear operators I

Morphological gradients

I Erosion gradient operator:

GE (f ) = f − (f 	 B) (152)

I Dilation gradient operator:

GD(f ) = (f ⊕ B)− f (153)

I Morphological gradient of Beucher: GE (f ) + GD(f ).

I Top-hat operator: f − f ◦ B;

I min/max gradient operators: min(GE (f ), GD(f )),
max(GE (f ), GD(f ))

I Non-linear Laplacian: GD(f )− GE (f ).
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Gradient of Beucher

(a) Original image f (b) f ⊕ B

(c) f 	 B (d) (f ⊕ B)− (f 	 B) (reverse video)

Figure : Gradient of Beucher.
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Different non-linear border detectors

(a) (f ⊕ B)− (f 	 B) (b) f − f ◦ B (top-hat)

(c) max(GE (f ), GD(f )) (d) GD(f )− GE (f )
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Texture analysis

I Definition?

I Statistical characterization of textures

Local mean
Local standard deviation
Local histogram
Co-occurrence matrix of a grayscale image

I Geometrical characterization of textures

Spectral approach
Texture and energy
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Goals of texture analysis?

The major question related to texture are:

I texture analysis. The purpose is to characterize a texture by a
set of parameters called “texture descriptors”.

I texture recognition.

I image segmentation.
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Definition

Definition

A texture is a signal than can be extended naturally outside of his
domain.

Figure : One possible texture (following Lantuéjoul).
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Examples of “real” textures
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Simple analysis of a grayscale image

Figure : Example of an image with two textures.
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Statistical descriptors of textures

Simple descriptors:

I mean

I variance

Figure : Textures with identical means and variances.
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Statistics defined inside of a local window I

(a) (b)

Figure : Illustration of texture statistics computed over a circle. (a)
grayscale mean (103 and 156 respectively) (b) standard deviation (32 and
66 respectively).
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Local statistics

Definition

The local mean over a spatial window B is defined as

µf =
1

](B)

∑
(x ,y)∈B

f (x , y) (154)

Definition

The standard deviation over a spatial window B is defined as

σf =

√√√√∑(x ,y)∈B [f (x , y)− µf ]2

](B)
(155)
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Global and local histograms I

Definition

The histogram of an image is the curve that displays the frequency
of each grayscale level.

Let us consider this image:

0 0 0 0 0 0
0 2 1 2 2 2
2 1 1 1 2 2
2 1 1 1 2 2
3 2 1 0 0 0
3 3 3 3 2 0
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Global and local histograms II

0 1 2 3

4

8

12

Niveau de gris

Histogramme

Figure : Non-normalized histogram of an image.

Figure : An image and its global histogram (here B accounts for the
whole image domain).
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Global and local histograms III

Definition

With a smaller window B, it is possible to define a local
(normalized) histogram p(l) as

p(l) =
] {(x , y) ∈ B | f (x , y) = l}

](B)
(156)
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Histogram statistics

I Mean

µL =
L−1∑
l=0

l p(l) (157)

where L denotes the number of possible grayscale levels inside
the B window.

I Standard deviation

σL =

√√√√L−1∑
l=0

(l − µL)2p(l) (158)

I Obliquity

Ss =
1

σ3
L

L−1∑
l=0

(l − µL)3 p(l) (159)

I “Kurtosis”

Sk =
1

σ4

L−1∑
l=0

(l − µL)4 p(l)− 3 (160)
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Co-occurrence matrix of a grayscale image I

Definition. A co-occurrence matrix is defined by means of a
geometrical relationship R between two pixel locations (x1, y1) and
(x2, y2). An example of such a geometrical relationship is

x2 = x1 + 1 (161)

y2 = y1 (162)

for which (x2, y2) is at the right of (x1, y1).
The co-occurrence matrix CR(i , j) is squared, with the L× L
dimensions, where L is the range of all possible grayscale values
inside of B. Indices of the co-occurrence matrix then indicates the
amount of grayscale level value pairs as defined by R.
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Co-occurrence matrix of a grayscale image II

Construction of the CR(i , j) matrix:

1 Matrix initialization: ∀i , j ∈ [0, L[ : CR(i , j) = 0.

2 Filling the matrix. If the relationship R between two pixels
(x1, y1) and (x2, y2) is followed, then

CR (f (x1, y1), f (x2, y2))← CR (f (x1, y1), f (x2, y2)) + 1
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Example

Let us consider an image with four grayscale levels (L = 4, and
l = 0, 1, 2, 3):

f (x , y) =

0 0 0 1
0 0 1 1
0 2 2 3
2 2 3 3

(163)

P0o ,d(i , j) = ]{(x1, y1), (x2, y2) ∈ B | y1 = y2, |x2 − x1| = d ,

f (x1, y1) = i and f (x2, y2) = j} (164)

The P0o ,1 and P90o ,1 matrices are 4× 4 matrices respectively given
by

P0o ,1 =


6 2 1 0
2 2 0 0
1 0 4 2
0 0 2 2

 P90o ,1 =


6 1 2 0
1 2 1 1
2 1 2 1
0 1 1 2

 (165)
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Geometrical characterization of textures

Use of the Fourier transform

Figure : Spectral characterization of a texture. Right-hand images are
the modules of the Fourier transforms.
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Textures and energy I

Measures are derived from three simple vectors: (1) L3 = (1, 2, 1)
that computes the mean, (2) E3 = (−1, 0, 1) that detects edges,
and (3) S3 = (−1, 2,−1) which corresponds to the second
derivate. By convolving these symmetric vectors, Laws has derived
9 basic convolution masks:

1
36

[
1 2 1
2 4 2
1 2 1

]
1

12

[
1 0 −1
2 0 −2
1 0 −1

]
1

12

[ −1 2 −1
−2 4 −2
−1 2 −1

]
Laws 1 Laws 2 Laws 3

1
12

[ −1 −2 −1
0 0 0
1 2 1

]
1
4

[
1 0 −1
0 0 0
−1 0 1

]
1
4

[ −1 2 −1
0 0 0
1 −2 1

]
Laws 4 Laws 5 Laws 6

1
12

[ −1 −2 −1
2 4 2
−1 −2 −1

]
1
4

[ −1 0 1
2 0 −2
−1 0 1

]
1
4

[
1 −2 1
−2 4 −2
1 −2 1

]
Laws 7 Laws 8 Laws 9
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Textures and energy II

Textures Laws 3 Laws 5

a typical 5× 5 filter Laws 4 Laws 9

Figure : Laws “residues” (reverse video).
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Image segmentation

I Problem statement

I Segmentation by thresholding

I Segmentation by region detection (region growing)

Watershed

General considerations:

I a very specific problem statement is not always easy.

I chicken-and-egg problem; maybe segmentation is an
ill-conditioned problem.
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Problem statement

Definition

Generally, the problem of segmentation consists in finding a set of
non-overlapping regions R1, . . . , Rn such that

E =
n⋃

i=1

Rn and ∀i 6= j , Ri ∩ Rj = ∅ (166)

Definition

More formally, the segmentation process is an operator φ on an
image I that outputs, for example, a binary image φ(I ) that
differentiates regions by selecting their borders.
An alternative consists to attribute a different label to each pixel of
different regions (this is called region labeling).

As any similar operator, segmentation can be local or global. For
local segmentation techniques, the results for one given pixel does
not impact the segmentation result outside a close neighborhood.
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A first typology of segmentation techniques and
comparisons

Family of
segmentation
techniques

input local/global markers

Thresholding image local (pixel) no

Watershed image,
gradient, etc

global yes
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Segmentation by thresholding I

(a) Original image (b) Thresholding at 110

(c) Thresholding at 128 (d) Thresholding after background equalization
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Segmentation by thresholding II

Rationale
There are two contents:

1 “background” pixels

2 “foreground” pixels

Assumptions to solve the segmentation problem:

1 the probability density functions of the two content types are
different.

2 one threshold or two thresholds (Otsu’s method) are sufficient.
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Segmentation by thresholding III

Distribution du fond

seuil optimal
seuil optimal

seuil optimal

Distribution des objets

seuil
seuil seuil

???conventionnel
conventionnel

conventionnel

Figure : Optimal threshold.
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Segmentation by watershed

In the terms of a topographic surface, a catchment basin C(M) is
associated to every minimum M.

LPE

bassins versants

minima

Figure : Minimums, catchment basins, and watershed.
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Formal expression and principles of a segmentation
algorithm based on the watershed

Approach:

I first, we introduce the case of binary images.

I definition of geodesic path and distance.

I description of an algorithm that handles a stack of
thresholded images
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Geodesic path

Let X be a binary image.

Definition

[Geodesic path] A geodesic path, of length l , between two points
s and t is a series of l + 1 pixels x0 = s, x1, . . . , xl = t such that

∀i ∈ [0, l ], xi ∈ X and ∀i ∈ [0, l ], xi−1, xi are neighbors (167)
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Geodesic distance

X

x
y

Figure : The shortest path between x and y .

Definition

[Geodesic distance] The geodesic distance between two points s
and t is the length of the shortest geodesic path linking s to t; the
distance is infinite if such a path does not exist.
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Algorithm for the construction of the geodesic skeleton by
growing the zone of influence

Notations
The zone of influence of a set Zi , is denoted by ZI (domain =X,
center = Zi ) and its frontier by FR(domain =X, center = Zi ).
The skeleton by zone of influence (SZI) is obtained via the
following algorithm:

I first, one delineates the Zi zones of each region;

I for remaining pixels, an iterative process is performed until
stability is reached: if a pixel has a neighbor with an index i ,
then this pixel gets the same index; pixels with none or two
different indices in their neighborhood are left unchanged;

I after all the iterations, all the pixels (except pixels at the
interface) are allocated to one region of the starting regions
Zi .
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Example

X

Z2 Z3

Z1

Figure : Geodesic skeleton.
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The case of grayscale images (a gradient image for
example) I

dam
dam

minimums

water level

Figure : A dam is elevated between two neighboring catchment basins.
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The case of grayscale images (a gradient image for
example) II

Notations:

I f is the image.

I hmin and hmax are the limits of the range values of f on the
function support (typically, hmin = 0 and hmax = 255).

I Th(f ) = {x ∈ dom f : f (x) ≤ h} is a set obtained by
thresholding f with h. For h growing, we have a stack of
decreasing sets.

I Mi are the minimums and C(Mi ) are the catchment basins.
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Step by step construction

Let Ch(Mi ) be the subset of the Mi basin filled at “time” (or
“height”) h. Then

Ch(Mi ) = C(Mi ) ∩ Th(f ) (168)

In this expression, C(Mi ) is unknown.
Initialization:

I Ch min(M) = Th min(f ); the initialization considers that all the
local minimums are valid catchment basin originators.

Construction
∀h ∈ [hmin + 1, hmax ] : Ch(M) = ZIh ∪Minh (169)

with

I ZIh = influence zone (with domain Th(f ));

I Minh is the set of all the points of Th(f ) that have no label
after the growing process of influence zones. They correspond
to minimums that are introduced at level h.
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Markers

Marking is a process that allows to select only some of the local
minimums.
Watershed has the following advantages with respect to other
techniques (such as thresholding):

I the possibility to be applicable to any sort of input image
(original image, gradient, etc),

I the flexibility to put some markers to select only a few local
minimums. With markers, the amount of regions is exactly
equal to the number of markers put in the image.
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Motion analysis

There are basically two “pure” approaches to motion analysis in a
video sequence:

1 Approach by tracking (= motion estimation based
techniques):

detects some particular points in a video frame.
find the corresponding points in the next frame.
based on a model, interpret the trajectories of the points
(usually at the object level).

2 Approach by background subtraction:

build a reference frame or model with no foreground in it.
compare a next frame to the reference.
update the reference.
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Motion analysis by tracking: principles

There are several techniques but, usually, they involve the following
steps:

1 detect features in successive frames.

2 make some correspondences between the features detected in
consecutive frames

3 based on a model, regroup some features to facilitate tracking
objects.
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Feature detection

Some known feature detectors:
I Harris’s corner detector
I Scale Invariant Feature Transform (SIFT)
I Speeded Up Robust Features from an image (SURF)
I Features from Accelerated Segment Test (FAST)
I ...

Original image Features detected by SURF
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Feature correspondence
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Difficulties for feature correspondence

Typical questions/difficulties for tracking approaches (targeting
motion estimation):

I How to filter the features? (remove some useless features)

I How do we regroup features?

we need a model. But this introduces a bias towards the
model.

I How do we ensure continuity over time?

I What happens when occlusions occur?

I ...
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Introduction to motion analysis by background subtraction
I

I Objective: separate the foreground (pixels “in motion”) from
the background (“static” pixels).

I Steps:

[Initialization] build a reference frame or a model for the
background.

[Subtraction] compare the current frame to the reference
frame or model, and “subtract” the frame to get
a binary image indicating pixels who have
changed.

[Updating] update the reference frame or model.
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Introduction to motion analysis by background subtraction
II

One frame in the sequence Built reference frame

Figure : Building a reference frame or a model.
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Introduction to motion analysis by background subtraction
III

Original image Features detected by ViBe

Figure : Segmentation by background subtraction.
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Principles

I Major assumption: fixed camera
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Example

I Any application with moving objects

I Video-surveillance

220 / 235



Elementary method

Naive approach (static background)

Foreground is detected, pixel by pixel, as the difference between
the current frame and a static reference image (background):

|It − B| > threshold (170)

where

I It is the current pixel value (at time t),

I B is the reference background value for that pixel.

Problems:

I How do we choose the reference image?

I What’s the best threshold?
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Problem with the threshold
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Classical processing chain

pre-processing of an input frame
⇓

segmentation map after background processing
⇓

post-processing of the segmentation map

Typical post-processing operations are:

I morphological filtering (cleaning): erosion, dilation, opening,
area opening

I median filtering

I analysis of connected components

I shadow removal

I ...
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Choice for a reference image

Simple techniques

I One “good” image is chosen (usually a frame empty of
foreground objects).

I Exponentially updated reference image

Bt = αIt + (1− α)Bt−1 (171)

Typical value for α: 0.05

I Median of the last N frames.

Important choice:

I conservative update (only when the pixel belongs to the
background) or not (the pixel belongs to the foreground or the
background).
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Advanced techniques

The background is modelled as a probability density function to be
estimated

I One gaussian distribution per pixel

I Mixture of gaussians for each pixel

I Kernel based estimation of the probability density function
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One gaussian per pixel

For each pixel, the probability density function of observed values
is modeled by a single gaussian.

Once the model is built (here it means that we need to estimate
the mean and variance), we evaluate the distance to the mean. If

|It − µ| ≤ threshold× σ (172)

then the pixel belongs to the background.
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Mixture of Gaussians Model

Motivation: the probability density function of the background is
multi-modal

[Stauffer, 1999, 2000] [Power, 2002] [Zivkovic, 2006]
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Mixture of Gaussians Model

For each pixel:

P(X ) =
N∑
i=1

αiN(µi , σi ) (173)

Typical values for n: 3 or 5

Fundamental assumptions

I The background has a low variance.

I The background is more frequently visible than the foreground.
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Kernel Density Estimation (KDE) methods

For each pixel:

P(X ) =
N∑
i=1

αiKσ(X − Xi ) (174)

where {Xi}i=1, ...,N are the N last values observed (samples) for
that pixel, and Kσ() is a kernel probability function centered at Xi .

Decision rule

The pixel belongs to the background if P(X ) >threshold .

[Elgammal, 2000] [Zivkovic, 2006]
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Parameters of KDE techniques

Typical values

P(X ) =
∑N

i=1 αiKσ(X − Xi ) with

I Number of samples: N = 100

I Weight: αi = α = 1
N

I Spreading factor: σ = Variance(Xi )

I Probability density function chosen to be gaussian:
Kσ(X − Xi ) = N(Xi , σ

2)
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GMM techniques vs KDE techniques
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Challenges

I Input related issues

lighting changes

slow (day/night cycles)
fast (light switch, clouds in the sky, ...)

unwanted motions

camera shaking (wind)
in the background (tree leaves, waving grass, water)

appearance changes of foreground objects (reflections),
shadows, camouflage, ...

I Implementation related issues

Robustness
Real time
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