
BRAIN
A JOURNAL OF NEUROLOGY

Impact of blindness onset on the functional
organization and the connectivity of the
occipital cortex
Olivier Collignon,1,2,3 Giulia Dormal,3,4 Geneviève Albouy,5 Gilles Vandewalle,6 Patrice Voss,3
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Contrasting the impact of congenital versus late-onset acquired blindness provides a unique model to probe how experience at

different developmental periods shapes the functional organization of the occipital cortex. We used functional magnetic

resonance imaging to characterize brain activations of congenitally blind, late-onset blind and two groups of sighted control

individuals while they processed either the pitch or the spatial attributes of sounds. Whereas both blind groups recruited

occipital regions for sound processing, activity in bilateral cuneus was only apparent in the congenitally blind, highlighting

the existence of region-specific critical periods for crossmodal plasticity. Most importantly, the preferential activation of the

right dorsal stream (middle occipital gyrus and cuneus) for the spatial processing of sounds was only observed in the congeni-

tally blind. This demonstrates that vision has to be lost during an early sensitive period in order to transfer its functional

specialization for space processing toward a non-visual modality. We then used a combination of dynamic causal modelling

with Bayesian model selection to demonstrate that auditory-driven activity in primary visual cortex is better explained by direct

connections with primary auditory cortex in the congenitally blind whereas it relies more on feedback inputs from parietal

regions in the late-onset blind group. Taken together, these results demonstrate the crucial role of the developmental period of

visual deprivation in (re)shaping the functional architecture and the connectivity of the occipital cortex. Such findings are

clinically important now that a growing number of medical interventions may restore vision after a period of visual deprivation.
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Introduction
How specific brain regions attain, maintain and modify their func-

tional tuning regarding the processing of specific stimuli has long

fascinated researchers in the field of developmental neuroscience.

Indeed many have attempted to separate the ‘built-in’ functional

specialization of a specific region from the response properties that

are shaped by perceptual experience.

One of the most striking demonstrations of experience-depend-

ent plasticity comes from studies of congenitally blind individuals

in whom the occipital cortex massively changes its functional

tuning to support non-visual perceptual and cognitive functions

(Bavelier and Neville, 2002). Importantly, these plastic changes

appear to be compensatory in nature because they have been

shown to correlate with improved abilities in the remaining

senses (Amedi et al., 2003; Gougoux et al., 2005). This conclusion

is further supported by studies showing that the transient disrup-

tion of occipital activity induced by transcranial magnetic stimula-

tion impairs non-visual functions of congenitally blind individuals

(Cohen et al., 1997; Amedi et al., 2004; Collignon et al., 2007,

2009a, b).

In sighted individuals, a fundamental characteristic of the occipi-

tal cortex is domain specialization, wherein identifiable functional

areas specialize in a particular aspect of vision (Zeki et al., 1991).

Recent experiments have provided evidence that the occipital

cortex of the congenitally blind might follow a division of compu-

tational labour similar to the one observed in the sighted

(Collignon et al., 2009b; Ricciardi and Pietrini, 2011; Reich

et al., 2012). For instance, right dorsal occipital regions, which

are known to be preferentially involved in the processing of the

spatial relations among visual objects in sighted individuals (Haxby

et al., 1991), are preferentially activated during tasks involving the

spatial processing of non-visual inputs in congenitally blind indi-

viduals (Renier et al., 2010; Collignon et al., 2011b). Such studies

have shed new light on the ‘nature versus nurture’ debate regard-

ing brain development: whereas the recruitment of occipital re-

gions by non-visual inputs in the congenitally blind highlights the

ability of the brain to reorganize itself due to experience (nurture

influence), the observation of specialized cognitive modules in the

occipital cortex of congenitally blind, similar to those observed in

the sighted, highlights the intrinsic constraints imposed to such

plasticity (nature influence) (Collignon et al., 2012; Dormal and

Collignon, 2011).

Is there a limited time window in which these plastic changes

can occur? Neurophysiological reorganizations were first thought

to be relatively limited after childhood. This idea mainly derived

from a series of pioneering studies in the 1960s demonstrating

that early monocular deprivation had a dramatic and irreversible

impact on the organization of ocular dominance columns in pri-

mary visual cortex, whereas such deprivation had virtually no

effect when it occurred later in life (Hubel and Wiesel, 1970).

These classical studies established the existence of time-limited

epochs of stimulus exposure-induced plasticity, named ‘critical per-

iods’ (Wiesel and Hubel, 1965). The vast majority of the studies

investigating blindness-induced crossmodal plasticity have been

conducted with individuals deprived of sight early in life, and

the few studies that explored the persistence of crossmodal plastic

changes in late-onset blind individuals have provided inconsistent

results. Whereas some have shown auditory or tactile recruitment

of occipital regions in individuals that acquired blindness later in

life (Buchel, 1998; Burton, 2003; Voss et al., 2006), others have

suggested the existence of a critical period beyond which little or

no functional (Veraart et al., 1990; Cohen et al., 1999; Sadato

et al., 2002; Sanchez-Vives et al., 2006) or structural (Noppeney,

2007; Jiang et al., 2009) reorganization is possible. Consistent

with the latter hypothesis, a recent study showed that bilateral

middle occipito-temporal regions (hMT + /V5 as defined by a

visual motion localizer in a sighted group) responded to moving

sounds in congenitally blind but not in sighted, or in late-onset

blind individuals (Bedny et al., 2010). However, due to the region

of interest (for hMT + /V5) approach of the study, the authors did

not address whether more ‘global’ crossmodal reorganization

could be observed in the late-onset blind and, furthermore,

whether functional selectivity for moving sounds could be

observed outside of this region of interest. Here, we explored

whether crossmodal plastic changes could be observed in the oc-

cipital cortex of late-onset blind individuals and if such putative

crossmodal occipital recruitment follows organizational principles

similar to the ones observed in sighted individuals, as previously

demonstrated in the congenitally blind. We characterized brain

responses of a late-onset blind group when processing either the

pitch or the spatial attributes of identical sounds and compared

them with a group of matched sighted control subjects as well as

with previously reported findings in congenitally blind subjects per-

forming the same task (Collignon et al., 2011b).

Another key question relates to how non-visual information

reaches the reorganized occipital cortex of blind individuals.

Recently, Klinge et al. (2010) astutely used dynamic causal mod-

elling of signals acquired with functional MRI and demonstrated

stronger cortico-cortical connections from primary auditory cortex

to primary visual cortex in congenitally blind compared with

sighted controls, whereas no significant differences were found

concerning the thalamo-cortical connections [from medial genicu-

late nucleus to primary visual cortex (V1)]. These results suggest

that plastic changes in cortico-cortical connectivity play a crucial

role in relaying auditory information to the primary visual cortex of

early-onset blind individuals. However, two additional important

questions remain to be investigated. First, it is unclear whether V1

activation in the congenitally blind is driven by changes in direct

‘feed-forward’ long-range connections between primary temporal

and occipital cortices or if they are rather driven by changes in

indirect ‘feed-back’ connectivity from temporal to multisensory

parietal regions to occipital cortex. Second, it is equally unclear

how the age at blindness onset might influence such changes in

the connectivity patterns with occipital areas. We therefore used

dynamic causal modelling to investigate whether auditory activa-

tions of primary occipital cortex in the congenitally blind and late-

onset blind are more likely due to reorganization in direct (feed-

forward) rather than in indirect (feed-back) cortical pathways.

To summarize, the goal of the present study was: (i) to contrast

the crossmodal recruitment of occipital regions by sounds when

sight is lost before or after the development of the visual system;

(ii) to test whether such putative crossmodal plasticity in the

2 | Brain 2013: Page 2 of 15 O. Collignon et al.

 at U
niversite de M

ontreal on July 8, 2013
http://brain.oxfordjournals.org/

D
ow

nloaded from
 

http://brain.oxfordjournals.org/


occipital cortex of the late-onset blind shows some level of func-

tional specialization similar to the one observed in the congenitally

blind; and (iii) to explore how auditory information flows into

the occipital cortex of congenitally blind and late-onset blind

individuals.

Materials and methods

Subjects
Data on four groups of participants were acquired for this experiment:

a group of 12 congenitally blind individuals (four females, range 28–56

years old, mean � SD = 41 � 11 years), a group of 12 sighted control

subjects matched with the congenitally blind group (SCCB; four

females, 26–56 years old, mean = 36 � 12 years), a group of 10

late-onset blind individuals (eight females, 22–60 years old,

mean = 48 � 11 years), and a group of 10 sighted control subjects

matched with the late-onset blind group (SCLB; eight females, 30–

60 years old, mean = 49 � 12 years). Both groups of sighted controls

were matched with their respective blind groups for age, gender,

handedness, educational level and musical experience. Data on 11

congenitally blind and 11 SCCB subjects have been used in a previous

study (Collignon et al., 2011b). All groups were blindfolded through-

out the functional MRI acquisition. None of the congenitally blind

subjects had ever had functional vision allowing for pattern recognition

or visually guided behaviour. In contrast, all subjects in the late-onset

blind group had experienced normal functional vision (mean age at

blindness onset � SD = 36 � 13 years). At the time of testing, all blind

subjects were totally blind or had only rudimentary sensitivity for

brightness differences and no pattern vision. In all cases, blindness

was attributed to peripheral deficits with no neurological impairment

(Supplementary Table 1). All of the procedures were approved by the

research ethic and scientific boards of the Centre for Interdisciplinary

Research in Rehabilitation of Greater Montreal (CRIR) and the Quebec

Bio-Imaging Network (QBIN). Experiments were undertaken with the

understanding and consent of each participant.

Task and general experimental design
The experiment was performed as described previously (Collignon

et al., 2011b). All subjects were scanned in a single functional MRI

run that consisted of 30 successive blocks (20.4 s duration each) sepa-

rated by rest periods ranging from 6 to 12.4 s (median = 7.34 s) during

which the subjects had to alternatively process the spatial or the pitch

attributes of the sounds. A short verbal instruction (1300 ms) was de-

livered 2 s before each block in order to remind the participants

whether to focus on pitch or spatial attributes of the sounds. The

first condition (spatial or pitch) was counterbalanced across subjects.

In the ‘spatial’ condition, participants had to determine if the second

sound of a pair was presented to the left or to the right of the first

sound of the pair (the probe), regardless of variations in pitch. In the

‘pitch’ condition, participants had to determine if the second sound of

a pair of sounds was lower or higher-pitched when compared to the

probe, regardless of the spatial position. In both conditions and irre-

spective of the instructions given, the probe was a central 1000 Hz

sound (simulating 0� azimuth) lasting 150 ms (10 ms rise/fall times).

The target sound always appeared 200 ms after the probe and also

lasted 150 ms (10 ms rise/fall times). A 1200 ms response period fol-

lowed each pair of sounds. Each block, either spatial or pitch, consisted

of 12 successive pairs of sounds (Fig. 1A). The same response buttons

(right index and right major) were used in both two-alternative forced

choice tasks.

The difficulty level of both tasks was controlled throughout the ex-

periment by adjusting the gap between the probe and the target using

a dynamic psychophysical staircase procedure (one-down for a correct

response/six-up for an incorrect response) with the subject perform-

ance converging at �80–90% correct. A matrix of 6400 sounds using

40 left and right ‘spatial gaps’ (created by jointly varying steps of

0.2% interaural level difference with steps of 20 ms interaural time

difference from the probe sound; two primary cues for sound local-

ization in azimuth) and 40 high and low ‘pitch gaps’ [created using

steps of 5 cents (a logarithmic unit of measure used for musical inter-

vals) from the probe sound]. When using the term ‘spatial processing

of sound’ in this experiment, we refer to the ability to lateralize sounds

perceived along a line on the horizontal meridian joining the two ears.

The first trial within each block in the spatial and the pitch condition

always started with a level of difficulty that was six steps easier than

the last trial of the previous block within the same condition (ensuring

that a block would never start with a very difficult trial). This staircase

procedure ensures equal levels of performance between conditions

(spatial versus pitch) for each participant and between participants,

so that any task or group differences could not be attributed to dif-

ferences in terms of performance. In addition, in each pitch block, the

target locations of the sounds were determined by the locations of the

sounds presented in the preceding spatial block, and vice versa (e.g.

pitch in spatial task), so that identical sounds were included in both

conditions. This latter aspect ensures that when contrasting the two

tasks, no effect can be attributable to differences in the physical attri-

butes of the stimuli.

The experimental run was preceded by a short sound calibration run

during which the volume level was adjusted to ensure optimal auditory

perception. The task was coded using Cogent2000v1.24 (http://www.

vislab.ucl.ac.uk/cogent.php) implemented in MATLAB (Mathworks

Inc.) and the auditory stimuli were delivered by means of circumaural,

functional MRI-compatible headphones (Mr Confon). All auditory sti-

muli were created using Adobe Audition 2.0 (Adobe Systems Inc.).

Before the functional MRI acquisition, all participants underwent a

30-min training session in a mock scanner (Psychology Software Tools)

with recorded scanner noise played in the bore of the simulator in

order to familiarize the participants with the functional MRI environ-

ment and to ensure that they understood and could perform the tasks.

Behavioural analysis
Performance was analysed using two separate 4 (Group: congenitally

blind, SCCB, late-onset blind, SCLB; between-subjects factor) � 2

(Task: Spatial versus Pitch; within-subjects factors) repeated measures

ANOVA; one for accuracy scores and one for reaction times.

Moreover, we also performed a simple ANOVA on the auditory-spatial

and auditory-pitch resolution level (calculated as the mean gap separ-

ating the target from the probe for an entire run) with the factor

Group as between-subjects factor.

Magnetic resonance imaging data
acquisition and analysis
Functional MRI series were acquired using a 3 T TRIO TIM system

(Siemens), equipped with a 12-channel head coil. For full details

on recording parameters and preprocessing steps, see the online

Supplementary material.
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Functional volumes were preprocessed and analysed using SPM8

[Welcome Department of Imaging Neuroscience, London, UK,

(v4290)], implemented in MATLAB R2008a. Preprocessing included

slice timing correction of the functional time series (Sladky et al.,

2011), realignment of functional time series, co-registration of func-

tional and anatomical data, spatial normalization to an echo planar

image template conforming to the Montreal Neurological Institute

space, and a spatial smoothing (Gaussian kernel, 8 mm full-width

at half-maximum). After these preprocessing steps, the analysis of

functional MRI data, based on a mixed effects model, was conducted

in two serial steps, accounting for fixed and random effects, respect-

ively. For each subject, changes in brain regional responses

were estimated by a general linear model including responses to the

pitch and spatial conditions. These regressors consisted of boxcar

function convolved with the canonical haemodynamic response

function. The instructions preceding each block were modelled

using stick function convolved with the canonical haemodynamic

response function and were also included as covariates of no interest

together with movement parameters derived from realignment of the

functional volumes. High-pass filtering was implemented using a

cut-off period of 128 s to remove low-frequency noise and signal

drift. Serial correlations were estimated using an autoregressive

(order 1) plus white noise model and a restricted maximum likelihood

(ReML) algorithm.

Psychophysiological interaction analyses (Gitelman et al., 2003)

were computed to identify any brain region functionally connected

to the reorganized occipital regions involved specifically in auditory

spatial processing, relative to pitch processing, in congenitally blind

(Fig. 4B and Supplementary Table 3). Psychophysiological interaction

analyses were conducted to test the hypothesis that functional con-

nectivity between these seed regions and the rest of the brain not only

differed between conditions (spatial versus pitch) but was also influ-

enced by the experimental group (congenitally blind4 late-onset

blind).

In the main effect analysis as well as in the psychophysiological

interaction analyses, the resulting set of voxel values for each contrast

constituted a map of the t-statistic [SPM(T)]. Statistical inferences were

performed at a threshold of P5 0.05 after correction for multiple

comparisons over the entire brain volume, or over small spherical vol-

umes (15 mm radius) located in structures of interest (Supplementary

material) (Worsley et al., 1996). We chose to use spheres of 15 mm

radius because it was found that the position of the pixel with the

highest visual motion-selective significance response within the middle

occipito-temporal cortex (corresponding to hMT + /V5), a region of

Figure 1 Experimental design and behavioural results. (A) Functional MRI acquisition design. Behavioural performance of the four groups

of participants are illustrated for the accuracy scores (B), the reaction times (C), as well as the pitch (D) and the spatial (E) difficulty levels

reached in both tasks (D). Error bars denote standard deviation. CB = congenitally blind; LB = late-onset blind; ISI = interstimulus interval.
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main interest in the current study (Fig. 4A), can vary between subjects

by as much as 18 mm in the right hemisphere (Watson et al., 1993).

Significant clusters were anatomically labelled using the xjView matlab

toolbox (http://www.alivelearn.net/xjview) or structural neuroanat-

omy information and probabilistic cytoarchitectonic maps provided in

the Anatomy Toolbox (Eickhoff et al., 2007).

Dynamic causal modelling
Dynamic causal modelling is a hypothesis-driven approach (i.e. a tech-

nique used to test for a specific set of hypotheses, defined a priori) to

characterize the causality between the activity of different brain areas

and, thereby, to study how information flows in the brain (Friston

et al., 2003). Combined with Bayesian model selection, dynamic

causal modelling allows for the comparison of competing mechanistic

hypotheses of brain connectivity, represented by different network

models (Penny et al., 2004). Here, we used dynamic causal modelling

and Bayesian model selection to explore how auditory information

reaches the occipital cortex of blind individuals. We therefore opera-

tionalized our model space based on plausible alternatives. It was re-

cently demonstrated, using dynamic causal modelling, that crossmodal

plasticity observed in congenitally blind is more likely to be supported

by reorganizations in cortico-cortical connections rather than reorgan-

izations in thalamo-cortical connections (Klinge et al., 2010). We

therefore only included cortico-cortical connections in our models

(see Shimony et al., 2006 for anatomical support). More specifically,

we wanted to test three possible pathways through which auditory

input could reach V1: (i) V1 receives auditory input only after it has

been processed in ‘higher-level’ association cortex; (ii) V1 receives

auditory input directly from A1, without preliminary processing in as-

sociative regions; and (iii) V1 receives auditory input both indirectly

from associative regions and directly from A1. Therefore, we used

dynamic causal modelling of functional MRI signal to quantify effect-

ive connectivity in backward and forward connections at three hier-

archical cortical levels (i.e. in temporal, parietal and occipital cortices),

during auditory processing in congenitally blind and late-onset blind

individuals. In both hemispheres, three regions of interest were con-

sidered for our dynamic causal modelling analysis: the primary auditory

cortex (A1), the intraparietal sulcus and the primary visual cortex (V1).

Based on hypotheses from the literature (Bavelier and Neville, 2002;

Pascual-Leone et al., 2005), we constructed seven different models

(described below) for each participant, which allowed us to test our

hypothesis (Fig. 5).

An important point in dynamic causal modelling analyses with

regard to group differences is to use identical brain coordinates for

the time series extraction for which significant activations are observed

for all groups in order to avoid biasing the estimates of effective

connectivity to and from a region (Klinge et al., 2010). Therefore

none of the sighted groups were included in the dynamic causal mod-

elling analyses because of the absence of significant occipital activity in

SCCB and SCLB for the global processing of sounds (spatial + pitch)

(Fig. 2). As a starting point for time series extraction, we used coord-

inates obtained from the random effects conjunction analysis across

both blind groups (congenitally blind and late-onset blind) based on

the conjunction null hypothesis, testing for a logical AND (Friston

et al., 2005; Nichols et al., 2005). Each region of interest was defined

as a sphere of 10 mm radius, centred individually on the local activa-

tion maximum closest to each peak of interest from the conjunction

analysis (left A1, �60 �34 14 mm; right A1, 64 �26 10 mm; left

intraparietal sulcus, �40 �40 42 mm; right intraparietal sulcus 42

�38 48 mm; left V1, �8 �82 8 mm; right V1, 22 �98 2 mm;

Supplementary Fig. 4). For each subject, the time series of the activity

for each area was extracted as the principal eigenvariate of the time

series of the voxels within the region of interest. These time series

were adjusted for subject’s movements using the movement param-

eters as regressors.

Because we had no a priori hypothesis about between-hemispheric

differences in the way auditory inputs reach the occipital cortex, we

built symmetrical models in each hemisphere. In all models, inputs

consisted of the auditory stimuli irrespective of the condition (spa-

tial + pitch) that entered the network bilaterally directly in A1. These

models were then split into three subsets or ‘families’ depending on

how information flowed from A1 to V1. Family A includes Models 1

and 5, where auditory inputs in V1 rely on indirect ‘feed-back’ con-

nections between intraparietal sulcus and V1, Family B includes Models

2, 4 and 6 postulating that auditory inputs in V1 rely on direct ‘feed-

forward’ connections between A1 and V1, and Family C includes

Models 3 and 7 postulating that auditory inputs in V1 rely on both

direct and indirect connections.

The seven dynamic causal modelling models were fitted with the

data from each of the 12 congenitally blind and 10 late-onset blind

subjects. This provided 154 (22 � 7) model log-evidence and posterior

parameter estimates. The posterior probabilities of each family and

model have therefore been estimated separately for each group.

Based on the estimated model evidence of each model, random

effect Bayesian model selection then calculates the ‘exceedance prob-

ability’, that is, the probability of each model being more likely than

any other model (Penny et al., 2004). When comparing model

families, all models within a family were averaged using Bayesian

model averaging and the exceedance probabilities were calculated

for each model family (Penny et al., 2010).

Results

Behavioural results
No difference in performance was observed either between the

groups or between the tasks. This was true for both accuracy

measures (as expected due to the use of a staircase procedure)

and reaction times (Fig. 1B and C), ensuring that functional MRI

results would not be biased by behavioural differences.

The auditory–pitch resolution level reached was significantly dif-

ferent between groups (F = 6.4, P = 0.001). Bonferroni post hoc

tests demonstrated that the auditory–pitch resolution was signifi-

cantly higher in the late-onset blind compared to the congenitally

blind (P = 0.002) and sighted controls for the congenital blind

(SCCB) (P = 0.009). However, no significant difference was

found between the late-onset blind group and sighted controls

(SCLB) (P = 0.99) (Fig. 1D). These significant effects are probably

age-related and thereby support our decision to use two groups of

sighted controls appropriately matched with each blind group. The

auditory–spatial resolution level reached was not significantly dif-

ferent between groups (Fig. 1E).

Functional magnetic resonance imaging

Auditory recruitment of occipital regions in the late-
onset blind and the congenitally blind

To first investigate the effect of early and late visual deprivation

on sound processing, we compared the cerebral responses of
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Figure 2 Occipital reorganization in late-onset blind (LB) and congenitally blind (CB) individuals. Results are displayed

(*Puncorrected50.001) over the mean structural image of all subjects and over a 3D render of the brain. (A) Significant differences between

each blind group and its respective control group: (congenitally blind4 SCCB) � (spatial + pitch) in red and (late-onset

blind4 SCLB) � (spatial + pitch) in yellow. Graphs: mean activity estimates [arbitrary unit (a.u.) � SEM] associated with sound processing

(spatial + pitch) in the four groups of participants within the four regions obtained with the conjunction (AND) analysis of the two

contrasts described above. (B) Significant differences between the congenitally blind and late-onset blind independent of conditions:

congenitally blind � (spatial + pitch)4 late-onset blind � (spatial + pitch). Graphs: mean activity estimates (a.u. � SEM) associated with

sound processing (spatial + pitch) in the bilateral cuneus for the four groups.
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congenitally blind versus SCCB and of late-onset blind versus SCLB

for both auditory tasks combined (spatial + pitch). These analyses

revealed a greater recruitment of occipital regions in response to

auditory stimulation in both blind groups compared to their re-

spective sighted control groups. A conjunction (AND) [congenitally

blind4 SCCB \ late-onset blind4 SCLB] � [spatial + pitch] ana-

lysis indicated that the regions showing crossmodal reorganization

in the late-onset blind are in regions where crossmodal reorgan-

ization is also observed in the congenitally blind (Fig. 2A,

Supplementary Fig. 1 and Supplementary Tables 1.1 and 1.2).

To formally test differences between early and late visual de-

privation, we contrasted congenitally blind and late-onset blind

brain responses to auditory stimulation [congenitally blind4 late-

onset blind � (spatial + pitch)]. This analysis revealed significantly

higher bilateral responses in the congenitally blind in a circum-

scribed region of the cuneus, whereas no responses were signifi-

cantly higher in the late-onset blind versus the congenitally blind

(Fig. 2B, Supplementary Tables 1.3 and 1.4).

In addition, we also assessed whether the number of years of

complete blindness would predict the amplitude of the crossmodal

responses observed in occipital regions during global sound

processing in each blind group separately. Surprisingly, we

observed a significant inverse relationship between the number

of years of blindness and activity in several occipital regions in

the late-onset blind only (Fig. 3 and Supplementary Table 1.5),

suggesting that these occipital regions display more sound-related

activity in the first years following deprivation than later on.

No significantly positive correlation was observed between the

activity level in any occipital voxel and the number of years of

complete blindness in the late-onset blind, neither significant posi-

tive nor negative correlations were observed in the congenitally

blind.

Functional specialization for the spatial processing of
sounds in the occipital cortex of the congenitally
blind but not of the late-onset blind

In a recent study, we demonstrated that some regions of the right

dorsal occipital cortex are specifically dedicated to the spatial pro-

cessing of sounds in the congenitally blind (Collignon et al., 2011b).

In the present experiment, we investigated whether this functional

specialization for auditory-spatial processing in the occipital cortex is

triggered by visual deprivation itself or is rather tributary to the loss

of sight early in life. The group (congenitally blind4
SCCB) � condition (spatial4 pitch) interaction analysis revealed sig-

nificant differences in activity in the right cuneus, the right middle/

superior occipital gyrus and the right middle occipito-temporal gyrus

Figure 3 Regression analysis between cerebral activity triggered by the global processing of sounds (spatial + pitch) and the number of

years of total blindness in the late-onset blind (LB). Sound-related responses in the left inferior occipital (top), the right inferior occipital

(upper panel), the left lingual/anterior V1 (bottom left), the right lingual/posterior V1 (bottom right) regions are all negatively correlated

with the number of years of blindness in the late-onset blind. Graphs: correlation plots of the blood oxygen level-dependent sound-related

estimated responses in these regions against the number of years of total blindness. Each data point represents a single subject of the late-

onset blind group.
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Figure 4 (A) Activations obtained from the contrast testing which regions are specifically dedicated to the spatial processing of sounds in

the congenitally blind when compared to late-onset blind: (congenitally blind4 late-onset blind) � (spatial4pitch). Functional data are

overlaid (Puncorrected5 0.001) over a 3D render of an inflated canonical brain surface in MNI space (using NeuroLens software) and over

sagittal sections of the mean structural image of all blind subjects normalized to the same stereotactic space. Graphs: mean parameter

estimates (a.u . � SEM) associated with the processing of pitch (blue) or spatial (red) attributes of sounds in the four groups of participants

for the four main activity peaks: (a) The right cuneus (10 �80 22), (b) The right superior occipital gyrus (SOG: 24 �74 18), (c) The right

middle occipital gyrus (MOG: 40 �70 14), (d) The right middle occipito-temporal gyrus (MOTG: 44 �54 08). It is worth noting that

clusters (D) do not survive an inclusive mask (P = 0.001) of the (congenitally blind4 SCCB) � (spatial4pitch) contrast meaning that

some spatial selectivity is found in this region (even if in the form of deactivations) in the SCCB (see Supplememtary Fig. 1). (B)

Psychophysiological interaction maps revealing stronger functional connectivity in the CB relative to the LB between all seed regions (the

right cuneus, the right middle/superior occipital gyrus and the right middle occipito-temporal gyrus) and the right Intra-Parietal Sulcus

(IPS) for the spatial processing of sounds as compared to pitch processing. Activity is overlaid (P uncorrected 5 0.001 except for seeds in D

which is overlaid P uncorrected 5 0.005) over sagittal sections of the mean structural image of all blind subjects normalized to the same

stereotaxic space.
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(Fig. 4 and Supplementary Table 2.1). However, the group (late-

onset blind4 SCLB) � condition (spatial4 pitch) interaction ana-

lysis did not reveal any significant responses (Fig. 4;

Supplementary Table 2.2). To further explore whether this

functional specialization for auditory spatial processing is dependent

on the age of blindness onset, we carried out the group (congenitally

blind4 late-onset blind) � condition (spatial4 pitch) interaction

analysis and observed significant differences in activity in the right

cuneus, the right middle/superior occipital gyrus and the right

middle occipito-temporal gyrus (Supplementary Table 2.3).

None of the contrasts examining for the functional prefer-

ence for processing the pitch of sounds (pitch4 spatial)

revealed significant results in the occipital cortex of any of the

groups.

Functional connectivity analyses
Psychophysiological interaction analyses (Gitelman et al., 2003;

see ‘Materials and methods’ section) were computed to identify

any brain region functionally connected to the reorganized occipi-

tal regions specifically in auditory spatial processing, relative to

pitch processing, in the congenitally blind relative to the late-

onset blind (Fig. 4B and Supplementary Table 3). Psychophysiolo-

gical interaction revealed stronger functional connectivity in the

congenitally blind relative to the late-onset blind between all

seed regions (the right cuneus, the right middle/superior occipital

gyrus and the right middle occipito-temporal gyrus) and the right

intraparietal sulcus for the spatial processing of sounds as com-

pared to pitch processing (Fig. 4B and Supplementary Table 3).

We further observed significant coupling between the right

middle/superior occipital gyrus and the right middle frontal

gyrus, as well as between the right middle occipito-temporal

region, the left intraparietal sulcus and the right cuneus [this

region was observed in the contrast (congenitally blind4 late-

onset blind)� (spatial4pitch)].

Dynamic causal modelling
A random-effects family-wise inference addressed the connectivity

architecture (Fig. 5A) of sound-induced activity in occipital regions

in both blind groups and showed that models including direct

connections from the primary auditory cortex (A1) to V1 and no

connections from intraparietal sulcus to V1 could best explain the

V1 responses in the congenitally blind (Family B), whereas in the

late-onset blind the preferred family did not include direct connec-

tions from A1 to V1 but rather included connections from intra-

parietal sulcus to V1 (Family A) (Fig. 5B). In addition, a random

effects Bayesian model selection showed that the model connect-

ing A1 to V1 and V1 to intraparietal sulcus (Model 6 in Fig. 5A)

had a very high probability of evidence in the congenitally blind

(Fig. 5C; exceedance probability of 0.79). In the late-onset blind,

however, the model connecting A1 to intraparietal sulcus and

intraparietal sulcus to V1 (Model 5 in Fig. 5A), with backward

connections (Fig. 5C; exceedance probability of 0.49) had the

strongest evidence (Fig. 5C).

Discussion

Crossmodal recruitment of occipital
cortex for general auditory processing
in the congenitally blind and
late-onset blind
The study of congenitally blind and late-onset blind individuals

represents a unique opportunity to explore brain plasticity mech-

anisms following radical changes in sensory experience during dif-

ferent developmental periods. We first showed that blood oxygen

level-dependent responses elicited by sounds were found in oc-

cipital areas in both blind groups, whereas sighted subjects instead

mainly showed blood oxygen level-dependent signal decreases in

these regions (Fig. 2, Supplementary Fig. 1). This clearly shows

that crossmodal reorganization occurs even after the full develop-

ment of the visual system. This remarkable adult plasticity is exem-

plified by the results of a specific late-onset blind individual in our

sample who suddenly lost his sight (diabetic retinopathy) at the

age of 50 and showed extensive crossmodal recruitment of his

occipital cortex 52 years after this abrupt onset of blindness

(Supplementary Fig. 2).

Our observation that occipital recruitment for auditory process-

ing appeared reduced in the late-onset blind when compared to

the congenitally blind (Fig. 2) is in accordance with some previous

studies showing similar findings (Cohen et al., 1999; Voss et al.,

2008; Bedny et al., 2010, 2012) but strongly contrasts with

another study suggesting stronger crossmodal recruitment of pri-

mary visual cortex in late-onset blind (Buchel et al., 1998). The

only region showing a significantly higher level of activity in the

congenitally blind compared with the late-onset blind is the bilat-

eral cuneus (Fig. 2B), a region corresponding to V2d-V3d/V3a

(Larsson and Heeger, 2006). In the sighted control (SC), this ret-

inotopic area (Wandell et al., 2007) has been shown to be notably

involved in stereoscopic depth perception (Tsao et al., 2003), an

ability that is very dependent on early visual experience (Banks

et al., 1975; Fawcett et al., 2005). It is therefore possible that

the functional tuning of the cuneus might be set early in life,

which then restricts crossmodal plasticity when vision is deprived

in adulthood. Overall, these results indicate that the late-onset

blind do show altered functioning of their deafferented visual cor-

tices but, crucially, the age of blindness onset appears to play an

important role in determining which occipital regions will become

responsive to auditory processing. Our results therefore demon-

strate the existence of region-specific critical periods for crossmo-

dal plasticity.

An intriguing aspect revealed in our study is the negative cor-

relation between sound-related activity in several occipital regions

and the total number of years of blindness in the late-onset blind

(Fig. 3). Our results point to the existence of an initial imbalance

following sight deprivation in what used to be a pre-existing

audio-visual network, which then might progressively stabilize fol-

lowing several years of visual deprivation. These results accord

with those from a study investigating crossmodal plasticity in

deaf humans that showed that visual activation in the left
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posterior superior temporal cortex decreased with increasing

deafness duration (Lee et al., 2007).

The neural underpinnings of these observed changes might

stem from the concept of homeostatic synaptic scaling, a form

of synaptic plasticity that increases or decreases the strength of

all of a neuron’s excitatory synapses to rapidly provide stability to

neural networks ensuing perturbation in neural activity (Turrigiano,

2008). In blind mice, a rapid and global up-scaling of visual

Figure 5 Dynamic causal modelling analyses. (A) The seven dynamic causal models used for Bayesian model comparison. Each model

receives (parameterized) subcortical input at the bilateral A1 sources. (B) Family-wise Bayesian model selection was used to establish the

best neuronal network architecture in the congenitally blind (CB) and the late-onset blind (LB). In the congenitally blind the best models

included direct connections between A1 and V1 and no connections between intraparietal sulcus and V1. In the late-onset blind the best

models did not include direct connections between A1 and V1 but rather included connections between A1 and intraparietal sulcus.

(C) Random effects Bayesian model selection showed that the model connecting A1 to V1 and V1 to intraparietal sulcus (Model 6) best fit

the data in the congenitally blind, whereas the model connecting A1 to intraparietal sulcus and intraparietal sulcus to V1 (Model 5) best fit

the data in the late-onset blind. (D) A schematic representation of how auditory information flows towards V1 in the congenitally blind

(CB) and late-onset blind (LB).
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neurons excitability has been observed following visual deprivation

(primarily due to regulation of postsynaptic AMPA-type glutamate

receptors), which was speculated to underlie the recruitment of

this region for processing previously sub-threshold inputs carrying

tactile or auditory information (Goel et al., 2006; Goel and Lee,

2007; Lee, 2012).

On the basis of our data, it may be hypothesized that the

crossmodal plasticity observed in the late-onset blind might repre-

sent the macroscopic correlate of the homeostatic synaptic plasti-

city observed at the cellular level in the visual cortex of blind mice

(Turrigiano, 2008). The observation of a negative correlation be-

tween sound-related activity in some occipital regions and the

total numbers of years of blindness might suggest that, at least

for these specific regions, such homeostatic up-scaling of occipital

neurons may be an ‘initial’ reaction to visual deprivation that pro-

gressively stabilize with time. However, to the best of our know-

ledge, no animal study has directly investigated how this

homeostatic up-scaling observed in late-acquired blindness evolves

across a prolonged period of visual deprivation.

One might also wonder whether the occipital recruitment in the

late-onset blind relates to the use of visual imagery processes,

which has been shown to activate components of the visual

system (Kosslyn et al., 1995). Even if we cannot definitely exclude

this possibility, it appears very unlikely. First, previous visual im-

agery paradigms showing occipital recruitment involved active

tasks that explicitly require subjects to intentionally rely on this

ability (Kosslyn et al., 2001), which was not the case here.

Furthermore, it appears implausible that the late-onset blind

group relied on previous visual experience to resolve the task

while blindfolded sighted participants did not. It could even

be suggested that residual voluntary (imagery) or involuntarily

(hallucinations) visual capabilities might actually hinder crossmodal

plasticity as the presence of such abilities have been considered to

be a good prognostic sign for visual field recovery in partially blind

individuals (Tan et al., 2006).

A sensitive period for the development
of functionally specific crossmodal
reorganization for auditory spatial
processing in the occipital cortex
of blind individuals
It was recently demonstrated that non-visual recruitment of the

occipital cortex follows organizational principles that maintain the

functional specialization of the colonized brain regions (Collignon

et al., 2009a; Ricciardi and Pietrini, 2011; Reich et al., 2012). This

suggests that a specialized region that evolved to perform a

specific cognitive operation (i.e. infer the spatial relationship

between elements) in the visual domain can be used efficiently

by other senses for similar computations in case of early visual

deprivation. We demonstrate here that the functional selectivity

for the spatial processing of sounds in the right dorsal stream is

only observable in the congenitally blind but not in the late-onset

blind (Fig. 4A). The concomitant presence of crossmodal activity in

the occipital cortex with an absence of functional selectivity has

not been reported in previous studies involving late-onset blind

individuals. This strongly suggests the existence of a critical

period for such crossmodal functional specialization to occur.

Based on these observations, we assume that there is a progressive

process in early life, for at least some occipital subregions, of

getting gradually a sensory-dependent functional specialization.

More specifically, regions corresponding to the right cuneus and

the right superior and middle occipital gyrus were selectively re-

cruited for the spatial processing of sounds only in the congenitally

blind, in the vicinity of regions (V3d-V3A and hMT + /V5) that

have previously been extensively described as subserving visuo-

spatial and visual-motion processing in the sighted (Haxby et al.,

1991; Watson et al., 1993).

The existence of a restricted time window for blindness to lead

to functionally specific cross-modal plasticity in right dorsal regions

is consistent with previous evidence of early structural (Gogtay

et al., 2004; Bourne and Rosa, 2006; Flom et al., 2009) and func-

tional (Ellemberg et al., 2002; Fine et al., 2003; Gregory, 2003;

Maurer et al., 2005) maturation of these regions. Our results also

support the recent findings of Bedny et al. (2010) who, focusing

on hMT + /V5, reported that this region reacts more strongly to an

auditory condition with higher motion content (approaching foot-

steps) than to a condition with lower motion content (tones

increasing in intensity), in early-onset blind individuals but not in

a group of five late-onset blind individuals. In the present study,

using a whole brain approach, we extend these findings by show-

ing that despite the presence of crossmodal reorganization in the

occipital cortex of both congenitally blind and late-onset blind in-

dividuals only the congenitally blind showed functional specializa-

tion for the spatial processing of sounds in the right dorsal

pathway. The dorsal stream’s ability to implement spatial/motion

computations on the basis of non-visual inputs appears to be

linked to an early developmental epoch. Our results therefore do

not support the idea that the functional selectivity for spatial pro-

cessing observed in dorsal occipital regions in the blind’s brain

simply arises from the unmasking of ‘silent’ connections existing

in metamodal spatial regions also present in the sighted brain

(Pascual-Leone and Hamilton, 2001), as this selectivity should

also be observed in the late-onset blind.

What might drive the maintenance of the preferential coding for

spatial processing in right dorsal occipital regions in the congeni-

tally blind? It has been proposed that the development of cogni-

tive domain selectivity in the brain is driven by the innate pattern

of connectivity a region has with a network of other regions

involved in the processing of this specific ability (Johnson, 2011;

Mahon and Caramazza, 2011). Using functional connectivity ana-

lyses, we show that during the spatial (versus pitch) processing of

sounds, the congenitally blind, when compared with the late-onset

blind, demonstrate a stronger coupling between right dorsal

occipital areas and the intraparietal area (Fig. 4B), which is

known to play a major role in visuospatial attention in the sight-

ed’s brain (Nobre et al., 1997). Hence, the difference in the func-

tional specialization of the dorsal stream between the congenitally

blind and late-onset blind not only resides in a preferential coding

for auditory-spatial processing in the congenitally blind, it is also

evidenced as an enhanced task-specific connectivity with intrapar-

ietal sulcus regions in the congenitally blind. It could therefore be
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hypothesized that the observed selectivity for non-visual spatial

computations in right dorsal occipital regions in the congenitally

blind might arise from its innate pattern of connectivity, notably

with the intraparietal sulcus. However, this selectivity is not

observed in the late-onset blind, maybe because these circuits

have been wired for visuospatial processing during early develop-

ment. All together, these results suggest that the preservation of

occipital functional properties can serve as a guiding principle for

cross-modal plasticity only when vision is lost early in life.

The absence of functional selectivity in the occipital cortex of

the late-onset blind concomitantly with a negative correlation be-

tween the activity of some of these regions and the number of

years of blindness leads us to question the functional significance

of the crossmodal reorganization we observed in this population.

A previous study showed a negative correlation between occipital

activity and performance in an auditory spatial task in the late-

onset blind, suggesting not only that not all crossmodal recruit-

ment is beneficial, but also that it may even be detrimental to the

task at hand (Voss et al., 2006). Cohen et al. (1999) applied

transcranial magnetic stimulation over the occipital cortex of con-

genitally blind and late-onset blind individuals and disrupted Braille

reading performance only in the congenitally blind but not in the

late-onset blind. Together, these results suggest that the crossmo-

dal plasticity observed after the full development of the visual

system might neither be specific nor compensatory, in marked

contrast to what is seen in the congenitally blind (Wan et al.,

2010).

Pathways for crossmodal plasticity in
congenitally blind and late-onset blind
Our dynamic causal modelling results suggest that global auditory

activity in the occipital cortex of the congenitally blind is best

explained by direct feed-forward connections from A1 to V1,

whereas in the late-onset blind auditory information appears to

rely more on an indirect feedback route from A1 to V1 using

parietal regions as a relay (Fig. 5 and Supplementary Fig. 4).

We know from neurodevelopmental studies that following an

initial period of exuberant proliferation of synapses, their number

is gradually reduced, notably in occipital regions (Huttenlocher and

de Courten, 1987; Bourgeois and Rakic, 1993). The elimination of

weaker, unused or redundant synapses is thought to mediate the

specification of functional and modular neuronal networks

(Changeux and Danchin, 1976). Indeed, experiments in kittens

have demonstrated that projections from the auditory cortex to

the occipital cortex are eliminated either through cell death or

retraction of exuberant collaterals during the synaptic pruning

phase (Dehay et al., 1988; Innocenti et al., 1988). Importantly,

in kittens deprived of vision at birth, these extrinsic connections to

the occipital cortex seem to remain (Berman, 1991; Yaka et al.,

1999). It is thus plausible that in the absence of competitive visual

inputs during the synaptic stabilization phase, a significant number

of direct auditory connections to the occipital cortex persist.

Although the maintenance of normally transient intermodal con-

nections may underlie, at least in part, the plastic changes

observed in cases of congenital loss of sight, this cannot account

for the cerebral reorganization observed in the case of late-onset

blindness, where visual deprivation arises in a brain already wired

for visual processing. We therefore propose that the reorganiza-

tions occurring in people deprived of vision in adulthood alters the

pattern of connectivity within the neuro-architectural constraints

that are already established (Knudsen, 2004). In line with these

assumptions, an elegant study combining PET scan and transcra-

nial magnetic stimulation showed that the application of transcra-

nial magnetic stimulation over the primary somatosensory cortex

induced significant activation of the primary visual cortex only in

an early-onset blind group but not in late-onset blind or sighted

subjects (Wittenberg et al., 2004), consistent with the hypothesis

of reinforced direct cortico-cortical connections between primary

sensory cortices in early but not in late-onset blind individuals. The

idea that crossmodal plasticity in the late-onset blind relies on the

reorganization/strengthening of a pre-existing pattern of connec-

tions is also supported by studies on short-term visual deprivation

where the speed at which changes occur within occipital activity

would not allow for the creation of new connections (Merabet

et al., 2008). Our observation that a feed-back model best ex-

plains auditory activity in the occipital cortex of the late-onset

blind might therefore reflect a reorganization of the networks clas-

sically involved in ‘top-down’ phenomena like visual attention

(Corbetta and Shulman, 2002), imagery (Kosslyn and Thompson,

2003) or crossmodal influences on primary sensory regions from

multisensory convergence zones (Macaluso and Driver, 2005).

This, however, does not exclude the possibility that the reorgan-

ization of direct connections between A1 and V1 might also me-

diate some of the sound-induced activity observed in the occipital

cortex of the late-onset blind since such pathways have been

observed in adult sighted primates (Falchier et al., 2002;

Rockland and Ojima, 2003) and humans (Beer et al., 2011).

Conclusion
Our results show that the brain is capable of massive crossmodal

reorganization as a result of visual deprivation, but crucially, the

expression of this blindness-induced plasticity differs considerably

depending on the developmental period during which it occurs.

Whereas massive auditory recruitment of the occipital cortex was

found in both blind groups, crossmodal activity in bilateral cuneus

was unequivocally higher in the congenitally blind than in the late-

onset blind, highlighting the existence of region-specific critical

periods for crossmodal plasticity. Moreover, regions of the right

dorsal stream preferentially active for the spatial processing of

sounds in the congenitally blind did not show such functional

preference in blind individuals who lost sight later in life. Early

sensory experience therefore appears to instruct dorsal occipital

neural circuits their sensory-functional preference and allows for

their incorporation into a brain network dedicated to the process-

ing of auditory spatial information. Moreover, dynamic causal

modelling revealed that different architectures of cortical pathways

underlie the auditory activations of primary occipital cortex in con-

genitally blind (feed-forward) and late-onset blind (feed-back)

individuals. We suggest that visual deprivation in early life modifies

the architecture of occipital circuits in a fundamental way, whereas

the reorganizations that occur in visually deprived adults rather
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alters connectivity patterns within the architectural constraints

established during normal visual development. Such conceptions

recently appeared in studies investigating adults with amblyopia

suggesting that the original model of a fixed critical period for

plasticity may have exceptions, putatively through latent synapses

capable of re-expression in adults (Bavelier et al., 2010; Hess

et al., 2010). Our improved understanding of the differential

mechanisms of cross-modal plasticity resulting from early versus

late visual loss might ultimately help to evaluate the functional

outcome of sight restoration (Collignon et al., 2011a), which is

of increasing importance since a growing number of medical

advances will soon allow it to be a promising option for blind

people. Despite the observation of crossmodal plasticity in both

blind groups, the quantitative and qualitative differences in the

re-organization observed between the congenitally blind and

late-onset blind suggest that these changes are more ‘epiphenom-

enal’ in nature in the latter group, and therefore might present less

of a hindrance to sight restoration procedures compared to when

vision is reacquired after early visual deprivation (Fine et al., 2003;

Levin et al., 2010; Dormal et al., 2012).
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