Studied structure

Envelope reconstruction problem

Results

Conclusions

Envelope reconstruction problem with static loadings

Principal Static Wind Loads

N. Blaise & V. Denoël

University of Liège (Belgium)

EACWE 2013 European-African Conference on Wind Engineering

Studied structure

Envelope reconstruction problem

Results

Conclusions

Introduction

Studied structure

Envelope reconstruction problem

Results

Conclusions

Equivalent static design of structures under wind excitations

Assumptions

- □ Linear structures
- \Box Gaussian wind excitations

Any type of structures

 \Box large roof structure

Stadium in Lille, France

Liège, Belgium

Focus on zero-mean envelope

Introduction Studied structure 00000000000

Envelope reconstruction problem

Results

Conclusions

Envelope reconstruction problem

Solution for specific structures

□ Vertical ones - Global loading technique (Repetto & Solari, 2004)¹

¹Repetto M.P., Solari G. (2004). Equivalent static wind actions on vertical structures. *Journal of Wind* Engineering and Industrial Aerodynamics 92, 335-357.

Introduction Studied structure 00000000000

Envelope reconstruction problem

Results

Conclusions

Envelope reconstruction problem

Solution for specific structures

□ Vertical ones - Global loading technique (Repetto & Solari, 2004)¹

Proposed basis established with

□ CPT - Universal loads (Katsumura et al., 2007)²

 \Box SPT (Fiore & Monaco, 2009)³

 \Box ESWL - Least-squares fitting (Zhou et al., 2011)⁴

¹Repetto M.P., Solari G. (2004). Equivalent static wind actions on vertical structures. *Journal of Wind* Engineering and Industrial Aerodynamics 92, 335-357.

²Katsumura A., Tamura Y., Nakamura O. (2007). Universal wind load distribution simultaneously reproducing largest load effects in all subject members on large-span cantilevered roof. Int. J. Wind Eng. Ind. Aerod. 95 (9-11), pp. 1145-1165

³Fiore A.. Monaco P. (2009). Pod-based representation of the alongwind equivalent static force for long-span bridges. Wind and Structures, 12 (3), pp. 239-257.

⁴Zhou X., Gu M., Li G. (2011). Application research of constrained least-squares method in computing equivalent static wind loads. In : Proceeding of the 13th International Conference on Wind Engineering.

Studied structure Introduction 000000000000

Envelope reconstruction problem

Results

Conclusions

Covariance proper transformation

■CPT loading modes

Covariance matrix of external forces $(\mathbf{C}^{(\mathbf{p})} - \mathbf{C}^{(\mathbf{c})}\mathbf{I})\mathbf{P}^{c} = 0$ CPT loading modes

□ Automatic procedure □ Global loadings Do not take into account the resonant behavior of the structure

Introduction Studied structure 0000000000000 Equivalent Static Wind Loads Envelope reconstruction problem

Results

Conclusions

■An Equivalent Static Wind Load (ESWL) ⇔ one specific extreme structural response

□ Nodal background analysis : Load-response-correlation method (Kasperski, 1991)¹

 \Box Nodal background and modal resonant analysis (Chen & Kareem, 2001)²

□ Full nodal analysis (Blaise & Denoël, 2012)³

¹Kasperski M. (1992). Extreme wind load distributions for linear and nonlinear design Engineering Structures 14, 27-34,

²Chen X.Z., Kareem A. (2001). Equivalent static wind loads for buffeting response of bridges. Journal of Structural Engineering-Asce 127, 1467-1475.

³Blaise N., Denoël V. (2013). Principal Static Wind Loads. Int. J. Wind Eng. Ind. Aerod., 113, 29-39.

Key-idea¹ : Singular value decomposition of the ESWL matrix P^e

where \mathbf{P}^{p} collects the **Principal Static Wind Load** (PSWL) basis¹.

Convergence of the decomposition \rightarrow M $\ll\!\!\!< N$

¹Blaise N., Denoël V. (2013). Principal Static Wind Loads. Int. J. Wind Eng. Ind. Aerod., **113**, 29–39

Introduction Studied structure Principal Static Wind Loads Envelope reconstruction problem

Results

Conclusions

Properties

- PSWLs are not associated with specific structural responses (global responses)
- PSWI s take into account the resonant behavior of the structure
- \square PSWLs are well-suited for combinations $\mathbf{P}^{s} = \mathbf{P}^{p} \mathbf{q}^{p-1}$
- □ PSWL basis is built with an automatic procedure

 1 Blaise, N. and Hamra, L. and Denoel, V. (2012). Principal Static Wind Loads on a large roof structure. Proceedings of the 12th ANIV conference of wind engineering In Vento

Introduction		
0000000000		
Objective		

Studied structure

Envelope reconstruction problem

Results

Conclusions

Comparison of three basis for the envelope reconstruction problem

- $\Box CPT \cdot$ **Covariance Proper Transformation**
- □ ESWL : Equivalent Static Wind Loads
- □ PSWL : Principal Static Wind Loads

Loadings are scaled such that there is no-overestimation of the real envelope

□ Tangency condition

Studied structure

Envelope reconstruction problem

Results

Conclusions

Studied structure

Introduction Studied structure •000 Description of the structure

Envelope reconstruction problem

Results

Conclusions

Lille's stadium, France¹

Structural finite element model (Greisch, Liège)²

¹http://www.grandstade-lillemetropole.com/ ²http://www.greisch.com/

Introduction Studied structure 0000 Description of the structure Envelope reconstruction problem

Results

Conclusions

Modal characteristics (FineLg¹)

mode 1: 0.47 Hz (Z global)

mode 3 : 0.52 Hz (Z global)

□ uncoupled equations of motions (proportional damping) \Box the first **21** modes are kept \Box modes 1-11 : $f_{nat} < 1Hz$; mode 21 : $f_{nat} = 1.41Hz$

Introduction Studied structure 0000 Wind tunnel simulation

Envelope reconstruction problem

Results

Conclusions

Aerodynamic loading characterization

1/200-scaled model (rigid) of the stadium¹

- Measurement characteristics
 - \Box 24 tested wind directions
 - \Box number of sensors : ~ 500
 - □ sampling frequency of 2.92 Hz! (full scale model)
 - □ measurement period : 105 min (full scale model)

¹Wind tunnel simulations at the Centre Scientifique et Technique du Bâtiment (CSTB) at Nantes, France

Envelope reconstruction problem

Results

Conclusions

■Studied wind direction : 75°

Nodal Background/Modal Resonant Spectral analysis¹

¹Blaise, N. and Grillaud, G. and De Ville de Goyet, V. and Denoël, V. (2011). Application of deterministic Université and stochastic analysis to calculate a stadium with pressure measurements in wind tunnel. Proceedings of 8th International Conference on Structural Dynamics, Leuven, Belgium

Studied structure

Envelope reconstruction problem

Results

Conclusions

Envelope reconstruction problem

Studied structure Envelope

Envelope reconstruction problem

Results

Conclusions

Definition of the target envelope

Introduction

Target envelope collects the six internal forces for each beam element (2542) :

□ Axial force; two bending moments; two shear forces; torque.

□ Number of structural responses : 30504

Envelope reconstruction problem

Results

Conclusions

Definition of the target envelope

Studied structure

Introduction

Target envelope collects the six internal forces for each beam element (2542) :

□ Axial force; two bending moments; two shear forces; torque.

□ Number of structural responses : 30504

Illustration of the envelope reconstruction
 Axial force of 66 beam elements

□ Reconstruction of the full envelope is illustrated in the paper

Studied structure Envelope reconstruction problem Introduction 00000 Definition of the indicator of convergence

Results

Conclusions

Design purposes : finite number of representative design load cases

Selection in the available set of loading modes

Maximization of a choosen indicator of convergence

 l^{th} structural response in the reconstructed envelope with k loading modes

$$\Psi_{k} = \frac{1}{N^{r}} \sum_{l}^{N^{r}} \left(\frac{\tilde{r}_{lk}^{max} - r_{l}^{max}}{r_{l}^{max}} \right)$$

$$\downarrow l^{th} \text{ structural response}$$

Introduction Studied structure CPT loading modes

Envelope reconstruction problem 000000

Results

Conclusions

CPT loading modes

Introduction Studied structure Equivalent Static Wind Loads Envelope reconstruction problem 000000

Results

Conclusions

ESWL matrix P^e

 \Box All investigated structural responses (N = 30504) ESWLs are derived with the method by Chen & Kareem

$$\mathbf{P}^{e} = \begin{pmatrix} p_{11}^{e} & \cdots & p_{1N}^{e} \\ \vdots & \ddots & \\ p_{m1}^{e} & p_{mN}^{e} \end{pmatrix}$$

Introduction Studied structure Equivalent Static Wind Loads Envelope reconstruction problem 0000000

 \mathbf{p}_1^e

[kN]

0 -5 -10

Results

Conclusions

Equivalent static wind loads

Equivalent static responses

Envelope reconstruction

Introduction Studied structure Principal Static Wind Loads

Envelope reconstruction problem 000000

Results

Conclusions

Principal static wind loads

Principal static responses

Envelope reconstruction

Studied structure

Envelope reconstruction problem

Results

Conclusions

Results

Introduction Studied structure Without combinations

Envelope reconstruction problem

Results •000000 Conclusions

■5th loading modes

 $\blacksquare 5^{th}$ reconstructed envelope (axial force)

Introduction Studied structure Envelope reconstruction problem

Results

Conclusions

000000

Without combinations

■50th loading modes

CPT l.m.

 \mathbf{p}_{50}^e

[kN]

10

5

0

 $\blacksquare 50^{th}$ reconstructed envelope (axial force)

Introduction Studied structure Without combinations

Envelope reconstruction problem

Results

Conclusions

0000000

25

0

50

Design wind loads

75

ESWLs CPT Loading modes **PSWLs**

100

Introducti	on	
000000	0000	C
Comb	inati	ions

Studied structure

Envelope reconstruction problem

Results 0000000 Conclusions

Combinations $\mathbf{P}^s = \tilde{\mathbf{P}}\mathbf{q}$

 $\square \, \tilde{\mathbf{P}}$: Limited number of static loadings from the entire basis

□ Speed up the convergence to the real envelope

□ ESWLs : overcome the dependency to unique specific structural responses

Introduction	Studie
0000000000	0000
Combinations	

ed structure

Envelope reconstruction problem

Results 0000000 Conclusions

■Monte-Carlo simulation+ tangency condition

M=2 PSWLs

 \circ No combination 2^M

Introduction	Studied
0000000000	0000
Combinations	

structure

Envelope reconstruction problem

Results 0000000 Conclusions

 \circ No combination 2^M

Introdu	ction	
00000	000000	
Com	binations	

Studied structure

Envelope reconstruction problem

Results 000000 Conclusions

ESWLs **CPT** Loading modes **PSWLs**

ntroduction	Studied structure	Envelope reconstruction problem	Results
00000000000	0000	000000	000000
Combinations			

- CPT Loading modes - ESWLs - PSWLs

Conclusions

Introduction	Studied structure	Envelope reconstruction problem	Results	Conclusions
0000000000	0000	000000	000000	
Combinations				

- CPT Loading modes - ESWLs - PSWLs

Introduction	Studied structure	Envelope reconstruction problem	Results	Conclusions
00000000000	0000	000000	000000	
Combinations				

- CPT Loading modes - ESWLs - PSWLs

Introdu	ction
00000	000000
Com	binations

Studied structure

Envelope reconstruction problem

Results 000000 Conclusions

CPT Loading modes

PSWLs

Introdu	ction
00000	000000
Com	binations

Studied structure

Envelope reconstruction problem

Results 000000 Conclusions

CPT Loading modes

PSWLs

Introduction Combinations Studied structure

Envelope reconstruction problem

Results 000000 Conclusions

CPT Loading modes

PSWLs

Without combinations

Studied structure

Envelope reconstruction problem

Results

Conclusions

Conclusions

Studied structure

Envelope reconstruction problem

Results

Conclusions

Topic : Envelope reconstruction problem **Objective** : Comparison of three basis¹ □ CPT I.m., ESWLs, PSWLs

¹Blaise N., Denoël V. (2013). Principal Static Wind Loads. Int. J. Wind Eng. Ind. Aerod., 113, 29-39

Studied structure

Envelope reconstruction problem

Results

Conclusions

Topic : Envelope reconstruction problem **Objective** : Comparison of three basis¹ □ CPT I.m., ESWLs, PSWLs

Recommend the use of PSWLs

Studied structure

Envelope reconstruction problem

Results

Conclusions

Topic : Envelope reconstruction problem **Objective** : Comparison of three basis¹ □ CPT I.m., ESWLs, PSWLs

Recommend the use of PSWLs

Main characteristics

- \Box Obtained by an automatic procedure (**SVD**) \rightarrow Robust
- □ Minimum number of principal loadings is necessary
- □ Represent global loadings
- Well-suited for combinations
- Possible codification

Studied structure

Envelope reconstruction problem

Results

Conclusions

Topic : Envelope reconstruction problem **Objective** : Comparison of three basis¹ □ CPT I.m., ESWLs, PSWLs

Recommend the use of PSWLs

Main characteristics

- \Box Obtained by an automatic procedure (**SVD**) \rightarrow Robust
- □ Minimum number of principal loadings is necessary
- □ Represent global loadings
- Well-suited for combinations
- Possible codification
- **Assumptions** : linear analysis and gaussian responses

Perspective : non gaussian responses

Studied structure

Envelope reconstruction problem

Results

Conclusions

Thank you for your kind attention.

Questions?

Read out more about me on : www.orbi.ulg.ac.be

Contact me at : N.Blaise@ulg.ac.be

