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Abstract

We study the freeness problem for matrix semigroups. We show that the freeness
problem is decidable for upper-triangular 2 × 2 matrices with rational entries
when the products are restricted to certain bounded languages. We also show
that this problem becomes undecidable for sufficiently large matrices.
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1. Introduction

In this paper we study the freeness problem over matrix semigroups. In
general, if S is a semigroup and X is a subset of S, we say that X is a code if for
any integers m,n ≥ 1 and any elements x1, . . . , xm, y1, . . . , yn ∈ X the equation

x1x2 . . . xm = y1y2 . . . yn

implies that m = n and xi = yi for 1 ≤ i ≤ m. The freeness problem over S
consists of deciding whether a finite subset of S is a code.

The freeness problem over S can also be stated as follows. Suppose Σ is a
finite nonempty alphabet and µ : Σ+ → S is a morphism. Then the freeness
problem over S is to decide whether µ is injective.

For a general introduction to freeness problems over semigroups see [1].
An interesting special case of the freeness problem concerns freeness of ma-

trix semigroups. Let R be a semiring and let k ≥ 1 be an integer. Then the
semiring of k × k matrices (resp. upper-triangular k × k matrices) is denoted
by Rk×k (resp. Rk×k

uptr). The sets Rk×k and Rk×k
uptr are monoids, and the freeness

problem over Rk×k is to decide whether a given morphism

µ : Σ∗ → Rk×k
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is injective. Most cases of this problem are undecidable. In fact, Klarner, Birget
and Satterfield [2] proved that the freeness problem over N3×3 is undecidable.
Cassaigne, Harju and Karhumäki [3] improved this result by showing that the
problem remains undecidable for N3×3

uptr. Both of these undecidability results use
the Post correspondence problem. Cassaigne, Harju and Karhumäki also discuss
the freeness problem for 2×2 matrices having rational entries (also see [4]). This
problem is still open, even for upper-triangular 2 × 2 matrices having rational
entries. On the other hand, Bell and Potapov [5] have proved that the freeness
problem is undecidable for diagonal matrices over quaternions. For some special
decidable cases of the freeness problem for 2× 2 matrices see [1, 3, 6, 7].

In this paper we discuss the problem whether a given morphism µ : Σ∗ →
Qk×k

uptr is injective on certain bounded languages. This approach is inspired by the
well-known fact that many language-theoretic problems which are undecidable
in general become decidable when restricted to bounded languages. Recall that a
language L ⊆ Σ∗ is called bounded if there is an integer s and words w1, . . . , ws ∈
Σ∗ such that L ⊆ w∗

1w
∗
2 . . . w

∗
s . Our main result is that we can decide the

injectivity of a given morphism µ : {x, z1, . . . , zt+1}∗ → Q2×2
uptr on the language

Lt = z1x
∗z2x

∗z3 . . . ztx
∗zt+1 for any t ≥ 1, provided that the matrices µ(zi)

are nonsingular for 1 ≤ i ≤ t + 1. To prove this result we will study the
representation of rational numbers in a rational base.

On the other hand, we will show that if we consider sufficiently large matri-
ces, the injectivity problem becomes undecidable, even if restricted to certain
very special bounded languages. Hence, contrary to the common situation in
language theory, the restriction of the freeness problem over bounded languages
remains undecidable. The proof of our undecidability result will use a reduction
from Hilbert’s tenth problem in a way which is commonly used to obtain various
undecidability results for rational power series (see [8]) and which is also used in
[9] to prove that the mortality problem is undecidable on a bounded language.

2. Results and examples

As usual, Z and Q are the sets of integers and rational numbers. If k ≥ 1
is an integer, the set of k × k matrices having integer (resp., rational) entries is
denoted by Zk×k (resp., Qk×k) and the set of upper-triangular k × k matrices
is denoted by Zk×k

uptr (resp., Q
k×k
uptr).

We will consider two special families of bounded languages. Suppose t ≥ 1
is a positive integer. Let

Σt = {x, z1, . . . , zt+1}

be an alphabet having t+ 2 different letters and let

∆ = {x, y, z1, z2}

be an alphabet having four different letters. Define the languages Lt ⊆ Σ∗
t and

Kt ⊆ ∆∗ by
Lt = z1x

∗z2x
∗z3 · · · ztx∗zt+1
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and
Kt = z1(x

∗y)t−1x∗z2.

We can now state our results.

Theorem 1. Let t be a positive integer. It is decidable whether a given mor-
phism

µ : Σ∗
t → Q2×2

uptr

such that µ(zi) is nonsingular for i = 1, . . . , t+ 1, is injective on Lt.

Theorem 2. There exist two positive integers k and t such that there is no
algorithm to decide whether a given morphism

µ : ∆∗ → Zk×k
uptr

is injective on Kt.

Observe that Theorem 1 still holds if Σt and Lt are replaced by ∆ and Kt,
respectively.

Intuitively, the languages Kt of Theorem 2 are the simplest bounded lan-
guages for which we are able to show that the injectivity problem is undecidable,
while the languages Lt of Theorem 1 are the most general bounded languages
for which we are able to show decidability. The study of the injectivity problem
on bounded languages is motivated by the fact that while bounded languages
have a simple structure, the induced matrix products already can be used to
represent very general sets, as we will see in the proof of Theorem 2.

Our proof of Theorem 2 gives a method to compute the integers k and t
in Theorem 2. Indeed, if we are given a polynomial which has the required
universality property for Hilbert’s tenth problem, the computation of k is a
tedious but straightforward task which is left to the interested reader. The
resulting value of k is large.

We will continue with examples which illustrate the problem considered in
Theorem 1. In the examples we assume that t is a positive integer, and

µ : Σ∗
t → Q2×2

uptr

is a morphism such that µ(zi) is nonsingular for i = 1, . . . , t+ 1. We write

µ(x) = M and µ(zi) = Ni

for i = 1, . . . , t+ 1.

Example 3. Assume that t = 2. Let µ(x) =
( 3 0

0 1

)
and let µ(z2) =(

2 1
0 3

)
. Then

µ(xmz2x
n) =

(
2 · 3m+n 3m

0 3

)
for all m,n ∈ N. Hence µ is injective on L2.
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Example 4. Assume that t = 1. Let M = c
( 1 b

0 1

)
where b, c ∈ Q and

c ̸= 0. Then

M
n

= cn
( 1 nb

0 1

)
for all n ≥ 0. It follows that there exist distinct integers m,n ≥ 0 such that

M
m

= M
n

if and only if c ∈ {−1, 1} and b = 0. Hence µ is injective on L1 if and only if
c ̸∈ {−1, 1} or b ̸= 0.

Example 5. Assume that t = 2 and let M be as in Example 4. Let

N2 =
( A2 B2

0 C2

)
where A2, B2, C2 ∈ Q. Then

M
m

N2M
n

= cm+n
( A2 A2bn+B2 + C2bm

0 C2

)
for all m,n ≥ 0. This implies that if c ̸∈ {−1, 1}, then µ is injective if and only
if A2b ̸= C2b. If c ∈ {−1, 1}, then µ is not injective on L2.

Example 6. Assume that t ≥ 3. Let M and N2 be as in Example 5 and let

N3 =
( A3 B3

0 C3

)
where A3, B3, C3 ∈ Q. Then we can find two different triples (m1,m2,m3) and
(n1, n2, n3) of nonnegative integers such that

m1 +m2 +m3 = n1 + n2 + n3

and

C2C3m1 +A2C3m2 +A2A3m3 = C2C3n1 +A2C3n2 +A2A3n3.

This implies that

M
m1

N2M
m2

N3M
m3

= M
n1
N2M

n2
N3M

n3
,

which shows that µ is not injective on Lt.
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3. Proof of Theorem 1

3.1. From matrices to representations of rational numbers

For any rational number m, we introduce a corresponding letter m. We
regard the elements of the set Q1 = {m | m ∈ Q} as digits. For any r ∈ Q \ {0}
and any word w = wn−1 · · ·w1 w0, where the wi’s belong to Q1, we define the
value of w with respect to the base r to be the number

valr(w) =

n−1∑
i=0

wi r
i.

Observe that valr(m) = m holds for any m ∈ Q. If u and v are words over Q1

and k is a positive integer, then

valr(uv) = r|v|valr(u) + valr(v)

and
valr(u

k) = (r(k−1)|u| + · · ·+ r|u| + 1)valr(u).

The following lemma is straightforward.

Lemma 7. Let M = c
( a b

0 1

)
where c, a, b ∈ Q. Then

Mn = cn
(

an vala(b
n
)

0 1

)
for any n ≥ 1.

The following lemma shows that in order to prove Theorem 1 we can study
representations of rational numbers in a rational base.

Lemma 8. Let s ≥ 1 be a positive integer, let M = c
( a b

0 1

)
with a, b, c ∈ Q

and, for i = 1, . . . , s+ 1, let Ni =
(

Ai Bi

0 Ci

)
with Ai, Bi, Ci ∈ Q. Then there

exist rational numbers q1, . . . , qs+1, p1, . . . , ps such that for all positive integers
m1, . . . ,ms,

N1M
m1

N2 · · ·NsM
ms

Ns+1

(1)

= cm1+···+ms

(
A1 · · ·As+1a

m1+···+ms vala(q1 p1
ms−1

q2 · · · qs ps
m1−1

qs+1)
0 C1 · · ·Cs+1

)
.

5



Proof. We proceed by induction on s. Suppose first that s = 1. If m1 ≥ 1,
Lemma 7 implies

N1M
m1

N2 =

(
A1 B1

0 C1

)
cm1

(
am1 vala(b

m1
)

0 1

)(
A2 B2

0 C2

)
= cm1

(
A1a

m1 A1vala(b
m1

) +B1

0 C1

)(
A2 B2

0 C2

)
= cm1

(
A1A2a

m1 A1B2a
m1 +A1C2vala(b

m1
) +B1C2

0 C1C2

)

= cm1

 A1A2a
m1 vala

(
A1B2 A1C2b

m1−1

C2(A1b+B1)

)
0 C1C2

 .

This implies the claim for s = 1.
Let then s ≥ 1 and assume inductively that we have computed rational

numbers q1, . . . , qs+1, p1, . . . , ps such that (1) holds for all m1, . . . ,ms ≥ 1. Let

ms+1 ≥ 1 and let Ns+2 =
( As+2 Bs+2

0 Cs+2

)
. For the sake of brevity, let us

denote d1 = A1 · · ·As+1, d2 = C1 · · ·Cs+1 and Ns+2 =
( A B

0 C

)
. Then

N1M
m1

N2M
m2

N3 · · ·Ns+1M
ms+1

Ns+2

= cm1+···+ms

(
d1a

m1+···+ms T
0 d2

)
cms+1

(
ams+1 vala(b

ms+1
)

0 1

)(
A B
0 C

)
= cm1+···+ms+1

(
d1a

m1+···+ms T
0 d2

)(
Aams+1 Bams+1 + Cvala(b

ms+1
)

0 C

)
= cm1+···+ms+1

(
d1Aa

m1+···+ms+1 d1a
m1+···+ms(Bams+1 + Cvala(b

ms+1
)) + CT

0 d2C

)
where T = vala(q1 p1

ms−1

q2 · · · qs ps
m1−1

qs+1). We compute d1A = A1 · · ·As+2,
d2C = C1 · · ·Cs+2 and

d1a
m1+···+ms(Bams+1 + Cvala(b

ms+1
)) + CT

= vala(d1B d1Cb
ms+1−1

C(d1b+ q1) Cp1
ms−1

Cq2 · · ·Cqs Cps
m1−1

Cqs+1).

This concludes the proof.

3.2. Comparison of the representations

If Σ is an alphabet, we let Σ̂ be the alphabet defined by

Σ̂ =
{[ σ1

σ2

]
: σ1, σ2 ∈ Σ

}
.
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A word in Σ̂
∗
given by [ σi1

σj1

][ σi2

σj2

]
· · ·

[ σiℓ

σjℓ

]
will be written as [ σi1σi2 · · ·σiℓ

σj1σj2 · · ·σjℓ

]
.

In what follows it is important to observe that if we have a word
[ w1

w2

]
in

Σ̂∗ then necessarily the words w1 and w2 have equal lengths.
The next lemma shows that in comparing the representations of rational

numbers we can use regular languages.

Lemma 9. Let S ⊆ Q be a finite nonempty set, let S1 = {s : s ∈ S} and let
X = Ŝ1. Let r ∈ Q \ {−1, 0, 1}. Then the language

L =

{[ w1

w2

]
∈ X

∗
: valr(w1) = valr(w2)

}
is effectively regular.

Proof. First, observe that

valr(xn · · ·x1x0) = valr(yn · · · y1y0)

holds if and only if

valr−1(x0x1 · · ·xn) = valr−1(y0y1 · · · yn)

holds (here, the xi’s and yi’s are digits). Indeed, we have

xnr
n + · · ·+ x1r + x0 = ynr

n + · · ·+ y1r + y0

if and only if

x0r
−n + x1r

−n+1 + · · ·+ xn = y0r
−n + y1r

−n+1 + · · ·+ yn.

Because the class of effectively regular languages is closed under reversal, we
may assume |r| > 1 without loss of generality.

Next, we assume without loss of generality that

S = {−m+ 1,−m+ 2, . . . ,−1, 0, 1, . . . ,m− 2,m− 1}

where m is a positive integer. In other words, we will assume that

X =
{[ a

b

]
: a, b ∈ {−m+ 1,−m+ 2, . . . ,−1, 0, 1, . . . ,m− 2,m− 1}

}
.
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Let r = u
v , where u, v ∈ Z do not have any nontrivial common factor. Let

d = 2m−2
|r|−1 . We define the nondeterministic automaton A = (Q,X, δ, {q0}, {q0})

as follows:
Q = {qi : i ∈ [−d, d] ∩ Z}

and

δ
(
qi,

[ a

b

])
=

{
qj , if i+ a− b = rj;
∅, if i+a−b

r ̸∈ [−d, d] ∩ Z.

We will prove L(A) = LT . (Here LT is the reversal of L.)
Assume first that [ a0

b0

][ a1
b1

]
· · ·

[ an
bn

]
∈ LT ,

or, equivalently,

a0 + a1r + · · ·+ anr
n = b0 + b1r + · · ·+ bnr

n. (2)

We claim that there exist states qγ1 , qγ2 , . . . , qγn+1 ∈ Q such that

δ
(
q0,

[ a0
b0

][ a1
b1

]
· · ·

[ ai
bi

])
= qγi+1 (3)

and
γi+1 + ai+1 + · · ·+ anr

n−i−1 = bi+1 + · · ·+ bnr
n−i−1 (4)

hold for all i = 0, . . . , n.
We first show the existence of qγ1 . Since (2) implies

a0v
n + a1uv

n−1 + · · ·+ anu
n = b0v

n + b1uv
n−1 + · · ·+ bnu

n,

we have a0 ≡ b0 (mod u). Hence

γ1 =
a0 − b0

r
=

(a0 − b0)v

u

is an integer. Then since |a0| ≤ m− 1 and |b0| ≤ m− 1, we have

|γ1| =
|a0 − b0|

|r|
≤ d,

and hence the state qγ1 exists.
Further, we have

δ
(
q0,

[ a0
b0

])
= qγ1

and
γ1 + a1 + a2r + · · ·+ anr

n−1 = b1 + b2r + · · ·+ bnr
n−1.

This proves the claim for i = 0.
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Assume then j ∈ {1, . . . , n} and assume that there exist qγ1
, . . . , qγj

∈ Q
such that (3) and (4) hold for i = 0, . . . , j − 1. From (4) it follows

γj + aj ≡ bj (mod u).

Hence

γj+1 =
γj + aj − bj

r
=

(γj + aj − bj)v

u
is an integer. Because we have

|γj+1| =
|γj + aj − bj |

|r|
≤ |γj |+ |aj − bj |

|r|
≤ d+ 2m− 2

|r|
=

d+ d(|r| − 1)

|r|
= d,

the state qγj+1 exists. Further, we have

δ
(
q0,

[ a0
b0

][ a1
b1

]
· · ·

[ aj
bj

])
= δ

(
qγj ,

[ aj
bj

])
= qγj+1

and

γj+1 + aj+1 + aj+2r + · · ·+ anr
n−j−1 = bj+1 + bj+2r + · · ·+ bnr

n−j−1.

This concludes the proof of the claim.
From the claim it follows

δ
(
q0,

[ a0
b0

][ a1
b1

]
· · ·

[ an
bn

])
= qγn+1

and
γn+1 = 0.

Therefore [ a0
b0

][ a1
b1

]
· · ·

[ an
bn

]
∈ L(A).

Hence LT ⊆ L(A).
Suppose now that [ a0

b0

][ a1
b1

]
· · ·

[ an
bn

]
∈ L(A).

Then there exist states qγ0 , qγ1 , . . . , qγn+1 ∈ Q such that

δ
(
qγi ,

[ ai
bi

])
= qγi+1

for i = 0, . . . , n and γ0 = γn+1 = 0. By the definition of A we have

γi + ai − bi = rγi+1

for i = 0, . . . , n. This implies

a0 + a1r + · · ·+ anr
n = b0 + b1r + · · ·+ bnr

n.

Hence [ a0
b0

][ a1
b1

]
· · ·

[ an
bn

]
∈ LT .

Therefore L(A) ⊆ LT .
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3.3. A decidability method for Theorem 1

We are now ready for the proof of Theorem 1.
Let t be a positive integer and assume that

µ : Σ∗
t → Q2×2

uptr

is a morphism such that µ(zi) is nonsingular for i = 1, . . . , t+ 1.
First, we consider the particular case where µ(x) is singular. Suppose µ(x) =( a b
0 0

)
, the case µ(x) =

( 0 b
0 c

)
being symmetric. Then µ(xn) = an−1µ(x)

for all n ≥ 1. If t = 1, then µ in injective on L1 if and only if a ̸∈ {−1, 0, 1}. If
t ≥ 2, then the equation µ(x2z2x) = µ(xz2x

2) implies that µ is not injective on
Lt.

For the rest of the proof we suppose that µ(x) is not singular. Let

µ(x) = M = c

(
a b
0 1

)
and, for i = 1, . . . , t+ 1, let

µ(zi) = Ni =
( Ai Bi

0 Ci

)
,

where a, b, c, Ai, Bi, Ci ∈ Q for i = 1, . . . , t+ 1. Because M and Ni are nonsin-
gular, a, c, Ai, Ci are nonzero for i = 1, . . . , t+ 1.

If a = −1, then M2 = c2I. If t ≥ 2, then µ is not injective on Lt because
we have N1M

2N2 = N1N2M
2. If t = 1 and c ∈ {−1, 1}, then µ is not injective

on Lt because N1N2 = N1M
2N2. If t = 1 and c ̸∈ {−1, 1}, it follows from the

equation det(Mn) = (−c)n that µ is injective on Lt.
For the rest of the proof we suppose in addition that a ̸= −1. We also

suppose that a ̸= 1. In fact, we have already proved Theorem 1 if a = 1 in
Examples 4, 5 and 6.

For each subset K ⊆ {1, . . . , t}, let

Lt(K) = {z1xm1z2x
m2z3 · · · ztxmtzt+1 : mi = 0 for i ∈ K, mi ≥ 1 for i ̸∈ K}.

Now Lt is the union of the disjoint languages Lt(K) where K runs over all the
subsets of {1, . . . , t}. This implies the following lemma.

Lemma 10. With the notation explained above, the morphism µ is injective on
Lt if and only if

(i) for each K ⊆ {1, . . . , t}, µ is injective on Lt(K); and

(ii) if K1,K2 ⊆ {1, . . . , t} with K1 ̸= K2, then there does not exist two words
w1 ∈ Lt(K1) and w2 ∈ Lt(K2) such that µ(w1) = µ(w2).

To conclude the proof of Theorem 1 we have to show that conditions (i) and
(ii) in Lemma 10 are decidable. We first prove that (ii) is decidable.
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Lemma 11. Condition (ii) of Lemma 10 is decidable.

Proof. For w1 ∈ Lt(K1) and w2 ∈ Lt(K2), we have

µ(w1) = N ′
1M

k1
N ′

2M
k2
N ′

3 · · ·N ′
s1M

ks1 N ′
s1+1

and
µ(w2) = N ′′

1 M
ℓ1
N ′′

2 M
ℓ2
N ′′

3 · · ·N ′′
s2M

ℓs2 N ′′
s2+1

where s1 = t−|K1|, s2 = t−|K2|, ki ≥ 1 for i = 1, . . . , s1, ℓj ≥ 1 for j = 1, . . . , s2
and

N1N2 · · ·Nt+1 = N ′
1N

′
2 · · ·N ′

s1+1 = N ′′
1 N

′′
2 · · ·N ′′

s2+1.

In view of Lemma 8, deciding (ii) is equivalent to deciding the following two
problems:

A : Given positive integers s1, s2 and rational numbers p1, . . . , ps1 , q1, . . . , qs1+1,
α1, . . . , αs2 , β1, . . . , βs2+1, decide whether there exist positive integers
k1, . . . , ks1 , ℓ1, . . . , ℓs2 such that the two matrices

ck1+···+ks1

(
A1 · · ·At+1a

k1+···+ks1 vala(q1 p1
ks1−1

q2 · · · qs1 ps1
k1−1

qs1+1)
0 C1 · · ·Ct+1

)
(5)

and

cℓ1+···+ℓs2

(
A1 · · ·At+1a

ℓ1+···+ℓs2 vala(β1 α1
ℓs2−1

β2 · · · βs2 αs2

ℓ1−1

βs2+1)
0 C1 · · ·Ct+1

)
(6)

are equal.

B : Given a positive integer s and rational numbers q, p1, . . . , ps, q1, . . . , qs+1,
decide whether there exist positive integers k1, . . . , ks such that the two
matrices

ck1+···+ks

(
A1 · · ·At+1a

k1+···+ks vala(q1 p1
ks−1

q2 · · · qs ps
k1−1

qs+1)
0 C1 · · ·Ct+1

)
(7)

and (
A1 · · ·At+1 q

0 C1 · · ·Ct+1

)
(8)

are equal.
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Problem B corresponds to the case where one of the subsets K1 and K2 is
equal to {1, . . . , t}. Because the products ac, A1 · · ·At+1 and C1 · · ·Ct+1 are
nonzero, a necessary condition for the equality of (7) and (8) is

ak1+···+ks = 1.

Because a ̸∈ {−1, 1} this condition never holds and Problem B has no solutions.
We now turn to Problem A. Because the products ac, A1 · · ·At+1 and

C1 · · ·Ct+1 are nonzero, (5) and (6) are equal if and only if

ak1+···+ks1 = aℓ1+···+ℓs2 , (9)

ck1+···+ks1 = cℓ1+···+ℓs2 (10)

and

vala(q1 p1
ks1−1

q2 · · · qs1 ps1
k1−1

qs1+1) = vala(β1 α1

ℓs2−1

β2 · · · βs2 αs2

ℓ1−1

βs2+1).
(11)

Because a ̸∈ {−1, 0, 1} (9) and (10) hold if and only if

k1 + · · ·+ ks1 = ℓ1 + · · ·+ ℓs2 . (12)

Let now S = {q1, . . . , qs1+1, p1, . . . , ps1 , β1, . . . , βs2+1, α1, . . . , αs2}, let S1 =
{s : s ∈ S} and let X = Ŝ1. Let

L =
{[ u1

u2

]
∈ X

∗
: vala(u1) = vala(u2)

}
and let

T1 =
{[ u1

u2

]
∈ X

∗
: u1 ∈ q1 p1

∗ q2 · · · qs1 ps1∗ qs1+1,

u2 ∈ β1 α1
∗ β2 · · · βs2 αs2

∗ βs2+1

}
.

By Lemma 9, L is effectively regular. Clearly, so is T1. In fact, it is easy
to construct a finite automaton which accepts T1. Now we can decide (ii) by
checking whether

L ∩ T1 = ∅.

Indeed, suppose a word
[ u1

u2

]
∈ X∗ belongs to L ∩ T1. Then there exist

positive integers k1, . . . , ks1 , ℓ1, . . . , ℓs2 such that

u1 = q1 p1
ks1−1

q2 · · · qs1 ps1
k1−1

qs1+1

and
u2 = β1 α1

ℓs2−1

β2 · · ·βs2 αs2

ℓ1−1

βs2+1.

12



Because
[ u1

u2

]
∈ L ∩ T1, we have vala(u1) = vala(u2) and |u1| = |u2|. The

latter condition means that

ks1 + · · ·+ k1 + 1 = ℓs2 + · · ·+ ℓ1 + 1

which gives (12). Hence (5) and (6) are equal. Conversely, if there exist positive
integers k1, . . . , ks1 , ℓ1, . . . , ℓs2 such that the matrices (5) and (6) are equal, then

[ q1 p1
ks1−1

q2 · · · qs1 ps1
k1−1

qs1+1

β1 α1
ℓs2−1

β2 · · ·βs2 αs2

ℓ1−1

βs2+1

]
∈ L ∩ T1.

Lemma 12. Condition (i) of Lemma 10 is decidable.

Proof. We have to decide a variant of Problem A where s1 = s2, pi = αi and
qj = βj for 1 ≤ i ≤ s1, 1 ≤ j ≤ s1 + 1 and we have to determine whether there
exist two different s1-tuples (k1, . . . , ks1) and (ℓ1, . . . , ℓs1) of positive integers
such that (11) and (12) hold. Before we can proceed as we did above in case
(ii), we have to check whether there exist different s1-tuples (k1, . . . , ks1) and
(ℓ1, . . . , ℓs1) of positive integers such that

q1 p1
ks1−1

q2 · · · qs1 ps1
k1−1

qs1+1 = q1 p1
ℓs1−1

q2 · · · qs1 ps1
ℓ1−1

qs1+1.

Observe that such s1-tuples may exist; for example, they do exist if p1 = q2 = p2.
However, it is easy to decide whether there are such s1-tuples. If there are, µ is
not injective on Lt(K). We continue with the assumption that such s1-tuples
do not exist. Then we can decide (i) proceeding as we did above. The only
difference is that we replace T1 by

T2 =
{[ u1

u2

]
∈ T1 : u1 ̸= u2

}
.

This is done because we do not want T2 to include words
[ u1

u2

]
such that

u1 = q1 p1
ks1−1

q2 · · · qs1 ps1
k1−1

qs1+1,

u2 = q1 p1
ℓs1−1

q2 · · · qs1 ps1
ℓ1−1

qs1+1

and
(k1, . . . , ks1) = (ℓ1, . . . , ℓs1).

Observe that we did not have this problem in case (ii) because there the lan-
guages Lt(K1) and Lt(K2) were disjoint.

13



4. Proof of Theorem 2

Let us fix some notation first. If A1, A2, . . . , As are matrices, then their
direct sum A1 ⊕A2 ⊕ · · · ⊕As is

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · As

 .

If A = (aij)m×n and B are matrices, then their Kronecker product A⊗B is
a11B a12B · · · a1mB
a21B a22B · · · a2mB
...

...
...

am1B am2B · · · amnB

 .

In both cases, we have used block notation.
The direct sum and the Kronecker product have the following properties: if

A1, A2, . . . , As are m×m matrices and B1, B2, . . . , Bs are n×n matrices, then

(A1 ⊕B1)(A2 ⊕B2) · · · (As ⊕Bs) = (A1A2 · · ·As)⊕ (B1B2 · · ·Bs)

and

(A1 ⊗B1)(A2 ⊗B2) · · · (As ⊗Bs) = (A1A2 · · ·As)⊗ (B1B2 · · ·Bs).

For more details on the Kronecker product, see for example [10, Chapter 12] or
[8].

If k is a positive integer, then Ek = (eij)k×k is the k × k matrix whose only
nonzero entry is e1k = 1.

The main idea of our proof of Theorem 2 is to use the undecidability of
Hilbert’s tenth problem combined with the following result. Suppose that t is a
positive integer and that p(x1, . . . , xt) is a polynomial with integer coefficients.
We want to find a positive integer k and matrices A,M,N,B ∈ Zk×k

uptr such that

AM
a1
NM

a2
N · · ·NM

at
B = p(a1, . . . , at)Ek

for all nonnegative integers a1, . . . , at.
Fix the value of t.

Lemma 13. There is a positive integer k and matrices A,N,B ∈ Zk×k
uptr such

that for any i ∈ {1, . . . , t} there is a matrix M ∈ Zk×k
uptr such that

AM
a1
NM

a2
N · · ·NM

at
B = aiEk

for all nonnegative integers a1, . . . , at.
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Proof. Let k = 2t,

A =


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 and B =


0 · · · 0 0
0 · · · 0 0
...

...
...

0 · · · 0 1

 ,

where A,B ∈ Zk×k
uptr. Let E =

( 1 1
0 1

)
and I =

( 1 0
0 1

)
. Let

M = I ⊕ · · · ⊕ I ⊕ E ⊕ I ⊕ · · · ⊕ I,

where there are t summands of which E is the ith one, and let

N =


0 I 0 · · · 0
0 0 I · · · 0
...

...
...

...
0 0 0 · · · I
0 0 0 · · · 0


be a k × k matrix where each 0 stands for the 2× 2 zero matrix.

Then A,M,N,B ∈ Zk×k
uptr and we have

Mn = I ⊕ · · · ⊕ I ⊕ En ⊕ I ⊕ · · · ⊕ I

= I ⊕ · · · ⊕ I ⊕
( 1 n

0 1

)
⊕ I ⊕ · · · ⊕ I

for all n ∈ N.
Now, if D is any matrix in Zk×k

uptr then the only nonzero entry of ADB is the
last entry in the first row, which is equal to D1k. Let us compute this entry for

AM
a1
NM

a2
N · · ·NM

at
B

where a1, . . . , at are nonnegative integers. For this, we regard M and N as t× t
matrices consisting of 2× 2 blocks:

(M
a1
NM

a2
N · · ·NM

at
)1t

= (M
a1
)11N12(M

a2
)22N23 · · ·Ni−1,i(M

ai
)iiNi,i+1 · · ·Nt−1,t(M

at
)tt

= I · I · I · · · I ·
( 1 ai

0 1

)
· I · · · I

=
( 1 ai

0 1

)
.

The results follows.
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Lemma 14. Let p1(x1, . . . , xt) and p2(x1, . . . , xt) be polynomials with integer
coefficients. Suppose there exist s1, s2 ≥ 1, A1,M1, N1, B1 ∈ Zs1×s1

uptr and A2,M2, N2, B2 ∈
Zs2×s2
uptr such that

A1M
a1

1 N1M
a2

1 N1 · · ·N1M
at

1 B1 = p1(a1, . . . , at)Es1

and
A2M

a1

2 N2M
a2

2 N2 · · ·N2M
at

2 B2 = p2(a1, . . . , at)Es2

for all a1, . . . , at ∈ N. Then

(i) there exist s3 ≥ 1 and A3,M3, N3, B3 ∈ Zs3×s3
uptr such that

A3M
a1

3 N3M
a2

3 N3 · · ·N3M
at

3 B3 = (p1 + p2)(a1, . . . , at)Es3

for all a1, . . . , at ∈ N;

(ii) there exist s4 ≥ 1 and A4,M4, N4, B4 ∈ Zs4×s4
uptr such that

A4M
a1

4 N4M
a2

4 N4 · · ·N4M
at

4 B4 = (p1 · p2)(a1, . . . , at)Es4

for all a1, . . . , at ∈ N;

(iii) if c ∈ Z, then there exists A5 ∈ Zs1×s1
uptr such that

A5M
a1

1 N1M
a2

1 N1 · · ·N1M
at

1 B1 = c · p1(a1, . . . , at)Es1

for all a1, . . . , at ∈ N.

Proof. To prove (i) we take M3 = M1 ⊕M2, N3 = N1 ⊕N2,

A3 =


1 1 · · · 1
0 0 · · · 0
...

...
...

0 0 · · · 0

 · (A1 ⊕A2)

and

B3 = (B1 ⊕B2) ·


0 · · · 0 1
0 · · · 0 1
...

...
...

0 · · · 0 1

 .

To prove (ii), we take A4 = A1 ⊗ A2, M4 = M1 ⊗ M2, N4 = N1 ⊗ N2 and
B4 = B1 ⊗ B2. To prove (iii) it suffices to take A5 = cA1. Then the claims
follow by simple computations which are left to the reader.

Now our goal is achieved and we can state the following lemma.
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Lemma 15. Let t be any positive integer and p(x1, . . . , xt) be any polynomial
with integer coefficients. Then there effectively exists a positive integer k and
matrices A,M,N,B ∈ Zk×k

uptr such that

AM
a1
NM

a2
N · · ·NM

at
B =


0 · · · 0 p(a1, . . . , at)
0 · · · 0 0
...

...
...

0 · · · 0 0


for all a1, . . . , at ∈ N.

Remark 16. Lemma 15 is closely related to the well-known fact stating that
if p(x1, . . . , xt) is a polynomial having integer coefficients, then the series∑

n1,...,nt≥0

p(n1, . . . , nt) x
n1yxn2y · · · yxnt

is Z-rational; see for example [11]. The purpose of Lemma 15 is to show explicitly
that we can get this result using only upper-triangular matrices.

We will use a strong version of the undecidability of Hilbert’s tenth problem
as stated in the following theorem (see [12, Theorem 3.10]).

Theorem 17. There exists a polynomial P (x1, x2, . . . , xm) with integer coeffi-
cients such that no algorithm exists for the following problem: given a positive
integer a, decide whether there exist nonnegative integers b2, . . . , bm such that

P (a, b2, . . . , bm) = 0.

For k = 2, 3, . . ., define the Cantor polynomials C2, C3, . . . as follows:

C2(x1, x2) =
1

2
(x1 + x2)(x1 + x2 + 1) + x2,

Ck+1(x1, . . . , xk+1) = C2(Ck(x1, . . . , xk), xk+1).

These polynomials are injective on Nk. In other words, for all nonnegative
integers n1, . . . , nk,m1 . . . ,mk, if Ck(n1, . . . , nk) = Ck(m1, . . . ,mk) then n1 =
m1, . . . , nk = mk. Note that the Ck’s are not injective on Zk.

Let P (x1, . . . , xm) be as in Theorem 17. Take a new indeterminate xm+1

and define the polynomial Q(x1, . . . , xm, xm+1) by

Q(x1, . . . , xm, xm+1) = e · Cm+1(x1, . . . , xm, P (x1, . . . , xm)2 · xm+1),

where e is a positive integer chosen such that Q has integer coefficients.

Lemma 18. Let a be a positive integer. Then the equation P (a, x2, . . . , xm) = 0
has a solution in nonnegative integers if and only if there exist nonnegative
integers b2, . . . , bm+1, c2, . . . , cm+1 such that

Q(a, b2, . . . , bm+1) = Q(a, c2, . . . , cm+1) (13)

and
(b2, . . . , bm+1) ̸= (c2, . . . , cm+1). (14)
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Proof. Suppose first that there exist d2, . . . , dm ∈ N such that

P (a, d2, . . . , dm) = 0.

Then we have

Q(a, d2, . . . , dm, x) = e · Cm+1(a, d2, . . . , dm, 0)

for any x ∈ N. Hence, if we choose

(b2, . . . , bm+1) = (d2, . . . , dm, 1) and (c2, . . . , cm+1) = (d2, . . . , dm, 2),

then (13) and (14) hold.
Suppose then that P (a, d2, . . . , dm) ̸= 0 for all d2, . . . , dm ∈ N. Suppose that

Q(a, b2, . . . , bm+1) = Q(a, c2, . . . , cm+1)

where b2, . . . , bm+1, c2, . . . , cm+1 ∈ N. Hence

Cm+1(a, b2, . . . , bm, P (a, b2, . . . , bm)2bm+1)

= Cm+1(a, c2, . . . , cm, P (a, c2, . . . , cm)2cm+1).

Because Cm+1 is injective on Nm+1 we obtain

b2 = c2, . . . , bm = cm (15)

and
P (a, b2, . . . , bm)2bm+1 = P (a, c2, . . . , cm)2cm+1.

Using (15) and the assumption

P (a, b2, . . . , bm) = P (a, c2, . . . , cm) ̸= 0,

we obtain bm+1 = cm+1. Consequently, if P (a, x2, . . . , xm) = 0 does not have a
solution in nonnegative integers, then there does not exist b2, . . . , bm+1, c2, . . . , cm+1 ∈
N such that (13) and (14) hold.

We are now ready for the proof of Theorem 2.
Let P (x1, . . . , xm) and Q(x1, . . . , xm+1) be as above. By Lemma 15 there is

a positive integer k and a morphism µ : ∆∗ → Zk×k
uptr such that

µ(z1x
a1yxa2y · · · yxam+1z2) = Q(a1, . . . , am+1)Ek

for all a1, . . . , am+1 ∈ N. For each a ∈ N define the morphism µa : ∆
∗ → Zk×k

uptr

by

µa(z1) = µ(z1x
ay), µa(x) = µ(x), µa(y) = µ(y) and µa(z2) = µ(z2).

Then
µa(z1x

a2y · · · yxam+1z2) = Q(a, a2, . . . , am+1)Ek

for any a ≥ 1 and a2, . . . , am+1 ∈ N. By Lemma 18, for any a ≥ 1, the morphism
µa is injective on Km if and only if the equation P (a, x2 . . . , xm) = 0 does not
have a solution in nonnegative integers. Now Theorem 2 follows by Theorem 17.
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5. Concluding remarks

In the proof of our undecidability result we used singular matrices. On the
other hand, in Theorem 1 we require that µ(zi) is nonsingular for i = 1, . . . , t+1.
This assumption plays an essential role in our proof of the theorem. At present
we do not know how to avoid using this assumption.

The following examples illustrate the situations where some of the matrices
µ(zi), 1 ≤ i ≤ t + 1, are singular. The first two examples show that the
singularity of some µ(zi) often implies that µ is not injective while the third
example shows that this is not always the case. In these examples we use the
notations of Section 3.

Example 19. Let t ≥ 2 and assume that there is an integer i, 1 ≤ i ≤ t − 1,

such that Ni is of the form

(
0 B
0 C

)
, where B,C ∈ Q. Then

NiMNi+1 = NiNi+1M,

which implies that µ is not injective on Lt.

Example 20. Let t ≥ 2 and assume that there is an integer i, 3 ≤ i ≤ t + 1,

such that Ni is of the form

(
A B
0 0

)
, where A,B ∈ Q. Then

MNi−1Ni = Ni−1MNi,

which implies that µ is not injective on Lt.

Example 21. Let t ≥ 1 and let

N1 = N2 = · · · = Nt =

(
3 1
0 1

)
, Nt+1 =

(
0 1
0 1

)
, M =

(
3 0
0 1

)
.

Then for any m1, . . . ,mt ≥ 0 we have

N1M
m1

N2M
m2

N3 . . . NtM
mt

Nt+1 =

(
0 E
0 1

)
where

E = 3m1+···+mt+t + 3m1+···+mt−1+t−1 + · · ·+ 3m1+m2+2 + 3m1+1 + 1.

This implies that µ is injective on Lt.
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