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4 Chimie Quantique et Photophysique, Université Libre de Bruxelles, B-1000 Brussels, Belgium
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Abstract
The radiative properties of the W5+ ion are investigated using two independent theoretical
approaches, i.e. the Hartree–Fock method with relativistic corrections of Cowan and the
multiconfiguration Dirac–Hartree–Fock method as implemented in the GRASP2K package. The
core–valence correlations are studied in detail comparing models where a core-polarization
model potential plus a correction to the dipole operator are considered (HFR + CPOL) on the
one hand, and core-excited configurations are explicitly included in the configuration-
interaction expansion of the atomic state function on the other hand. In general, a good
agreement is found between the two theoretical methods. Core-polarization effects are
remarkably strong lengthening the lifetimes up to ∼15%–35% and even by a factor of 2 for the
5f levels. The lifetimes of the two 5f levels are found to be model dependent and particularly
sensitive to core-penetration effects; precise measurements are clearly needed here.

1. Introduction

Radiative transition probabilities of all the ions of the
tungsten isonuclear sequence are needed to model plasmas
in fusion reactors. Indeed, the International Thermonuclear
Experimental Reactor (ITER) will use tungsten, together with
beryllium and carbon-fibre reinforced composites as plasma-
facing materials. Tungsten will be sputtered from the plasma
wall as a neutral element and will be ionized along its way to the
core plasma. The determination of its influx rate to the core
plasma will depend on a calculation of transport from the wall
surface through the scrape-off layer. Consequently, the
identification of emission lines from tungsten ions will greatly
aid modelling of the plasma edge and scrape-off layer transport
and facilitate the analysis of the net tungsten influx rates.

Recently, the possibility of using extreme ultraviolet
emission from low charge states of tungsten ions to diagnose
the divertor plasma of ITER tokamak was investigated by
Clementson et al (2010). To simulate the ITER divertor
plasma, tungsten was introduced into the Sustained Spheromak
Physics Experiment (SSPX) setup installed at Livermore,
while spectral modelling of Lu-like W IV to Gd-like W XI

was performed by using the flexible atomic code (FAC). This

study showed that, even if tungsten emission was dominated by
W VII, two 5d–5f transitions from W VI were observed at 38.2
and 39.4 nm, but the calculations were not accurate enough to
identify other individual lines from this ion.

The data available concerning five-times ionized tungsten
(W VI) are rather scarce. In fact, to our knowledge, no
radiative parameters have been published so far. Concerning
the wavelengths and energy levels, Meijer (1974) was the first
to observe the spectrum of W VI obtained from a sliding
spark. He identified 13 lines belonging to the 5d 2D–5f 2Fo,
5d 2D–6p 2Po, 6s 2S–6p 2Po, 6p 2Po–6d 2D and 6p 2Po–7s 2S
doublets. This spectrum was later re-measured (Kaufman
and Sugar 1976) and extended with the classifications of
the 5f 2Fo–5g 2G and 5f 2Fo–6g 2G doublets by Sugar and
Kaufman (1979). These latter data were retained in the
compilation of Kramida and Shirai (2009).

As a continuous effort to determine the radiative
parameters of the lowly charged tungsten ions (W I–III)
(Nilsson et al 2008, Palmeri et al 2008, Quinet et al 2010,
2011), this study is dedicated to that matter in order to fill in
the gap in W VI. The calculations are described in section 2. The
results are discussed in section 3 and conclusions are drawn in
section 4.
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2. Calculations

Tungsten is the heavy element of the periodic table with
Z = 74. The ground state of W VI is 5d 2D3/2 with one valence
electron orbiting around a 68 electron-erbium-like ionic core.
It is therefore important to consider both the relativistic and
the correlation effects in order to correctly describe this atomic
structure.

As no measurements are available in the literature, two
independent theoretical methods that take into account both
effects have been used in this study to calculate and to
benchmark the radiative parameters. These are described
briefly in the following subsections.

2.1. Hartree–Fock method with relativistic corrections

In the Hartree–Fock method with relativistic corrections
(HFR) of Cowan (1981), a set of orbitals is obtained for
each electronic configuration by solving the Hartree–Fock
equations for the spherically averaged atom. The equations
result from the application of the variational principle to
the configuration average energy. Relativistic corrections are
included in this set of equations, i.e. the Blume–Watson
spin–orbit, mass–velocity and one-body Darwin terms. The
Blume–Watson spin–orbit term comprises the part of the Breit
interaction that can be reduced to a one-body operator.

The multiconfiguration Hamiltonian matrix is constructed
and diagonalized in the LSJMJπ representation within the
framework of the Slater–Condon theory. Each matrix element
is a sum of products of Racah angular coefficients and radial
integrals (Slater and spin–orbit integrals), i.e.

〈αaLaSaJMJπ |H|αbLbSbJMJπ〉 =
∑

i

ca,b
i Ia,b

i . (1)

The radial parameters, Ia,b
i , can be adjusted to fit the available

experimental energy levels in a least-squares approach; ca,b
i are

the angular coefficients. The eigenvalues and the eigenstates
obtained in this way (ab initio or semi-empirically) are used
to compute the wavelength and the transition probability for
each possible transition.

This technique has been modified (see, e.g., Quinet
et al (1999)) in order to include the core-polarization effects
perturbationally and is referred to as the HFR + CPOL method.
In the case of the one-valence-electron system investigated in
this work, it consists of adding, to the part of the Hartree–
Fock equations related to the valence electron, the following
polarization potential (Migdalek and Baylis 1978):

VCPOL(r) = αdr2

2
(
r2 + r2

c

)3
, (2)

where αd is the static dipole polarizability of the ionic core
and rc its cut-off radius.

There is a corresponding change to the dipole radial matrix
element of the length form of the line strength: the integral

Dn�,n′�′ =
∫ ∞

0
Pn�(r)rPn′�′ (r) dr (3)

has to be replaced by

Dn�,n′�′ =
∫ ∞

0
Pn�(r)r

(
1 − αd(

r2 + r2
c

)3/2

)
Pn′�′ (r) dr. (4)

Figure 1. Static dipole polarizability (in a3
0) along the erbium

isoelectronic sequence. Full circles are theoretical values taken from
Fraga et al (1976). Open circles connected with a dotted line
represent extrapolated values.

A further correction, introduced by Hameed and co-
workers (Hameed et al 1968, Hameed 1972) to allow for a
more accurate treatment of the penetration of the core by the
valence electron, corresponds to adding to the integral∫ ∞

0
Pn�(r)

r(
r2 + r2

c

)3/2 Pn′�′ (r) dr (5)

in (4) the core-penetration term
1

rc

∫ rc

0
Pn�(r)rPn′�′ (r) dr. (6)

The estimate of the core-polarization contributions
requires the knowledge of the dipole polarizability of
the ionic core, αd, and the cut-off radius, rc. For the
first parameter, a value of αd = 2.50 a3

0 has been
graphically extrapolated for W VII from the theoretical
values of Fraga et al (1976) along the erbium isoelectronic
sequence (see figure 1). The cut-off radius, rc, has
been chosen to be equal to 1.20 a0 which corresponds
to the HFR average value 〈r〉 for the outermost core
orbital (5p).

The configurations retained in the configuration-
interaction (CI) expansions were ns (n = 6−7), nd (n = 5−6)
and ng (n = 5 − 7) for the even parity, and np (n = 6 − 7)
and nf (n = 5 − 7) for the odd parity. Although introduced
in the calculations, valence–valence correlations are expected
to play a minor role here; indeed, it was verified that the
7p, 7d, 6f, 7f and 7g configurations have no effects on the
A-values of the transitions between experimentally known
energy levels. In addition, the average energies, Eav, and the
spin–orbit parameters, ζn�, were adjusted with a least-squares
optimization procedure minimizing the discrepancies between
the calculated and the experimental energy levels compiled by
Kramida and Shirai (2009). This calculation is referred to as
HFR(A).

In a second calculation referred to as HFR(B), the same
model as HFR(A) was used but the core-penetration term
(equation (6)) was neglected to show the importance of the
latter on the radiative rates.
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A third calculation, referred to as HFR(C), was carried
out neglecting completely the polarization effects and using
the same CI expansion as in HFR(A).

Finally, in order to check the equivalence of the HFR +
CPOL method with the explicit inclusion of the interactions
with core-excited configurations in the CI expansions, a fourth
HFR calculation (HFR(D)) was performed by adding to the
above-mentioned CI configuration set the following core-
excited configurations: 5s25p55d6p, 5s25p55d5f, 5s5p65dnd
(n = 5–6), 5s5p65dns (n = 6–7) for the even parity, and
5s25p55dnd (n = 5–6), 5s25p55dns (n = 6–7), 5s25p55dng
(n = 5–6), 5s5p65d6p and 5s5p65d5f for the odd parity.
Further additions of core-excited configurations to the CI
expansions were prohibited by our computer limits. Moreover,
the 6f and 7� (� = p − g) configurations had to be excluded
from the valence configuration list.

2.2. Multiconfiguration Dirac–Hartree–Fock method

In the multiconfiguration Dirac–Hartree–Fock (MCDHF)
method implemented in the GRASP2K computer package
(Jonsson et al 2007), the Hamiltonian is given by

H =
N∑

i=1

(
cαi � pi + (βi − 1)c2 − Z

ri

)
+

N∑
i< j

1

ri j
, (7)

where c is the speed of light and α and β are the Dirac matrices.
The atomic state functions (ASFs) are given as an expansion
over j j-coupled configuration state functions (CSFs)

|γ JMJπ〉 =
∑

i

ci|αiJMJπ〉. (8)

The CSFs in turn are built from Slater determinants constructed
on the four-component Dirac orbitals

φ(r) = 1

r

(
Pnκ (r)χκm(r̂)

iQnκ (r)χ−κm(r̂)

)
. (9)

In the above formula, κ is the relativistic angular quantum
number, Pnκ (r) and Qnκ (r) are the large and small component
radial wavefunctions and χκm(r̂) is the spinor spherical
harmonic in the ls j coupling scheme

χκm(r̂) =
∑

m�,ms

〈�1

2
m�ms| jm〉Y�m�

(θ, φ)ξms (σ ). (10)

The radial functions Pnκ (r) and Qnκ (r) are numerically
represented on a logarithmic grid and are required to
be orthonormal within each κ symmetry. In the MCDHF
variational procedure, the radial functions and the expansion
coefficients {ci} are optimized to self-consistency.

The relativistic two-body Breit interaction and the
quantum electrodynamic corrections due to self-energy
and vacuum polarization are also considered through the
implementation of the routines developed by McKenzie et al
(1980).

The calculations have been focused on the first 11
experimental levels of W VI belonging to the configurations
5d, 5f, 6s, 6p and 6d with J = 1/2–7/2 (Kramida and Shirai
2009). A Fermi charge distribution has been used for the
nucleus with Z = 74. The orbitals have been optimized in
three steps. In the first step, the core orbitals, i.e. 1s to 5p,

Table 1. Comparison of ab initio MCDHF-EOL and RCI level
energies (E) and fine-structure splittings (FS) with experimental
values in W VI.

Levela Ea
exp FSa

exp Eb
DHF FSb

DHF Ec
RCI FSc

RCI

(cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

5d 2D3/2 0.0 8709.3 0 8008 0 8309
5d 2D5/2 8709.3 8008 8309
6s 2S1/2 79 431.3 80 407 77 212
6p 2P◦

1/2 147 553.1 17 483.6 147 409 16 415 143 971 16 885
6p 2P◦

3/2 165 036.7 163 824 160 855
5f 2F◦

5/2 261 681 749 263 236 204 258 412 651
5f 2F◦

7/2 262 430 263 440 259 063
6d 2D3/2 261 694.6 2717.1 258 187 2613 257 301 2663
6d 2D5/2 264 411.7 260 800 259 964

a Kramida and Shirai (2009).
b MCDHF-EOL calculation.
c RCI calculation.

together with the 5d orbital, have been optimized. The two
CSFs of the ground configuration 5d were retained in the
configuration space. The energy functional was built within
the framework of the average level (AL) option (Grant 1988).
The second step consisted in increasing the configuration
space by considering all of the four CSFs belonging to the
5d and 5f configurations. The 5f orbital has been optimized,
keeping the others fixed to their values of the first step. The AL
option was chosen to build the energy functional. In the final
optimization step, the configuration space has been extended
to the 13 CSFs belonging to the configurations 5d, 5f, 6s,
6p, 6d and 6f. Only the n = 6 orbitals have been optimized,
fixing all the others to the values of the preceding step using
an energy functional built on the lowest 11 ASFs within the
framework of the extended optimal level (EOL) option (Grant
1988). In this final step, to be referred to as the MCDHF-EOL
calculation, only the valence correlations have been taken into
account. Core–valence correlations were finally included by
extending further the configuration space as follows: single
and double virtual electron excitations to an active orbital
set {5s, 5p, 5d, 5f, 6s, 6p, 6d, 6f} from the multireference
configurations 5s25p65d + 5s25p65f + 5s25p66p have been
considered with fixed total angular momenta J = 1/2–7/2. A
relativistic configuration-interaction (RCI) calculation (Grant
1988) has been then carried out using the preceding MCDHF-
EOL orbitals and diagonalizing a Hamiltonian matrix built
with the 35 434 CSFs generated. A comparison of the level
energies and the fine-structure splittings (FS) is presented
in table 1 in order to give an idea of the quality of both
ab initio fully relativistic calculations. Although the RCI level
energies are systematically a few thousand cm−1 lower than
experiment, the RCI FS values are improved with respect to
the MCDHF-EOL ones. In the calculation of the transition
rates, the theoretical transition energies have been replaced
by the experimental values taken from the compilation of
Kramida and Shirai (2009) for both the MCDHF-EOL and
RCI calculations. These empirical corrections increased the
rates by ∼1%–8% for the E1 transitions and by ∼ 15%–30%
for the forbidden lines.
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Table 2. Comparison of calculated lifetimes in W VI.

Lifetime (s)b

Levela Ea(cm−1) RCIc MCDHF-EOLd HFR(A)e HFR(B)f HFR(C)g HFR(D)h

5d 2D5/2 8 709.3 1.40(−1)/1.40(−1) 1.40(−1)/1.40(−1) 1.40(−1) 1.40(−1) 1.40(−1) 1.40(−1)
6s 2S1/2 79 431.3 3.60(−4)/4.18(−4) 3.66(−4)/4.37(−4) 3.77(−4) 3.68(−4) 3.68(−4) 3.65(−4)
6p 2P◦

1/2 147 553.1 1.71(−10)/1.79(−10) 1.46(−10)/1.67(−10) 1.86(−10) 1.89(−10) 1.56(−10) 1.84(−10)
6p 2P◦

3/2 165 036.7 1.34(−10)/1.40(−10) 1.20(−10)/1.34(−10) 1.39(−10) 1.40(−10) 1.14(−10) 1.36(−10)
5f 2F◦

5/2 261 681 5.47(−11)/5.74(−11) 3.22(−11)/3.61(−11) 6.50(−11) 4.80(−11) 3.14(−11) 6.55(−11)
6d 2D3/2 261 694.6 1.65(−10)/1.72(−10) 1.43(−10)/1.50(−10) 1.58(−10) 1.56(−10) 1.33(−10) 1.54(−10)
5f 2F◦

7/2 262 430 5.21(−11)/5.46(−11) 3.31(−11)/3.73(−11) 7.10(−11) 5.25(−11) 3.43(−11) 6.45(−11)
6d 2D5/2 264 411.7 2.02(−10)/2.11(−10) 1.77(−10)/1.87(−10) 2.24(−10) 2.21(−10) 1.88(−10) 2.18(−10)
7s 2S1/2 278 915.5 1.40(−10) 1.44(−10) 1.48(−10) 1.40(−10)
5g 2G9/2 362 222 1.64(−10) 1.61(−10) 1.41(−10) 1.61(−10)
5g 2G7/2 362 234 1.61(−10) 1.59(−10) 1.39(−10) 1.58(−10)

a Kramida and Shirai (2009).
b A(B) stands for A×10B.
c RCI calculation up to 6f including 5s and 5p core-excited configurations. A/B stands for Babushkin/Coulomb gauge values.
Values are corrected from the experimental transition energies.
d MCDHF-EOL calculation up to 6f. A/B stands for Babushkin/Coulomb gauge values. Values are corrected from the
experimental transition energies.
e HFR + CPOL calculation up to 7g.
f HFR + CPOL calculation up to 7g excluding penetration.
g HFR calculation up to 7g.
h HFR calculation up to 6g including 5s and 5p core-excited configurations.

3. Results and discussion

In table 2, the radiative lifetimes of the experimental levels
of W VI (Kramida and Shirai 2009) calculated using different
MCDHF and HFR models are compared. The 6g levels had to
be excluded from that table because the E1 decay transitions
to the 6f levels contribute significantly to the 6g lifetime but
the 6f energies are not known experimentally. Differences
between RCI and MCDHF-EOL sets show the core–valence
correlation effects, i.e. the core-polarization effects, on the
lifetimes in the context of the MCDHF method, whereas, in the
HFR method, this is done by comparing HFR(A), HFR(B) or
HFR(D) with HFR(C). Core-penetration effects are displayed
by comparing HFR(B) with HFR(A). Comparing HFR(D) with
HFR(A) shows the equivalence between the use of a core-
polarization model potential and the explicit consideration
of core-excited configurations in the CI expansion. Although
it is a necessary but not sufficient condition, the quality of
both MCDHF calculations (RCI and MCDHF-EOL) can also
be appreciated by the good agreement between the gauges.
Unfortunately, HFR does not allow for the calculation of the
transition probabilities in the velocity gauge.

With the exceptions of the level 7s 2S1/2 and the two
metastable levels 5d 2D5/2 and 6s 2S1/2, the core-polarization
effects tend to systematically lengthen the lifetimes up to
∼15%–35% and even by a factor of 2 for the 5f levels. The
HFR(D) calculations reproduced remarkably well the HFR(A)
lifetimes demonstrating the equivalence of both treatments
of the core–valence correlations. Generally, both MCDHF
calculations (RCI and MCDHF-EOL) support their HFR
counterparts (respectively: HFR(A), HFR(D) and HFR(C))
except for both 5f levels for which the polarization effects seem
to be underestimated by our RCI model. Concerning the latter
ones, the HFR(B) lifetimes indicate a higher sensitivity to core

Table 3. Comparison of dipole radial integrals in W VI.

Dn�,n′�′ (au)

Dipole HFR(A)a HFR(B)b HFR(C)c

5d–6p 1.43 1.42 1.54
5d–5f 1.73 2.01 2.49
6s–6p 2.08 2.11 2.42
6d–6p −3.35 −3.37 −3.66
6d–5f −4.44 −4.35 −4.59

a HFR + CPOL calculation.
b HFR + CPOL calculation excluding penetration.
c HFR calculation where the core-polarization
effects are neglected.

penetration in comparison to the other atomic states. In this
respect, the dipole radial integrals, Dn�,n�′ , for different parity-
changing single-electron jumps, are compared for HFR(A),
HFR(B) and HFR(C) calculations in table 3. One can note the
strong decrease of the D5d,5f integral due to core penetration
with respect to all of the others. Moreover, figure 2 displays the
strong penetration into the core-electron density probabilities
of the 5d and 5f valence orbitals. These can therefore
explain the important variation of the 5f lifetimes due to
core penetration keeping in mind that these lifetimes are
dominated by the 5d–5f decay channels. With respect to
this, the disagreements between, on the one hand, HFR(A)
and HFR(D) and, on the other hand, RCI indicate a model
dependency probably due to slight differences in the overlaps
between core and valence orbitals; therefore, precise lifetime
measurements are clearly needed here.

In figure 3, the E1 transition probabilities calculated
with our best MCDHF (RCI) and HFR (HFR(A)) models
are compared. For RCI, the Babushkin gauge values which
correspond, at the non-relativistic limit, to the length form

4
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Table 4. Decay channels of the metastable states in W VI:
comparison of the HFR(A) and RCI A-values.

Aki (s−1)

Decay channel Type HFR(A)a RCIb

5d 2D5/2 – 5d 2D3/2 M1 7.16(0) 7.12(0)
– 5d 2D3/2 E2 2.58(−3) 2.54(−3)

6s 2S1/2 – 5d 2D3/2 E2 1.44(3) 1.45(3)
– 5d 2D5/2 E2 1.21(3) 1.33(3)

a HFR+CPOL calculation. A(B) stands for A × 10B.
b RCI calculation. A(B) stands for A × 10B. E2 A-values
are shown in the Babushkin gauge. Values are corrected
from the experimental transition energies.

used in HFR calculations are plotted. The agreement between
both sets is good (∼10%–15%) except for, again, the 5d–5f
transitions (the two largest rates appearing in this figure) for
which the disagreements grow up to ∼30%–35% due to the
sensitivity of the D5d,5f dipole transition radial integral to the
core-penetration effects. Without the empirical corrections
in RCI, the agreement between both models would be
slightly better with ∼25%–30% for the 5d–5f transitions and
∼5%–15% for the others.

Table 4 presents a comparison of M1/E2 transition
probabilities calculated using our HFR(A) and RCI models
(in the Babushkin gauge for the E2 transitions). Excellent
agreement is found between both calculations (�10%). One
can see that the decay of the 5d 2D5/2 metastable state is
dominated by the M1 channel. Unlike the E1 transitions, the

Figure 2. HFR orbital density probabilities. The core orbitals
(limited down to 4f) are represented with dashed lines and the
valence orbitals with continuous lines (the 5d and 5f orbitals are in
bold). The importance of the penetration of the valence orbitals into
the ionic core can be seen.

empirical corrections in RCI brought significant improvements
in the agreement between both models; without it, the
disagreement would grow up to ∼30%.

Finally, the weighted oscillator strengths (in a logarithmic
scale) and transition probabilities, as calculated with our best
HFR(A) model, are given in table 5 for all the important E1,
M1 and E2 transitions connecting the experimental levels of
W VI published by Sugar and Kaufman (1979) retained in the

Table 5. Oscillator strengths (log gfik) and transition probabilities (gAki) for important transitions in W VI.

Lower levela Upper levela

λa(nm) E (cm−1) Designation E (cm−1) Designation Type Log gf c
ik gAc

ki(s
−1)

38.2145 0.0 5d 2D3/2 261 681 5f 2F◦
5/2 E1 0.28 8.68(10)

39.4133 8709.3 5d 2D5/2 262 430 5f 2F◦
7/2 E1 0.42 1.13(11)

39.5301 8709.3 5d 2D5/2 261 681 5f 2F◦
5/2 E1 −0.88 5.60(9)

60.5929 0.0 5d 2D3/2 165 036.7 6p 2P◦
3/2 E1 −0.86 2.49(9)

63.9687 8709.3 5d 2D5/2 165 036.7 6p 2P◦
3/2 E1 0.07 1.91(10)

66.9315 261 681 5f 2F◦
5/2 411 087 6g 2G7/2 E1 −0.07 1.28(10)

67.2726 262 430 5f 2F◦
7/2 411 079 6g 2G9/2 E1 0.05 1.64(10)

67.7718 0.0 5d 2D3/2 147 553.1 6p 2P◦
1/2 E1 −0.21 8.91(9)

76.1252 147 553.1 6p 2P◦
1/2 278 915.5 7s 2S1/2 E1 −0.27 6.21(9)

87.6106 147 553.1 6p 2P◦
1/2 261 694.6 6d 2D3/2 E1 0.41 2.25(10)

87.8128 165 036.7 6p 2P◦
3/2 278 915.5 7s 2S1/2 E1 −0.03 8.09(9)

99.4502 261 681 5f 2F◦
5/2 362 234 5g 2G7/2 E1 0.85 4.78(10)

100.1964b 262 430 5f 2F◦
7/2 362 234 5g 2G7/2 E1 −0.58 1.75(9)

100.2085 262 430 5f 2F◦
7/2 362 222 5g 2G9/2 E1 0.96 6.11(10)

100.6289 165 036.7 6p 2P◦
3/2 264 411.7 6d 2D5/2 E1 0.61 2.68(10)

103.4575 165 036.7 6p 2P◦
3/2 261 694.6 6d 2D3/2 E1 −0.36 2.74(9)

116.8151 79 431.3 6s 2S1/2 165 036.7 6p 2P◦
3/2 E1 0.18 7.32(9)

125.8950b 0.0 5d 2D3/2 79 431.3 6s 2S1/2 E2 −6.16 2.88(3)
141.3987b 8709.3 5d 2D5/2 79 431.3 6s 2S1/2 E2 −6.14 2.42(3)
146.7958 79 431.3 6s 2S1/2 147 553.1 6p 2P◦

1/2 E1 −0.23 1.85(9)
1147.8836b 0.0 5d 2D3/2 8709.3 5d 2D5/2 M1 −6.07 4.30(1)
1147.8836b 0.0 5d 2D3/2 8709.3 5d 2D5/2 E2 −9.51 1.55(−2)

a From Sugar and Kaufman (1979).
b Wavelengths deduced from the experimental levels and are given in air for those greater than 200 nm.
c HFR(A) (this work). A(B) stands for A × 10B.
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Figure 3. Comparison of the E1 transition probabilities between the
RCI (in the Babushkin gauge) and HFR(A) calculations. RCI values
are corrected from the experimental transition energies. A straight
line of equality has been drawn.

compilation of Kramida and Shirai (2009). These radiative
parameters should be of interest in fusion research.

4. Conclusions

The radiative properties of W VI have been studied using
two independent theoretical methods, i.e. the HFR and the
fully relativistic MCDHF methods. In particular, the core-
polarization effects on the transition probabilities have been
investigated in detail considering, on the one hand, a core-
polarization model potential plus a correction to the dipole
operator and, on the other hand, the direct inclusion of core-
excited configurations in the CI expansion.

Both approaches of the core–valence correlations are
found to be equivalent and these interactions tend in general
to lengthen systematically the radiative lifetimes up to
∼15%–35% and even by a factor of 2 for the 5f levels. Both
independent methods agree to each other within ∼10%–15%
except for the 5d–5f E1 transitions (where disagreements
reach up to ∼30%–35%) which are notably sensitive to the
core-penetration effects. Here, precise measurements of the
lifetimes of the 5f levels are clearly in need.
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