Home Search Collections Journals About Contact us My IOPscience

Comparative semi-empirical and *ab initio* atomic structure calculations in Yb-like tungsten W⁴ +

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2012 J. Phys. B: At. Mol. Opt. Phys. 45 065001 (http://iopscience.iop.org/0953-4075/45/6/065001) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 193.190.193.2 The article was downloaded on 07/03/2012 at 07:53

Please note that terms and conditions apply.

J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 065001 (11pp)

Comparative semi-empirical and *ab initio* atomic structure calculations in Yb-like tungsten W⁴⁺

S Enzonga Yoca¹, P Quinet^{2,3}, P Palmeri² and É Biémont^{2,3}

¹ Département de Physique, Faculté des Sciences, Université Marien Ngouabi, BP 69 Brazzaville, Congo

² Astrophysique et Spectroscopie, Université de Mons-UMONS, B-7000 Mons, Belgium

³ IPNAS, Université de Liège, B15 Sart Tilman, B-4000 Liège, Belgium

E-mail: quinet@umons.ac.be

Received 26 December 2011, in final form 6 February 2012 Published 6 March 2012 Online at stacks.iop.org/JPhysB/45/065001

Abstract

In this paper, we report on extensive calculations of radiative data in Yb-like tungsten ion using several independent atomic structure methods, i.e. the relativistic Hartree–Fock approach, the flexible atomic code and the multiconfiguration Dirac–Fock method. This multi-platform approach allowed us to check the consistency of our results. Advantages and shortcomings of semi-empirical and *ab initio* methods for atomic structure calculations in such a complex heavy ion are also discussed in detail. A new set of transition probabilities and oscillator strengths is reported for electric dipole lines together with magnetic dipole and electric quadrupole lines in this ion of interest for fusion plasma diagnostics.

1. Introduction

As mentioned in many previous papers (see e.g. Federici et al 2001, Neu et al 2005, Pospieszczyk 2006, Skinner 2008, 2009), the use of tungsten as a plasma-facing material in future magnetic fusion reactors, such as ITER, requires the knowledge of the atomic structure and radiative properties of almost each ionization stage of this element. Recently, we have reported spectroscopic data for neutral to moderately ionized tungsten. More precisely, transition probabilities were calculated for a large number of transitions in WI (Quinet et al 2011), W II (Nilsson et al 2008), W III (Palmeri et al 2008), W IV (Enzonga Yoca et al 2012a) and W VI (Enzonga Yoca et al 2012b). In these studies, the relativistic Hartree-Fock (HFR) method including core-polarization effects (HFR+CPOL) was combined with a semi-empirical process minimizing the discrepancies between calculated and available experimental energy levels. In all cases, the accuracy of this approach was assessed through detailed comparisons with experimental radiative lifetimes measured with the time-resolved laser-induced fluorescence (TR-LIF) technique (W I, W II, W III), with branching fractions deduced from line intensity ratios measured on high-resolution Fourier transform spectra (W I) or with transition probabilities obtained using different theoretical methods (W IV, W VI). Furthermore, critically evaluated transition rates available in the literature for allowed electric dipole lines together with a new set of computed *A*-values for forbidden lines were reported in a recent paper for W I, W II and W III (Quinet *et al* 2010).

In order to complete these investigations, this work is focused on quadruply ionized tungsten, W V. This ion is the third member of the ytterbium isoelectronic sequence (after Hf III and Ta IV) having the ground configuration $5s^25p^65d^2$, while the first two members of the sequence, Yb I and Lu II, have the ground configuration 5s²5p⁶6s². In their compilation on spectroscopic data of tungsten ions, Kramida and Shirai (2009) reported, for Yb-like tungsten, 193 lines from 39 to 219 nm and 59 experimental energy levels belonging to 5d², 5d6s, 5d6p, 6s6p, 5d5f and 5d7p configurations. This compilation was based on the work of Meijer (1986) who observed the W V spectrum in the 63-219 nm wavelength range by using a sliding-spark light source and on the works of Churilov et al (1996) and Kildiyarova et al (1996) who extended the identifications to the region 39-57 nm using similar light sources.

To our knowledge, the only radiative rates available in W V were published by Safronova and Safronova (2010) who

used the relativistic many-body perturbation theory (RMBPT) to compute oscillator strengths for 28 lines depopulating the levels belonging to the 5d6p configuration. In this paper, we report on extensive calculations of transition probabilities using several independent atomic structure methods, i.e. HFR approach, the flexible atomic code (FAC) and the multiconfiguration Dirac–Fock (MCDF) method. This multiplatform approach allowed us not only to check the consistency of our results but also to study the advantages and shortcomings of semi-empirical and *ab initio* methods for a complex heavy ion such as Yb-like tungsten.

2. Computational methods

2.1. Relativistic Hartree-Fock (HFR)

In the first step, we used the HFR approach (Cowan 1981) in which we have incorporated CPOL effects by means of a model potential and a correction to the dipole operator (HFR+CPOL; see e.g. Quinet et al 1999). In a previous work on the isoelectronic ion Hf III (Malcheva et al 2009), excellent agreement was obtained between HFR+CPOL lifetimes and the accurate experimental values measured for 5d6p and 6s6p states by TR-LIF spectroscopy. We have adopted the same physical model here considering a set of 45 configurations: $5d^2 + 5d6s + 5d7s + 5d6d + 5d7d + 6s^2 + 6s6d + 6s7d + 6s7s +$ $6p^2 + 6p7p + 6p5f + 6p6f + 6p7f + 6d^2 + 6d7s + 6d7d + 7s^2 +$ $7p^2 + 7s7d + 7p5f + 7p6f + 7p7f$ (even parity) and 5d6p + 5d7p + 5d5f + 5d6f + 5d7f + 6s6p + 6s7p + 6s5f + 6s6f +6s7f + 6p6d + 6p7d + 6p7s + 6d7p + 6d5f + 6d6f + 6d7f + 7s5f +7s6f + 7s7f + 7s7p + 7p7d (odd parity). For the CPOL corrections, we considered a 4f¹⁴5s²5p⁶ erbium-like core surrounded by two valence electrons. The adopted dipole polarizability was $\alpha_d = 2.50 a_0^3$ which corresponds to a W⁶⁺ ionic core and was found by extrapolating the values of α_d published by Fraga et al (1976) along the erbium isoelectronic sequence for Tm^+ , Yb^{2+} , Lu^{3+} and Hf^{4+} . The cut-off radius used was the HFR mean radius of the outermost core orbital 5p, i.e. $r_c = 1.20 a_0$. To optimize the calculation of oscillator strengths, the HFR+CPOL method was combined with a semi-empirical fitting of the radial parameters minimizing the discrepancies between the calculated energies and the experimental values compiled by Kramida and Shirai (2009) for the $5d^2$, 5d6s, 5d6p, 6s6p, 5d5f and 5d7p configurations. The mean deviations of the fits were found to be 20 cm^{-1} for the even parity and 132 cm^{-1} for the odd parity.

In the second HFR model (referred to as HFR(CV)), we restricted the intravalence correlation to n = 6 and l = 3 but we explicitly considered core-valence correlation from $5d^2$, 5d6s, 5d6p and 6s6p by including some configurations with a single excitation from 5s and 5p core orbitals. More precisely, in this model the following interacting configurations were included: $5d^2 + 5d6s + 5d6d + 6s^2 + 6s6d + 6p^2 + 6p5f + 6p6f + 6d^2 + 5p^55d^26p + 5p^55d6s6p + 5s5p^65d^3 + 5s5p^65d^26s + 5s5p^65d6s^2$ (even parity) and 5d6p + 5d5f + 5d6f + 6s6p + 6s5f + 6s6f + 6p6d + 6d5f + 6d6f + 5p^55d^3 + 5p^55d^26s + 5p^55d6s^2 + 5s5p^65d^26p + 5s5p^65d6s6p (odd parity). It was verified that

other two-valence electron configurations, such as $5f^2$ or $6f^2$, had a negligible influence on the spectroscopic configurations of interest. Here also, a semi-empirical adjustment of the radial parameters was performed for $5d^2$, 5d6s, 5d6p, 6s6p and 5d5f configurations giving rise to average differences between calculated and experimental levels of 20 and 135 cm^{-1} for even and odd parities, respectively.

2.2. Flexible atomic code (FAC)

Another theoretical method used in our work was the one implemented in the FAC code which uses a fully relativistic ab initio approach based on the Dirac equation (Gu 2003). Here, the following configurations were retained in the configuration-interaction expansion when diagonalizing the multi-electron Dirac-Coulomb-Breit Hamiltonian: $5d^2$, 5d6s, 5d6d, $6s^2$, 6s6d, $6p^2$, 6p5f, 6p6f, $6d^2$, 5d6p, 5d5f, 5d6f, 6s6p, 6s5f, 6s6f, 6p6d, 6d5f, 6d6f for the valence-valence correlations, and 5s²5p⁵5d³, 5s²5p⁵5d²6s, $5s^25p^55d6s^2$, $5s^25p^55d6s6p$, $5s5p^65d^3$, $5s^25p^55d^26p$, 5s5p⁶5d²6s, 5s5p⁶5d²6p, 5s5p⁶5d6s² and 5s5p⁶5d6s6p for the core-valence correlations. The set of interacting configurations was thus exactly the same as the one used in the HFR(CV) model described above. The one-electron spin-orbitals were obtained by solving the self-consistent Dirac-Fock-Slater radial equations for a local central potential minimizing the average energy of a mean configuration built from $5d^2 + 5d6s + 5d6p$ spectroscopic configurations. Note that optimizing only on the ground configuration deteriorates the agreement with the experimental energies by a factor of about 2 due to the neglect of 5d relaxation. The Breit interaction was applied up to n = 6, while higher order relativistic corrections, like the vacuum polarization effect, were considered by the addition of an Uehling-type radial potential (Uehling 1935) in the calculation of the spin-orbitals. In the calculation of the oscillator strengths, the transition energies were replaced by the experimental values taken from Kramida and Shirai (2009).

2.3. Multiconfiguration Dirac–Fock (MCDF)

Finally, we performed a fully relativistic ab initio MCDF calculation of transition rates in W V using the latest version of the General-purpose Relativistic Atomic Structure Package (GRASP) developed by Norrington (2009) from the MCDF original code of Grant and co-workers (Grant et al 1980, McKenzie et al 1980) and improved by Dyall et al (1989). The computations were done with the extended average level option, introducing the configurations $5d^2$ + $5d6s + 5d6d + 6s^2 + 6p^2 + 6d^2 + 5p^55d^26p + 5p^55d6s6p +$ $5s5p^{6}5d^{3} + 5s5p^{6}5d^{2}6s + 5s5p^{6}5d6s^{2}$ (even parity) and 5d6p $+ 6s6p + 5p^{5}5d^{3} + 5p^{5}5d^{2}6s + 5p^{5}5d6s^{2} + 5s5p^{6}5d^{2}6p +$ 5s5p⁶5d6s6p (odd parity) and including transverse Breit and quantum electrodynamics corrections such as those due to self-energy and vacuum polarization effects using the routines developed by McKenzie et al (1980). In these routines, the leading correction to the Coulomb repulsion between electrons in quantum electrodynamics is considered as a

	r	Table 1. Experimental and calculated energy levels in W V.						
Configuration	Level	$E_{exp}{}^a \ (cm^{-1})$	$E_{calc}{}^{b}(cm^{-1})$	LS-composition ^b				
Even parity								
5d ²	${}^{3}F_{2}$	0.0	0	90% 5d ² ³ F + 10% 5d ² ¹ D				
5d ²	${}^{3}F_{3}$	6244.7	6236	100% 5d ² ³ F				
5d ²	${}^{3}F_{4}$	11 519.4	11468	91% 5d ² ³ F + 9% 5d ² ¹ G				
$5d^2$	${}^{3}P_{0}$	12838.7	12776	93% 5d ² ³ P + 7% 5d ² ¹ S				
5d ²	$^{1}D_{2}$	13 741.5	13721	56% 5d ² ¹ D + 34% 5d ² ³ P + 9% 5d ² ³ F				
$5d^2$	${}^{3}P_{1}$	16330.6	16351	100% 5d ² ³ P				
$5d^2$	${}^{1}G_{4}$	22 345.8	22330	91% 5d ² ¹ G + 9% 5d ² ³ F				
5d ²	${}^{3}P_{2}$	22 615.4	22 599	65% 5d ² ³ P + 32% 5d ² ¹ D				
$5d^2$	${}^{1}S_{0}$	43 110.1	43 094	92% 5d ² ¹ S + 7% 5d ² ³ P				
5d6s	${}^{3}D_{1}$	58 514.2	58 4 48	100% 5d6s ³ D				
5d6s	$^{3}D_{2}$	60 295.5	60331	89% 5d6s ³ D + 11% ¹ D				
5d6s	$^{3}D_{3}$	66 657.7	66 638	100% 5d6s ³ D				
5d6s	${}^{1}D_{2}$	72 958.7	72933	86% 5d6s ¹ D + 11% 5d6s ³ D				
Odd parity								
5d6p	${}^{3}F_{2}^{\circ}$	118 662.8	118887	69% 5d6p ³ F° + 26% 5d6p ¹ D°				
5d6p	$^{3}D_{1}^{\circ}$	122 325.8	121 994	$71\% 5d6p {}^{3}D^{\circ} + 19\% 5d6p {}^{1}P^{\circ} + 10\% 5d6p {}^{3}P^{\circ}$				
5d6p	$^{3}D_{2}^{\circ}$	128 997.1	129 135	$49\% 5d6p {}^{3}D^{\circ} + 27\% 5d6p {}^{3}P^{\circ} + 20\% 5d6p {}^{1}D^{\circ}$				
5d6p	${}^{3}F_{3}^{\circ}$	129 479.5	129 348	$68\% 5d6p {}^{3}F^{\circ} + 22\% 5d6p {}^{3}D^{\circ} + 10\% 5d6p {}^{1}F^{\circ}$				
5d6p	${}^{1}D_{2}^{\circ}$	133 430.0	133 489	$40\% 5d6p {}^{3}D^{\circ} + 31\% 5d6p {}^{1}D^{\circ} + 26\% 5d6p {}^{3}F^{\circ}$				
5d6p	${}^{3}D_{3}^{\overline{0}}$	136 887.8	136790	$43\% 5d6p {}^{3}D^{\circ} + 31\% 5d6p {}^{3}F^{\circ} + 25\% 5d6p {}^{1}F^{\circ}$				
5d6p	${}^{3}P_{1}^{\circ}$	137 709.3	137 761	$62\% 5d6p {}^{3}P^{\circ} + 24\% 5d6p {}^{3}D^{\circ} + 13\% 5d6p {}^{1}P^{\circ}$				
5d6p	${}^{3}P_{0}^{\circ}$	139 252.1	139218	99% 5d6p ³ P°				
5d6p	${}^{3}F_{4}^{\circ}$	142 907.9	142 801	100% 5d6p ³ F°				
5d6p	${}^{3}P_{2}^{\overline{0}}$	144 389.9	144 465	$68\% 5d6p^{3}P^{\circ} + 23\% 5d6p^{1}D^{\circ} + 7\% 5d6p^{3}D^{\circ}$				
5d6p	${}^{1}F_{3}^{\tilde{\circ}}$	145 767.9	145 764	$63\% 5d6p {}^{1}F^{\circ} + 35\% 5d6p {}^{3}D^{\circ}$				
5d6p	${}^{1}P_{1}^{\circ}$	149 160.1	149 081	$64\% 5d6p {}^{1}P^{\circ} + 28\% 5d6p {}^{3}P^{\circ} + 5\% 5d6p {}^{3}D^{\circ}$				
6s6p	$^{3}P_{0}^{\circ}$	182 036.7	182171	99% 6s6p ³ P°				
6s6p	${}^{3}P_{1}^{\circ}$	185 757.2	185 558	$93\% 6s6p^{3}P^{\circ} + 6\% 6s6p^{1}P^{\circ}$				
6s6p	$^{3}P_{2}^{\circ}$	198 108.2	198 102	99% 6s6p ³ P°				
6s6p	${}^{1}P_{1}^{\circ}$	215 212.7	215 199	$83\% 6s6p {}^{1}P^{\circ} + 7\% 5d5f {}^{1}P^{\circ} + 6\% 6s6p {}^{3}P^{\circ}$				
5d5f	${}^{1}\mathbf{G}_{4}^{\circ}$	227 536	227 317	$46\% 5d5f^{3}H^{\circ} + 43\% 5d5f^{1}G^{\circ} + 9\% 5d5f^{3}F^{\circ}$				
5d5f	${}^{3}F_{2}^{\circ}$	228 702	228 640	75% 5d5f ³ F° + 21% 5d5f ¹ D°				
5d5f	${}^{3}\tilde{H_{4}^{\circ}}$	229 205	228914	44% 5d5f ${}^{3}\text{H}^{\circ}$ + 23% 5d5f ${}^{3}\text{G}^{\circ}$ + 15% 5d5f ${}^{1}\text{G}^{\circ}$				
5d5f	${}^{3}F_{3}^{-}$	229 873	229 802	$67\% 5d5f {}^{3}F^{\circ} + 25\% 5d5f {}^{3}G^{\circ} + 8\% 5d5f {}^{3}D^{\circ}$				
5d5f	${}^{3}H_{5}^{\circ}$	231 099	230 861	$85\% 5d5f {}^{3}H^{\circ} + 8\% 5d5f {}^{3}G^{\circ} + 7\% 5d5f {}^{1}H^{\circ}$				
5d5f	${}^{3}G_{3}^{\circ}$	232 210	232 489	$55\% 5d5f {}^{3}G^{\circ} + 24\% 5d5f {}^{1}F^{\circ} + 11\% 5d5f {}^{3}D^{\circ}$				
5d5f	${}^{1}D_{2}^{\circ}$	233 804	234 036	$36\% 5d5f {}^{1}D^{\circ} + 35\% 5d5f {}^{3}P^{\circ} + 22\% 5d5f {}^{3}D^{\circ}$				
5d5f	${}^{3}F_{4}^{\circ}$	235 598	235 669	55% 5d5f ${}^{3}F^{\circ}$ + 37% 5d5f ${}^{1}G^{\circ}$ + 5% 5d5f ${}^{3}H^{\circ}$				
5d5f	${}^{3}D_{1}^{\circ}$	236 062	236 349	$66\% 5d5f {}^{3}D^{\circ} + 21\% 5d5f {}^{3}P^{\circ} + 10\% 5d5f {}^{1}P^{\circ}$				
5d5f	$^{3}H_{6}^{\circ}$		236707	100% 5d5f ³ H°				
5d5f	${}^{3}G_{4}^{\circ}$	238 239	238 297	73% 5d5f ${}^{3}G^{\circ}$ + 17% 5d5f ${}^{3}F^{\circ}$ + 5% 5d5f ${}^{1}G^{\circ}$				
5d5f	$^{3}D_{2}^{\overline{0}}$	238 727	239011	$38\% 5d5f^{1}D^{\circ} + 30\% 5d5f^{3}D^{\circ} + 18\% 5d5f^{3}F^{\circ}$				
5d5f	${}^{3}D_{3}^{\tilde{0}}$	239 456	239 557	$37\% 5d5f {}^{3}D^{\circ} + 23\% 5d5f {}^{3}F^{\circ} + 23\% 5d5f {}^{1}F^{\circ}$				
5d5f	${}^{3}G_{5}^{\circ}$	239614	239 451	88% 5d5f ³ G° + 10% 5d5f ³ H°				
5d5f	${}^{1}F_{3}^{\circ}$	242 636	242 664	51% 5d5f ¹ F° + 43% 5d5f ³ D°				
5d5f	$^{3}P_{2}^{\circ}$	242 953	242 936	51% 5d5f ³ P° + 42% 5d5f ³ D° + 5% 5d5f ¹ D°				
5d5f	${}^{3}P_{1}^{\circ}$	243 609	243 517	71% 5d5f ³ P° + 26% 5d5f ³ D°				
5d5f	$^{3}P_{0}^{\circ}$		243 969	98% 5d5f ³ P°				
5d5f	$^{1}H_{5}^{\circ}$	247 139	246516	91% 5d5f ¹ H° + 5% 5d5f ³ H°				
5d5f	${}^{1}P_{1}^{\circ}$	248 815	248 940	$60\% 5d5f {}^{1}P^{\circ} + 15\% 5d7p {}^{1}P^{\circ} + 7\% 5d5f {}^{3}D^{\circ}$				
5d7p	${}^{3}F_{2}^{\circ}$	251 112	251 031	$69\% 5d7p {}^{3}F^{\circ} + 24\% 5d7p {}^{1}D^{\circ}$				
5d7p	${}^{3}\tilde{D_{1}^{\circ}}$	252 797	252 853	$71\% 5d7p {}^{3}D^{\circ} + 15\% 5d5f {}^{1}P^{\circ} + 7\% 5d7p {}^{1}P^{\circ}$				
5d7p	$^{3}D_{2}^{\circ}$	256 688	256 669	$58\% 5d7p^{3}D^{\circ} + 22\% 5d7p^{3}F^{\circ} + 17\% 5d7p^{1}D^{\circ}$				
5d7p	${}^{3}F_{3}^{\circ}$	257 895	257 694	$71\% 5d7p^{3}F^{\circ} + 23\% 5d7p^{1}F^{\circ} + 5\% 5d7p^{3}D^{\circ}$				
5d7p	${}^{3}P_{1}^{\circ}$	258778	258 830	$70\% 5d7p^{3}P^{\circ} + 15\% 5d7p^{3}D^{\circ} + 11\% 5d7p^{1}P^{\circ}$				
5d7p	$^{3}P_{0}^{\circ}$	259 100	259154	99% 5d7p ³ P°				
5d7p	${}^{1}D_{2}^{\circ}$	260 035	260 106	$33\% 5d7p^{3}D^{\circ} + 30\% 5d7p^{1}D^{\circ} + 30\% 5d7p^{3}P^{\circ}$				
5d7p	${}^{1}F_{3}^{\circ}$	260 388	260 244	$40\% 5d7p^{3}D^{\circ} + 33\% 5d7p^{1}F^{\circ} + 25\% 5d7p^{3}F^{\circ}$				
5d7p	$^{3}D_{3}^{\circ}$	265 733	265 871	$54\% 5d7p^{3}D^{\circ} + 42\% 5d7p^{1}F^{\circ}$				
5d7p	${}^{3}F_{4}^{\circ}$	266 010	265 769	99% 5d7p ³ F°				

3

Table 1. (Continued.)						
Configuration	Level	$E^{a}_{exp} \left(cm^{-1} ight)$	$E^{b}_{calc} \ (cm^{-1})$	LS-composition ^b		
5d7p 5d7p	${}^3P_2^\circ \\ {}^1P_1^\circ$	266 271 269 124	266 274 269 186	$\begin{array}{c} 65\% \ 5d7p \ ^3P^\circ + 29\% \ 5d7p \ ^1D^\circ \\ 65\% \ 5d7p \ ^1P^\circ + 23\% \ 5d7p \ ^3P^\circ + 6\% \ 5d7p \ ^3D^\circ \end{array}$		

^a From Kramida and Shirai (2009).

^b This work (HFR+CPOL).

Table 2. Comparison of energy levels (in cm^{-1}) computed using different methods with experimental values for $5d^2$, 5d6s, 5d6p and 6s6p configurations in W V. For the abbreviations, see the text.

Configuration	LS	jj	EXP ^a	HFR+CPOL ^b	HFR(CV) ^b	FAC ^b	MCDF ^b	RMBPT
5d ²	$^{3}F_{2}$	(3/2,3/2)2	0.0	0	0	0	0	0
5d ²	$^{3}F_{3}$	$(3/2, 5/2)_3$	6244.7	6236	6235	6296	5436	6496
5d ²	${}^{3}F_{4}$	$(3/2, 5/2)_4$	11519.4	11 468	11 462	11916	10484	12116
5d ²	${}^{3}P_{0}$	$(3/2, 3/2)_0$	12838.7	12776	12776	14 691	14 186	12910
5d ²	${}^{1}D_{2}$	$(3/2, 5/2)_2$	13 741.5	13 721	13713	14 909	14 159	13 890
5d ²	${}^{3}P_{1}$	$(3/2, 5/2)_1$	16330.6	16351	16343	17972	16938	16510
5d ²	${}^{1}G_{4}$	$(5/2, 5/2)_4$	22 345.8	22 330	22 328	24 965	23 7 29	22 062
5d ²	${}^{3}P_{2}$	$(5/2, 5/2)_2$	22615.4	22 599	22 602	24 1 54	22350	23 098
5d ²	${}^{1}S_{0}$	$(5/2, 5/2)_0$	43 110.1	43 094	43 090	49 140	47 030	42 696
5d6s	${}^{3}D_{1}$	$(3/2, 1/2)_1$	58 514.2	58 448	58 4 50	51 516	53 889	58 995
5d6s	$^{3}D_{2}$	$(3/2, 1/2)_2$	60 295.5	60 3 3 1	60 323	53 599	55 827	60 8 56
5d6s	$^{3}D_{3}$	$(5/2, 1/2)_3$	66 657.7	66 638	66 635	59 787	61 386	67 497
5d6s	$^{1}D_{2}$	$(5/2, 1/2)_2$	72 958.7	72 933	72931	68 463	69 821	73 228
5d6p	${}^{3}F_{2}^{\circ}$	$(3/2, 1/2)_2^\circ$	118 662.8	118 887	118 993	118 006	113 522	120 349
5d6p	${}^{3}\overline{D_{1}^{\circ}}$	$(3/2, 1/2)_{1}^{\circ}$	122 325.8	121 994	121 990	121 561	117 646	124 248
5d6p	$^{3}D_{2}^{\circ}$	$(3/2,3/2)_2^{\circ}$	128 997.1	129 135	128 890	128 231	123 024	131 077
5d6p	${}^{3}F_{3}^{\circ}$	$(3/2,3/2)_{3}^{\circ}$	129 479.5	129 348	129 477	129 237	124 154	131 589
5d6p	$^{1}D_{2}^{\circ}$	$(5/2, 1/2)_2^{\circ}$	133 430.0	133 489	133 341	132 573	127 584	135 469
5d6p	$^{3}D_{3}^{\overline{0}}$	$(5/2, 1/2)_3^{\circ}$	136 887.8	136 790	136 866	136 288	131 658	139 302
5d6p	${}^{3}P_{1}^{\circ}$	$(3/2,3/2)_{1}^{\circ}$	137 709.3	137 761	137 722	137 437	132675	139 942
5d6p	$^{3}P_{0}^{\circ}$	$(3/2,3/2)_{0}^{\circ}$	139 252.1	139 218	139 179	139 215	134 207	141 521
5d6p	${}^{3}F_{4}^{\circ}$	$(5/2,3/2)_4^{\circ}$	142 907.9	142 801	142 885	142 950	136756	145 196
5d6p	${}^{3}P_{2}^{\circ}$	$(5/2,3/2)_2^{\circ}$	144 389.9	144 465	144 203	144 226	138 276	146 689
5d6p	${}^{1}F_{3}^{\circ}$	$(5/2,3/2)_{3}^{\circ}$	145 767.9	145 764	146 073	145 641	142 278	148 222
5d6p	${}^{1}P_{1}^{\circ}$	$(5/2,3/2)_1^{\circ}$	149 160.1	149 081	149 086	149 546	144 157	151 643
6s6p	$^{3}P_{0}^{\circ}$	$(1/2, 1/2)_0^{\circ}$	182 036.7	182 171	182 161	183 449	175 050	184 705
6s6p	${}^{3}P_{1}^{\circ}$	$(1/2, 1/2)_1^{\circ}$	185 757.2	185 558	185 566	187 576	179 349	188 644
6s6p	${}^{3}P_{2}^{\circ}$	$(1/2,3/2)_2^{\circ}$	198 108.2	198 102	198 098	200 1 28	191 077	201 195
6s6p	${}^{1}P_{1}^{\overline{\circ}}$	$(1/2,3/2)_1^{\circ}$	215 212.7	215 199	215 199	219 281	218 433	215 620

^a From Kramida and Shirai (2009).

^b This work.

^c From Safronova and Safronova (2010)

first perturbation using the transverse Breit operator given by Grant and McKenzie (1980), the second-order vacuum polarization corrections are evaluated using the prescription of Fullerton and Rinker (1976) and the self-energy contributions are estimated by interpolating the hydrogenic n = 1, 2 results of Mohr (1974, 1975) and by scaling to higher nstates according to $1/n^3$. In addition, the MCDF oscillator strengths were corrected with transition energies deduced from experimentally known energy levels taken from the compilation of Kramida and Shirai (2009).

3. Results and discussion

3.1. Energy levels

Calculated energy levels obtained with the HFR+CPOL method are compared to available experimental values in

table 1. The largest LS-components of the wavefunctions are also reported in that table. One can observe that many of these levels are strongly mixed, the average LS-purities being equal to 89% and 68% for even and odd parities, respectively. For comparison, it is interesting to note that the fully relativistic MCDF calculations gave average purities in *jj*-coupling equal to 84% for $5d^2 + 5d6s$ and 88% for 5d6p. For these configurations, the correlation between LS and jj designations are given in table 2 together with a comparison between experimental energies and those obtained using different computational approaches. While, as expected and already mentioned above, the two semi-empirical HFR models are in excellent agreement with experiment, rather large discrepancies are observed, in some cases, when considering the *ab initio* methods for which the average deviations $\Delta E =$ $|E_{exp} - E_{calc}|$ are of the order of 1376, 1882 and 3930 cm⁻¹ for RMBPT, FAC and MCDF, respectively. However, it is worth

Table 3. Comparison of oscillator strengths for $5d^2$ -5d6p and 5d6s-5d6p transitions in W V. For the abbreviations, see the text.

$\lambda_{exp}{}^a$				lo	og gf		
(nm)	Lower level	Upper level	HFR+CPOL ^b	HFR(CV) ^b	FAC ^b	MCDF ^b	RMBPT ^c
72.3876	5d ² ³ F ₃	5d6p ${}^{3}P_{2}^{\circ}$	-0.99	-1.02	-1.22	-1.05	-1.12
72.6162	5d ² ³ F ₂	5d6p ${}^{3}P_{1}^{\tilde{0}}$	-0.86	-0.90	-1.05	-0.96	-1.08
73.1725	5d ² ³ F ₃	$5d6p {}^{3}F_{4}^{\circ}$	-1.10	-1.11	-1.21	-1.17	-1.11
73.3560	$5d^2 {}^3P_0$	5d6p ${}^{1}P_{1}^{\circ}$	-1.35	-1.36	-1.36	-1.32	-1.49
76.1103	$5d^2 {}^3F_4$	$5d6p^{3}F_{4}^{\circ}$	0.02	0.01	-0.06	0.00	0.03
77.5212	5d ² ³ F ₂	$5d6p^{3}D_{2}^{\circ}$	-1.29	-1.27	-1.25	-1.06	-1.18
78.0884	5d ² ³ P ₁	$5d6p^{3}P_{2}^{\circ}$	-0.85	-0.85	-0.89	-0.82	-0.80
78.6254	5d ² ³ F ₃	$5d6p {}^{1}D_{2}^{\circ}$	-0.08	-0.09	-0.18	-0.05	-0.04
79.7645	5d ² ³ F ₄	5d6p ${}^{3}D_{3}^{\circ}$	0.25	0.25	0.18	0.31	0.29
80.0832	5d ² ³ P ₀	$5d6p^{-3}P_{1}^{\circ}$	-0.97	-0.97	-1.03	-0.94	-0.87
81.0225	$5d^{2} G_{4}$	$5d6p {}^{1}F_{3}^{\circ}$	0.44	0.44	0.39	0.52	0.47
81.1460	5d ² ³ F ₃	5d6p ${}^{3}F_{3}^{\circ}$	-0.08	-0.09	-0.13	-0.06	-0.06
81.3528	5d ² ³ P ₁	$5d6p {}^{3}P_{0}^{\circ}$	-0.58	-0.58	-0.63	-0.55	-0.60
81.4653	5d ² ³ F ₃	5d6p ${}^{3}D_{2}^{\circ}$	-0.20	-0.20	-0.20	-0.18	-0.27
81.7492	5d ² ³ F ₂	5d6p ${}^{3}D_{1}^{\circ}$	-0.11	-0.12	-0.15	-0.06	-0.10
82.1188	$5d^2 {}^3P_2$	$5d6p {}^{3}P_{2}^{\circ}$	0.08	0.07	0.03	0.10	0.10
82.3875	$5d^2 {}^3P_1$	5d6p ${}^{3}P_{1}^{\overline{0}}$	-0.67	-0.68	-0.73	-0.62	-0.68
82.9450	$5d^{2} G_{4}$	5d6p ${}^{3}F_{4}^{\circ}$	-1.03	-1.03	-1.17	-1.25	-1.31
85.3980	$5d^2 {}^3P_1$	5d6p ${}^{1}D_{2}^{\circ}$	-1.72	-1.74	-1.98	-1.39	-1.63
87.3045	$5d^{2} G_{4}$	5d6p ³ D ₃ °	-0.55	-0.70	-0.69	-0.88	-0.93
118.9151	5d6s ³ D ₂	$5d6p {}^{3}P_{2}^{\circ}$	-0.48	-0.44	-0.36	-0.35	-0.33
123.8574	5d6s ³ D ₁	5d6p ${}^{3}P_{0}^{\tilde{0}}$	-0.47	-0.43	-0.43	-0.47	-0.49
126.2707	5d6s ³ D ₁	5d6p ${}^{3}P_{1}^{\circ}$	-0.13	-0.11	-0.14	-0.18	-0.24
126.4066	5d6s ³ D ₃	5d6p ${}^{1}F_{3}^{\circ}$	-0.07	-0.11	-0.16	-0.38	-0.45
130.5611	5d6s 3D2	5d6p ³ D ₃ °	0.29	0.31	0.30	0.24	0.16
131.1465	5d6s ³ D ₃	5d6p ${}^{3}F_{4}^{\circ}$	0.52	0.54	0.54	0.52	0.49
133.4841	5d6s ³ D ₁	$5d6p \ ^{1}D_{2}^{\circ}$	-0.01	0.02	0.03	0.01	-0.02
144.5413	5d6s 3D2	5d6p ${}^{3}F_{3}^{\circ}$	-0.27	-0.25	-0.23	-0.16	-0.09

^a From Kramida and Shirai (2009).

^b This work.

^c From Safronova and Safronova (2010).

Table 4. Influence of the level mixing on the calculated oscillator strength of the 5d6s ${}^{3}D_{3}$ -5d6p ${}^{1}F_{3}^{\circ}$ transition.

Method	Mixing of 5d6p ${}^1F_3^{\circ}$	log gf
HFR+CPOL	$\begin{array}{c} 63\% \ ^1F^\circ + 37\% \ ^3D^\circ \\ 67\% \ ^1F^\circ + 33\% \ ^3D^\circ \\ 72\% \ ^1F^\circ + 28\% \ ^3D^\circ \\ 75\% \ ^1F^\circ + 25\% \ ^3D^\circ \\ 78\% \ ^1F^\circ + 22\% \ ^3D^\circ \end{array}$	$-0.07 \\ -0.14 \\ -0.20 \\ -0.26 \\ -0.31$
MCDF	$\begin{array}{l} 82\% \ {}^{1}F^{\circ} + 18\% \ {}^{3}D^{\circ} \\ 82\% \ {}^{1}F^{\circ} + 18\% \ {}^{3}D^{\circ} \end{array}$	$-0.38 \\ -0.38$

noting that the strongly mixed 5d6p odd-parity levels are much better reproduced with the FAC model ($\Delta E = 410 \text{ cm}^{-1}$) than with the MCDF approach ($\Delta E = 5253 \text{ cm}^{-1}$) or with the RMBPT calculations of Safronova and Safronova (2010) ($\Delta E = 2190 \text{ cm}^{-1}$).

3.2. Electric dipole transitions

In table 3, we compare the oscillator strengths deduced from the HFR+CPOL, HFR(CV), FAC and MCDF calculations with those computed using the RMBPT method by Safronova and Safronova (2010) for $5d^2$ -5d6p and 5d6s-5d6p transitions. These comparisons are also illustrated in figure 1. When

Table 5. Influence of the level mixing on the calculated oscillator strength of the 5d² 1 G₄–5d6p 3 F₄^{\circ} transition.

Method	Mixing of $5d^2 \ ^1G_4$	log gf
HFR+CPOL	91% ${}^{1}G + 9\% {}^{3}F$ 92% ${}^{1}G + 8\% {}^{3}F$ 93% ${}^{1}G + 7\% {}^{3}F$ 94% ${}^{1}G + 6\% {}^{3}F$	-1.03 -1.09 -1.14 -1.24
MCDF	$94\% {}^{1}\text{G} + 6\% {}^{3}\text{F}$	-1.25

looking into details, it is clearly seen that an overall good agreement is obtained between the different calculations for most of the lines. In particular, the HFR+CPOL and HFR(CV) results agree within a few per cent indicating that the core-polarization model potential included in the former approach allows for a realistic representation of the core-valence interactions explicitly considered in the latter model.

When comparing the HFR+CPOL *f*-values to other calculations, a slightly better agreement is found with FAC than with MCDF and RMBPT methods, although the mean relative deviations are found to be similar, i.e. $\Delta gf(\text{HFR+CPOL-FAC}) = 15\%$, $\Delta gf(\text{HFR+CPOL-MCDF}) = 21\%$ and $\Delta gf(\text{HFR+CPOL-RMBPT}) = 20\%$. It is also interesting to note that the FAC and MCDF oscillator strengths

Figure 1. Comparison between oscillator strengths (log gf) obtained with different methods for $5d^2-5d6p$ and 5d6s-5d6p transitions in W V. For the abbreviations, see the text.

Table 6. Influence of the level mixing	on the calculated oscillator stren	igth of the $5d^2 {}^1G_4$ -:	5d6p ³ D	$\frac{2}{3}$ transition.
--	------------------------------------	-------------------------------	---------------------	---------------------------

M (1 1	M:: 651210	M:: 6516 3D0	1 (
Method	Mixing of $5d^2 \cdot G_4$	Mixing of Sdbp $^{\circ}D_{3}^{\circ}$	log gf
HFR+CPOL	91% ¹ G + 9% ³ F	$43\% {}^{3}D^{\circ} + 31\% {}^{3}F^{\circ} + 25\% {}^{1}F^{\circ}$	-0.55
	92% ¹ G + 8% ³ F	$43\% {}^{3}D^{\circ} + 31\% {}^{3}F^{\circ} + 25\% {}^{1}F^{\circ}$	-0.52
	93% ¹ G + 7% ³ F	$43\% {}^{3}D^{\circ} + 31\% {}^{3}F^{\circ} + 25\% {}^{1}F^{\circ}$	-0.49
	94% ¹ G + 6% ³ F	$43\% {}^{3}D^{\circ} + 31\% {}^{3}F^{\circ} + 25\% {}^{1}F^{\circ}$	-0.44
	91% ¹ G + 9% ³ F	$47\% {}^{3}D^{\circ} + 30\% {}^{3}F^{\circ} + 22\% {}^{1}F^{\circ}$	-0.66
	91% ¹ G + 9% ³ F	$51\% {}^{3}D^{\circ} + 29\% {}^{3}F^{\circ} + 20\% {}^{1}F^{\circ}$	-0.78
	91% ¹ G + 9% ³ F	$54\% {}^{3}D^{\circ} + 28\% {}^{3}F^{\circ} + 17\% {}^{1}F^{\circ}$	-0.92
	91% ¹ G + 9% ³ F	$57\% {}^{3}D^{\circ} + 27\% {}^{3}F^{\circ} + 15\% {}^{1}F^{\circ}$	-1.06
	94% ¹ G + 6% ³ F	$57\% {}^{3}D^{\circ} + 27\% {}^{3}F^{\circ} + 15\% {}^{1}F^{\circ}$	-0.85
MCDF	94% ¹ G + 6% ³ F	$59\% {}^{3}D^{\circ} + 28\% {}^{3}F^{\circ} + 12\% {}^{1}F^{\circ}$	-0.88

agree within 25% and 13%, respectively, with RMBPT results of Safronova and Safronova (2010).

While the convergence of results using different approaches or physical models gives us confidence in the accuracy of the results obtained in this work, for a few lines the different methods do still give different results, up to a factor of 2. However, these situations are rather special, arising because of high sensitivity of f-values to the wavefunction mixings. Three examples of intercombination transitions will suffice to demonstrate the difficulty in obtaining accurate results in these situations:

- (a) 5d6s ³D₃-5d6p ¹F₃^o. For this transition, the HFR+CPOL, HFR(CV) and FAC *f*-values are about a factor of 2 larger than the MCDF and RMBPT results. Since the spins of the two states are different, the transition is driven by the admixture of 5d6p ³D₃^o in 5d6p ¹F₃^o. In the *ab initio* MCDF calculation, the mixing was found to be 82% ¹F^o + 18% ³D^o, while the corresponding mixing in the semi-empirical HFR+CPOL approach was found to be 63% + 37%. As illustrated in table 4, when modifying the HFR+CPOL wavefunctions (by slightly changing the numerical values of Slater integrals) to reproduce the MCDF mixing, excellent agreement is observed between the oscillator strengths.
- (b) $5d^2 {}^{1}G_4-5d6p {}^{3}F_4^{\circ}$. Here again, a large discrepancy is observed between HFR+CPOL and HFR(CV) results, on the one hand, and MCDF and RMBPT results, on the other hand. This intercombination line is driven by the $5d^2 {}^{3}F_4$ component in $5d^2 {}^{1}G_4$ state. Although this admixture is only of a few per cent, the small difference between the HFR+CPOL wavefunction (91% ${}^{1}G + 9\% {}^{3}F$) and the MCDF one (94% ${}^{1}G + 6\% {}^{3}F$) explains the discrepancy by a factor of 1.7 between the oscillator strengths as shown in table 5.
- (c) $5d^{2} {}^{1}G_{4}-5d6p {}^{3}D_{3}^{\circ}$. In this case, the situation is even more complex since this transition is made possible by both the admixture of $5d^{2} {}^{3}F_{4}$ in $5d^{2} {}^{1}G_{4}$ and the admixture of $5d6p {}^{1}F_{3}^{\circ}$ in $5d6p {}^{3}D_{3}^{\circ}$. The sensitivity of the corresponding oscillator strength to the wavefunction compositions is shown in table 6. It is clearly seen that the oscillator strength is very sensitive to a small change (of a few per cent) in the wavefunction mixings of both the lower and upper states. However, good agreement is found when

LS-coupling conditions are close to each other in both HFR+CPOL and MCDF methods.

These examples illustrate the high sensitivity of some transition rates to intermediate coupling and hence to level mixings which are expected to be better estimated when the calculated energy levels are closer to the experimental ones. For such particular situations, the semi-empirical HFR+CPOL and HFR(CV) approaches, allowing for an excellent representation of the W V atomic structure, are probably better adapted than *ab initio* methods which reproduce the experimental energies with a rather limited accuracy.

Transition probabilities and oscillator strengths computed using the semi-empirical HFR+CPOL model are listed in table 7 for a set of W V transitions between 39 and 179 nm with log $gf \ge -1$. A more comprehensive table is available in our DatabasE on SIxth Row Elements (DESIRE) at the following address: http://w3.umons.ac.be/astro/desire.shtml.

3.3. Forbidden transitions

Because they have radiative intensities which are often very sensitive to electron temperature and density, magnetic dipole (M1) and electric quadrupole (E2) transitions also play an important role in plasma diagnostics. Therefore, wavelengths and transition rates for such lines in various ionization stages of tungsten must be determined with high confidence. In table 8, we present transition probabilities computed with the HFR+CPOL model for selected forbidden lines involving levels of $5d^2$ and 5d6s even-parity configurations in W V. When the two types of radiation contribute to the intensity of a line then the sum of both A-values is given. It is worth mentioning that an overall good agreement was observed when comparing these transition probabilities with the FAC and MCDF values obtained in this work, in particular for the most intense lines. More precisely, it was found that the mean ratios $A_{\rm HFR+CPOL}/A_{\rm FAC}$ and $A_{\rm HFR+CPOL}/A_{\rm MCDF}$ were equal to 1.052 \pm 0.066 and 0.949 \pm 0.071 (for $A \ge 100 \text{ s}^{-1}$), 1.161 \pm 0.249 and 1.137 ± 0.362 (for $A \ge 10 \text{ s}^{-1}$) and 1.120 ± 0.222 and 1.165 ± 0.359 (for $A \ge 2 \text{ s}^{-1}$), where the uncertainty represents the standard deviation of the mean.

Table 7. Computed oscillator strengths (log *gf*) and transition probabilities (*gA*) in W V. Only allowed transitions for which log $gf \ge -1$ are listed. A(B) is written for A × 10^{*B*}.

	Low	er level ^a	Uppe	Upper level ^a		
$\lambda^a(nm)$	$E(cm^{-1})$	Designation	$\overline{E(cm^{-1})}$	Designation	log gf ^c	$gA^{c}(s^{-1})$
39.9295	6244.7	5d ² ³ F ₃	256 688	$5d7p {}^{3}D_{2}^{\circ}$	-0.92	5.02(09)
40.1824	11 519.4	5d ² ³ F ₄	260 388	$5d7p {}^{1}F_{3}^{\circ}$	-0.93	4.81(09)
41.0415	22615.4	$5d^2 {}^{3}P_2$	266 271	$5d7p^{3}P_{2}^{\circ}$	-0.85	5.56(09)
41.0869	22 345.8	$5d^{2} G_{4}^{1}$	265 733	$5d7p^{3}D_{2}^{2}$	-0.70	7.85(09)
42.4413 ^b	11519.4	$5d^{2} {}^{3}F_{4}$	247 139	$5d5f^{1}H^{2}$	-1.00	3.70(09)
42.8787	6244.7	$5d^2 {}^3F_3$	239456	$5d5f^{3}D_{2}^{\circ}$	-0.35	1.61(10)
43.0140 ^b	6244.7	5d ² ³ F ₃	238727	$5d5f^{3}D_{2}^{\circ}$	-0.88	4.74(09)
43.0643	0.0	$5d^2 {}^3F_2$	232 210	$5d5f^{3}G_{2}^{\circ}$	0.37	8.37(10)
43.1045	6244.7	$5d^2 {}^3F_3$	238 239	$5d5f^{3}G^{2}$	0.45	1.01(11)
43.5012	0.0	$5d^2 {}^3F_2$	229 873	$5d5f^{3}F_{2}^{\circ}$	0.06	4.07(10)
43 5033 ^b	137415	$5d^2 {}^1D_2$	243 609	$5d5f^{3}P_{c}^{2}$	-0.72	6 76(09)
43 6001	6244 7	$5d^2 {}^{3}F_{2}$	235 598	$5d5f^{3}F^{\circ}$	-0.50	1.12(10)
43 6277	137415	$5d^{2}$ ¹ D ₂	242,953	$5d5f^{3}P_{2}^{\circ}$	-0.58	9 20(09)
43 6880	13 741 5	$5d^2 D_2$	242,636	$5d5f^{1}F_{2}^{0}$	-0.72	6 66(09)
43 7250	0.0	$5d^2 \ ^3F_2$	272 333	$5d5f^{3}F^{2}$	-0.01	340(10)
43 8408	115194	$5d^2 {}^3F_4$	239614	$5d5f^{3}G^{\circ}$	0.01	1.75(11)
43 8714	11 519.1	$5d^2 {}^3F_4$	239.456	$5d5f^{3}D^{\circ}$	-0.58	9.04(09)
43 0001	16330.6	$5d^2 {}^{3}P_1$	243 609	$5d5f^{3}P^{\circ}$	_0.23	2.04(0)
44 1074	11 510 /	$5d^2 {}^3F_1$	245 009	$5d5f^{3}G^{\circ}$	-0.23	2.05(10)
44 1257	16330.6	$5d^2 {}^{3}P$	230 239	$5d5f^{3}D^{\circ}$	0.05	3.68(00)
44.1257	6244.7	$5d^2 {}^{3}E$	242 955	$5d5f^{3}C^{\circ}$	-0.97	2.03(09)
44.2347	13 741 5	$5d^2 {}^1D_1$	232 210	$5d5f^{3}D^{\circ}$	-0.22	2.07(10) 6.67(10)
44.3030	13 741.5	$5d^2 D_2$	239430	$5d5f^{3}D^{\circ}$	0.29	1.36(10)
44.4474	13741.3	$5d^2 D_2$	238727	$5d5f^{1}U^{\circ}$	-0.40	1.30(10)
44.4034	22 343.0	$50 G_4$	247 139	545f ³ E ⁰	0.79	2.07(11)
44.0272	62447	5d ² ³ E	255 598	$5031^{\circ}\Gamma_4$	-0.58	1.40(10)
44./1/3	0244.7	$SU^{-}\Gamma_3$	229873	$5031^{\circ}\Gamma_3$	-0.57	1.43(10)
44.7989	12 030.7	$50^{-1}P_0$	230 002	$5031^{-}D_{1}$	-0.03	2.99(10)
44.8303	0244.7	$5u^{-1}F_3$	229 203	545£3D	0.11	4.27(10)
44.9049	10 330.0	$50^{-1}P_1$	238 121	$5051 \cdot D_2^2$	-0.11	2.39(10)
45.1009	0244.7	$5u^{-1}F_3$	227 330	5451 °G ₄	-0.79	5.54(09)
45.2501	22 015.4	$50^{-1}P_2$	243 009	$5051^{\circ}P_{1}^{\circ}$	-0.07	0.89(09)
45.3834	22 015.4	$50^{-1}P_2$	242 955	$5051^{\circ}P_{2}^{\circ}$	0.12	4.22(10)
45.3947	22 343.8	50^{2} $^{1}G_{4}$	242 030	$5051^{+}F_{3}^{\circ}$	-0.90	4.11(09)
45.4415	13 /41.5	$5d^{-1}D_2$	255 804	$5051 \cdot D_2^2$	-0.19	2.07(10)
45.4502	22015.4	50^{2} $^{3}P_{2}$	242 030	$5051^{+}F_{3}^{\circ}$	0.43	8.59(10)
45.5099	16 330.6	50^{2} $^{3}P_{1}$	236 062	$5051^{\circ}D_{1}^{\circ}$	-0.95	3.65(09)
45.5408	11519.4	$5d^{2} F_{4}$	231 099	5d5f ³ H ₅	-0.14	2.33(10)
45.7733	13 /41.5	$5d^2 D_2$	232 210	$5d5f^3G_3^\circ$	-0.44	1.16(10)
45.9385	11519.4	$5d^2 {}^{3}F_4$	229 205	5d5f ³ H ₄	-0.81	4.92(09)
45.9830	16 330.6	$50^2 {}^{9}P_1$	233 804	$5051^{-1}D_{2}^{\circ}$	-0.06	2.73(10)
46.0268	22 345.8	50^{2} $^{1}G_{4}$	239614	$5051^{\circ}G_{5}^{\circ}$	-0.80	5.02(09)
46.2692	13 /41.5	$5d^2 D_2$	229873	$5d5f^{3}F_{3}^{\circ}$	-0.34	1.41(10)
46.2724°	22615.4	$5d^2 {}^{3}P_2$	238 727	$5d5f^{3}D_{2}^{\circ}$	-0.69	6.44(09)
46.2933	11519.4	$5d^2 {}^{5}F_4$	227 536	$5d5f^{-1}G_4^{\circ}$	-0.62	7.49(09)
46.8937	22 345.8	$5d^2 G_4$	235 598	$5d5f^{3}F_{4}^{3}$	-0.13	2.25(10)
47.6906	43 110.1	$5d^2 S_0$	252 797	$5d/p^{-3}D_1^{\circ}$	-0.83	4.35(09)
47.9044	22 345.8	$5d^2 G_4$	231 099	SdSf ³ H ₅	-0.73	5.45(09)
48.6138	43 110.1	$5d^2 {}^1S_0$	248 815	$5d5f^{-1}P_1^{\circ}$	-0.18	1.85(10)
48.7347	22 345.8	$5d^2 G_4$	227 536	5d5t 'G ₄	-0.52	8.56(09)
56.8647	72958.7	$5d6s ^{-1}D_2$	248 815	$5d5t P_1^\circ$	-0.96	2.26(09)
58.1049 ^b	43 110.1	$5d^{2} S_{0}$	215 212.7	$6s6p P_1^\circ$	-0.96	2.17(09)
70.2963	72 958.7	$5d6s ^{1}D_{2}$	215 212.7	$6s6p P_1^\circ$	0.01	1.38(10)
72.3876	6244.7	$5d^{2} {}^{3}F_{3}$	144 389.9	5d6p ³ P ₂	-0.99	1.29(09)
72.5616	60 295.5	5d6s $^{3}D_{2}$	198 108.2	$6s6p {}^{3}P_{2}^{\circ}$	-0.60	3.17(09)
72.6162	0.0	$5d^2 {}^{3}F_2$	137 709.3	5d6p $^{\circ}P_{1}^{\circ}$	-0.86	1.75(09)
74.4887	11 519.4	$5d^2 {}^{3}F_4$	145 767.9	$5d6p {}^{1}F_{3}^{\circ}$	-0.76	2.10(09)
76.0740	66 657.7	$5d6s^{3}D_{3}$	198 108.2	$6s6p {}^{3}P_{2}^{\circ}$	0.17	1.71(10)
76.1103	11519.4	$5d^2 {}^3F_4$	142 907.9	5d6p ${}^{3}F_{4}^{\circ}$	0.02	1.20(10)

		Tab	le 7. (Continued.))		
	Low	er level ^a	Uppe	er level ^a		
$\lambda^a(nm)$	$E(cm^{-1})$	Designation	$E(cm^{-1})$	Designation	log gf ^c	$gA^{c}(s^{-1})$
78.0884	16330.6	$5d^2 {}^3P_1$	144 389.9	5d6p ${}^{3}P_{2}^{\circ}$	-0.85	1.54(09)
78.5897	58 514.2	5d6s ³ D ₁	185 757.2	6s6p ³ P ₁ °	-0.59	2.76(09)
78.6254	6244.7	$5d^2 {}^3F_3$	133 430.0	5d6p ¹ D ₂	-0.08	9.09(09)
79.0235 ^b	22615.4	$5d^2 {}^3P_2$	149 160.1	5d6p ${}^{1}P_{1}^{\circ}$	-0.53	3.13(09)
79.7057	60 295.5	5d6s ³ D ₂	185 757.2	6s6p ³ P ₁ °	-0.11	8.19(09)
79.7645	11 519.4	5d ² ³ F ₄	136 887.8	5d6p ³ D ₃ °	0.25	1.88(10)
80.0832	12838.7	$5d^2 {}^{3}P_0$	137 709.3	5d6p ${}^{3}P_{1}^{\circ}$	-0.97	1.12(09)
80.6659	13741.5	$5d^{2} D_{2}^{1}$	137 709.3	5d6p ${}^{3}P_{1}^{\circ}$	-0.46	3.58(09)
80.9569	58 514.2	5d6s ³ D ₁	182 036.7	$6s6p^{3}P_{0}^{\circ}$	-0.46	3.57(09)
81.0225	22 345.8	$5d^{2} G_{4}$	145 767.9	$5d6p {}^{1}F_{3}^{\circ}$	0.44	2.78(10)
81.1460	6244.7	5d ² ³ F ₃	129 479.5	5d6p ${}^{3}F_{3}^{\circ}$	-0.08	8.45(09)
81.3528	16330.6	5d ² ³ P ₁	139 252.1	$5d6p {}^{3}P_{0}^{\circ}$	-0.58	2.68(09)
81.4653	6244.7	5d ² ³ F ₃	128 997.1	$5d6p^{3}D_{2}^{\circ}$	-0.20	6.39(09)
81.7492	0.0	5d ² ³ F ₂	122 325.8	$5d6p^{-3}D_{1}^{\circ}$	-0.11	7.77(09)
82.1188	22615.4	$5d^2 {}^3P_2$	144 389.9	$5d6p {}^{3}P_{2}^{\circ}$	0.08	1.19(10)
82.3875	16330.6	$5d^2 {}^{3}P_1$	137 709.3	$5d6p^{-3}P_{1}^{5}$	-0.67	2.09(09)
83.5501	13741.5	$5d^{2} D_{2}^{1}$	133 430.0	$5d6p^{-1}D_{2}^{\circ}$	-0.23	5.58(09)
84.2733	0.0	$5d^{2} {}^{3}F_{2}$	118 662.8	$5d6p^{3}F_{2}^{\circ}$	-0.13	7.07(09)
84.7749	11 519.4	$5d^2 {}^3F_4$	129 479.5	$5d6p^{-3}F_{2}^{\circ}$	-0.45	3.26(09)
86.7633	13741.5	$5d^{2} D_{2}^{1}$	128 997.1	$5d6p^{3}D_{2}^{3}$	-0.25	4.98(09)
87.3045	22 345.8	$5d^{2} G_{4}^{1}$	136 887.8	$5d6p^{-3}D_{2}^{2}$	-0.55	2.44(09)
87.5102	22615.4	$5d^{2} {}^{3}P_{2}$	136 887.8	$5d6p^{3}D_{3}^{3}$	-0.95	9.79(08)
88.7567	16330.6	$5d^{2} {}^{3}P_{1}$	128 997.1	$5d6p^{3}D_{2}^{\circ}$	-0.52	2.58(09)
91.3347	12838.7	$5d^2 {}^{3}P_0$	122 325.8	$5d6p^{3}D_{1}^{2}$	-0.77	1.34(09)
93.3410	22345.8	$5d^{2} G_{4}$	129 479.5	$5d6p {}^{3}F_{2}^{\circ}$	-0.84	1.11(09)
94.2961	43 110.1	$5d^{2}$ ¹ S ₀	149 160.1	$5d6p P_1^\circ$	-0.61	1.86(09)
95.3096	13741.5	$5d^{2} D_{2}^{1}$	118 662.8	$5d6p^{3}F_{2}^{0}$	-0.87	9.85(08)
118.9151	60 295.5	$5d6s^{3}D_{2}$	144 389.9	$5d6p^{-3}P_{2}^{\circ}$	-0.48	1.58(09)
123.8574	58 514.2	$5d6s^{3}D_{1}$	139 252.1	$5d6p^{3}P_{0}^{5}$	-0.47	1.49(09)
126.2707	58 514.2	$5d6s^{3}D_{1}$	137 709.3	$5d6p^{-3}P_{1}^{\circ}$	-0.13	3.11(09)
126.4066	66 657.7	$5d6s^{3}D_{3}$	145 767.9	$5d6p {}^{1}F_{2}^{\circ}$	-0.07	3.60(09)
128.6456	66 657.7	$5d6s^{3}D_{3}$	144 389.9	$5d6p^{3}P_{2}^{\circ}$	-0.18	2.70(09)
129.1759	60 295.5	5d6s ${}^{3}D_{2}$	137 709.3	$5d6p^{-3}P_{1}^{\circ}$	-0.58	1.06(09)
130.5611	60 295.5	$5d6s^{3}D_{2}$	136 887.8	$5d6p^{3}D_{2}^{0}$	0.29	7.58(09)
131.1465	66 657.7	$5d6s^{3}D_{3}^{2}$	142 907.9	$5d6p^{3}F_{4}^{3}$	0.52	1.27(10)
131.2319	72958.7	$5d6s {}^{1}D_{2}$	149 160.1	$5d6p^{-1}P_1^{\vec{0}}$	-0.04	3.54(09)
133.4841	58 514.2	$5d6s^{3}D_{1}^{2}$	133 430.0	$5d6p^{-1}D_{2}^{\circ}$	-0.01	3.67(09)
136.7341	60 295.5	5d6s ³ D ₂	133 430.0	$5d6p {}^{1}D_{2}^{\circ}$	-0.26	1.95(09)
137.3439	72958.7	5d6s ${}^{1}D_{2}$	145 767.9	$5d6p {}^{1}F_{2}^{\circ}$	0.20	5.61(09)
139.9933	72 958.7	5d6s ¹ D ₂	144 389.9	$5d6p {}^{3}P_{2}^{\circ}$	-0.19	2.23(09)
142.3889	66 657.7	$5d6s^{3}D_{3}$	136 887.8	$5d6p^{3}D_{2}^{2}$	-0.32	1.57(09)
144.5413	60 295.5	$5d6s^{3}D_{2}$	129479.5	$5d6p^{3}F_{2}^{\circ}$	-0.27	1.72(09)
145.5559	60 295.5	$5d6s^{3}D_{2}$	128 997.1	$5d6p^{3}D_{3}^{\circ}$	-0.77	5.32(08)
156.7095	58 514.2	$5d6s^{3}D_{1}$	122 325.8	$5d6p^{3}D_{1}^{2}$	-0.47	9.05(08)
159.1804	66 657.7	$5d6s^{3}D_{3}$	129 479.5	$5d6p^{3}F_{2}^{\circ}$	0.05	2.93(09)
160.4126	66 657.7	$5d6s^{3}D_{3}$	128 997.1	$5d6p^{3}D^{\circ}$	-0.07	2.22(09)
161.2132	60 295.5	$5d6s^{3}D_{2}$	122 325.8	$5d6p^{3}D_{1}^{\circ}$	-0.26	1.41(09)
165.3662	72 958.7	$5d6s {}^{1}D_{2}$	133 430.0	$5d6p^{-1}D_{a}^{\circ}$	-0.72	4.62(08)
166.2540	58 514.2	$5d6s^{3}D_{1}$	118 662.8	$5d6p^{3}F_{2}^{\circ}$	-0.18	1.61(09)
171.3270	60 295.5	$5d6s^{3}D_{2}$	118 662.8	$5d6p^{3}F_{2}^{\circ}$	-0.21	1.41(09)
176.9249	72 958.7	$5d6s {}^{1}D_{2}$	129 479.5	$5d6p {}^{3}F_{2}^{\circ}$	-0.34	9.71(08)
178.4499	72 958.7	5d6s ¹ D ₂	128 997.1	$5d6p {}^{3}D_{2}^{\circ}$	-0.37	9.02(08)

^a From Kramida and Shirai (2009).
^b Wavelengths deduced from available experimental energy values.
^c This work (HFR+CPOL).

Table 8. Transition probabilities for forbidden lines in W V. Only transitions for which A-values are greater than $2 s^{-1}$ and λ are shorter than 2000 nm are listed. A(B) is written for A $\times 10^{B}$.

	Lowe	er level ^b	Uppe	er level ^b		
$\lambda^a(nm)$	$E(cm^{-1})$	Designation	$E(cm^{-1})$	Designation	Туре	$\mathbf{A}_{ki}^{c}(\mathbf{s}^{-1})$
137.0638	0.0	5d ² ³ F ₂	72 958.7	5d6s ¹ D ₂	M1+E2	2.11(+0)
149.8936	6244.7	5d ² ³ F ₃	72 958.7	5d6s 1D2	M1+E2	5.79(+1)
150.0202	0.0	$5d^2 {}^3F_2$	66 657.7	5d6s ³ D ₃	M1+E2	9.83(+0)
162.7623	11519.4	5d ² ³ F ₄	72 958.7	5d6s ¹ D ₂	E2	2.50(+1)
165.5273	6244.7	5d ² ³ F ₃	66 657.7	5d6s ³ D ₃	E2	1.40(+2)
165.8499	0.0	$5d^2 {}^3F_2$	60 295.5	5d6s ³ D ₂	E2	2.21(+2)
168.8699	13 741.5	5d ² ¹ D ₂	72 958.7	5d6s 1D2	M1+E2	1.21(+2)
170.8987	0.0	5d ² ³ F ₂	58 514.2	5d6s ³ D ₁	E2	3.12(+2)
176.5908	16330.6	$5d^{2} {}^{3}P_{1}$	72 958.7	5d6s 1D2	M1+E2	2.43(+0)
181.3621	11519.4	5d ² ³ F ₄	66 657.7	5d6s ³ D ₃	E2	2.89(+2)
185.0111	6244.7	5d ² ³ F ₃	60 295.5	5d6s ³ D ₂	M1+E2	1.69(+2)
188.9780	13 741.5	5d ² ¹ D ₂	66 657.7	5d6s ³ D ₃	M1+E2	4.38(+1)
191.3162	6244.7	5d ² ³ F ₃	58 514.2	5d6s ³ D ₁	E2	1.05(+2)
197.5781	22 345.8	5d ² ¹ G ₄	72 958.7	5d6s 1D2	E2	3.52(+2)
198.6362	22615.4	$5d^2 {}^3P_2$	72 958.7	5d6s ¹ D ₂	M1+E2	7.05(+1)
198.7001	16330.6	$5d^2 {}^3P_1$	66 657.7	$5d6s^{3}D_{3}$	E2	3.77(+1)
204.9527	11519.4	5d ² ³ F ₄	60 295.5	5d6s ³ D ₂	E2	6.46(+1)
210.6512	12838.7	$5d^{2} {}^{3}P_{0}$	60 295.5	$5d6s {}^{3}D_{2}$	E2	2.87(+1)
214.7367	13 741.5	5d ² ¹ D ₂	60 295.5	5d6s ³ D ₂	M1+E2	1.60(+1)
223.2810	13741.5	$5d^{2} D_{2}$	58 514.2	5d6s ³ D ₁	M1+E2	2.72(+1)
225.6031	22 345.8	$5d^{2} G_{4}$	66 657.7	5d6s ³ D ₃	E2	9.47(+0)
226.9843	22615.4	$5d^2 {}^3P_2$	66 657.7	5d6s ³ D ₃	M1+E2	2.31(+1)
227.3839	16330.6	$5d^2 {}^3P_1$	60 295.5	5d6s ³ D ₂	M1+E2	4.27(+0)
231.8930	0.0	5d ² ³ F ₂	43 110.1	$5d^{2} S_0$	E2	2.73(+0)
236.9866	16330.6	$5d^2 {}^3P_1$	58 514.2	5d6s ³ D ₁	E2	3.49(+1)
263.4282	22 345.8	5d ² ¹ G ₄	60 295.5	5d6s ³ D ₂	E2	4.45(+0)
265.3131	22615.4	$5d^2 {}^3P_2$	60 295.5	5d6s ³ D ₂	M1+E2	6.80(+0)
334.9278	43 110.1	$5d^{2} S_{0}^{1}$	72 958.7	$5d6s {}^{1}D_{2}$	E2	3.31(+0)
340.4020	13741.5	$5d^{2} D_{2}^{1}$	43 110.1	$5d^{2} S_0$	E2	1.09(+1)
373.3138	16330.6	$5d^2 {}^3P_1$	43 110.1	$5d^{2} S_0^{1}$	M1	6.90(+1)
610.6784	6244.7	$5d^2 {}^3F_3$	22615.4	$5d^2 {}^{3}P_2$	M1+E2	2.72(+0)
620.9038	6244.7	$5d^2 {}^3F_3$	22 345.8	$5d^{2} G_{4}^{1}$	M1+E2	7.58(+0)
692.1141	58 514.2	$5d6s {}^{3}D_{1}$	72 958.7	5d6s ¹ D ₂	M1+E2	8.25(+0)
727.5221	0.0	$5d^2 {}^3F_2$	13741.5	$5d^{2} D_{2}$	M1+E2	5.51(+0)
923.4147	11519.4	$5d^2 {}^3F_4$	22 345.8	$5d^{2} G_{4}^{1}$	M1+E2	3.54(+0)
1126.5917	13741.5	$5d^{2} D_{2}^{1}$	22615.4	$5d^2 {}^{3}P_2$	M1	7.05(+0)
1571.3540	60 295.5	5d6s ${}^{3}\overline{D}_{2}$	66 657.7	5d6s ${}^{3}D_{3}$	M1	4.03(+0)
1590.7059	16330.6	$5d^{2} {}^{3}P_{1}$	22615.4	$5d^{2} {}^{3}P_{2}$	M1	2.16(+0)
1600.9206	0.0	$5d^2 {}^3F_2$	6244.7	$5d^2 {}^3F_3$	M1	5.60(+0)
1895.3249	6244.7	$5d^2 {}^3F_3$	11 519.4	$5d^2 {}^3F_4$	M1	2.65(+0)

^a Vacuum wavelengths (below 200 nm) and air wavelengths (above 200 nm) deduced from

the experimental levels.

^b From Kramida and Shirai (2009).

^c This work (HFR+CPOL).

4. Conclusion

Atomic structure and radiative rate calculations were performed in Yb-like tungsten using several semi-empirical and *ab initio* methods. From detailed comparisons between these different approaches, the accuracy of the computed transition probabilities and oscillator strengths has been estimated. It has been shown that some line strengths are particularly sensitive to level mixings which are expected to be better estimated when using semi-empirical methods. The new set of radiative data reported in this paper for allowed and forbidden lines in W V should be useful for plasma diagnostics in future fusion reactors where tungsten will be used as plasmafacing material.

Acknowledgments

EB, PQ and PP are respectively Research Director, Senior Research Associate and Research Associate of the Belgian FRS-FNRS. Financial support from this organization and from ADAS-EU is acknowledged. SEY was financially supported by a grant from the FRS-FNRS (2011/V 6/5/013-IB/JN-1343) and from the Marien Ngouabi University (Congo). He is grateful to Belgian colleagues for their hospitality during his stay at Mons University.

References

- Churilov S S, Kildiyarova R R and Joshi Y N 1996 Can. J. Phys. 74 145
- Cowan R D 1981 *The Theory of Atomic Structure and Spectra* (Berkeley, CA: University of California Press)
- Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425
- Enzonga Yoca S, Quinet P and Biémont É 2012a J. Phys. B: At. Mol. Opt. Phys. 45 035001
- Enzonga Yoca S, Palmeri P, Quinet P, Jumet G and Biémont É 2012b J. Phys. B: At. Mol. Opt. Phys. **45** 035002
- Federici G et al 2001 Nucl. Fusion 41 1967
- Fraga S, Karwowski J and Saxena K M S 1976 Handbook of Atomic Data (Amsterdam: Elsevier)
- Fullerton L W and Rinker G A 1976 *Phys. Rev.* A 13 1283
- Grant I P and McKenzie B J 1980 J. Phys. B: At. Mol. Phys. 13 2671
- Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 *Comput. Phys. Commun.* 21 207
- Gu M F 2003 Astrophys. J. 582 1241
- Kildiyarova R R, Churilov S S, Joshi Y N and Ryabtsev A N 1996 Phys. Scr. 53 454
- Kramida A E and Shirai T 2009 At. Data Nucl. Data Tables 95 305

- Malcheva G, Enzonga Yoca S, Mayo R, Ortiz M, Engström L, Lundberg H, Nilsson H, Biémont É and Blagoev K 2009 *Mon. Not. R. Astron. Soc.* **396** 2289
- McKenzie B J, Grant I P and Norrington P H 1980 Comput. Phys. Commun. 21 233
- Meijer F G 1986 *Physica* **141C** 230
- Mohr P J 1974 Ann. Phys. 88 52
- Mohr P J 1975 Phys. Rev. Lett. 34 1050
- Neu R et al 2005 Nucl. Fusion 45 209
- Nilsson H, Engström L, Lundberg H, Palmeri P, Fivet V, Quinet P and Biémont É 2008 *Eur. Phys. J.* D **49** 13
- Norrington P H 2009 http://www.am.qub.ac.uk/DARC/
- Palmeri P, Quinet P, Fivet V, Biémont É, Nilsson H, Engström L and Lundberg H 2008 Phys. Scr. 78 015304
- Pospieszczyk A 2006 Nuclear Fusion Research (Berlin: Springer)
- Quinet P, Palmeri P and Biémont É 2011 J. Phys. B : At. Mol. Opt. Phys. 44 145005
- Quinet P, Palmeri P, Biémont É, McCurdy M M, Rieger G, Pinnington E H, Wickliffe M E and Lawler J E 1999 Mon. Not. R. Astr. Soc. 307 934
- Quinet P, Vinogradoff V, Palmeri P and Biémont É 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144003
- Safronova U I and Safronova A S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074026
- Skinner C H 2008 Can. J. Phys. 86 285
- Skinner C H 2009 Phys. Scr. T 134 014022
- Uehling E A 1935 Phys. Rev. 48 55