The Airline Container Loading Problem with Pickup and Delivery

V. Lurkin and M. Schyns

QuantOM,
HEC Management School,
University of Liege,
Belgium

26th European Conference on Operational Research
EURO-INFORMS Joint International Meeting
Rome 1-4 July, 2013
Outline

1 Motivation

2 Problem Description

3 Model
 - Main Parameters and Variables
 - Multi-criteria objective function
 - Constraints

4 Case studies

5 Conclusion and outlooks
Outline

1 Motivation

2 Problem Description

3 Model
 - Main Parameters and Variables
 - Multi-criteria objective function
 - Constraints

4 Case studies

5 Conclusion and outlooks
Context of the Research

⇒ Problem Statement:

“How to optimally load a set of containers/pallets (ULDs) into a cargo aircraft that has to serve multiple destinations under some safety, structural, economical and manoeuvrability constraints?”

- Transport of goods by air
- Airlines were among first industries to have used OR methods
- Still numerous challenges
 - Volatility and increasing trend in the oil prices
 - Increasing pressure for greater focus on environmental concerns
 - More attention to spendings
- Load planning has possibilities for costs cutting because it is still a manual task
Outline

1. Motivation

2. Problem Description
 - Main Parameters and Variables
 - Multi-criteria objective function
 - Constraints

3. Case studies

4. Conclusion and outlooks
A cargo aircraft has to deliver goods at two consecutive airports1.

The optimal location for all ULDs into the aircraft in order to minimize:

- The fuel consumption during the entire trip
- The loading time at the intermediate destination

1Generalization could be easily done to more than two destinations
Summary of the model

\textbf{Minimize} \quad \sum_{\forall k \in K} (\text{deviation most aft CG}) \text{ and } \# \text{ ULDs to unload}

\textbf{subject to:} \quad
\begin{align*}
\text{Each ULD is loaded} \\
\text{Each ULD fits in a position} \\
\text{A position accepts only one ULD} \\
\text{Some positions are overlapping: not simultaneously used} \\
\text{Longitudinal stability: The CG is within certified limits} \\
\text{Lateral balance} \\
\text{Maximum weight per position} \\
\text{Combined load limits} \\
\text{Cumulative load limits} \\
\text{Regulations for hazardous goods} \\
\text{Two parts of larger ULDs in adjacent positions} \\
\text{P & D}
\end{align*}

\Rightarrow \text{“Assignment Problem / Combinatorial Problem”} \\
\Rightarrow \text{Integer Linear Problem}
Contribution

Some models already exist in the scientific and professional literature dealing with optimizing cargo load but...

- Those models are limited
- Most of the time, those models are specific
- They do not analyse the Economic and Ecological aspects
- They do not consider pick-up and delivery (multiple destinations)
Some models already exist in the scientific and professional literature dealing with optimizing cargo load but...

- Those models are limited
- Most of the time, those models are specific
- They do not analyse the Economic and Ecological aspects
- They do not consider pick-up and delivery (multiple destinations)

Main references for the basic problem (CG)

Outline

1 Motivation

2 Problem Description

3 Model
 - Main Parameters and Variables
 - Multi-criteria objective function
 - Constraints

4 Case studies

5 Conclusion and outlooks
Summary of the model

Min $\alpha \times \sum_{i \in K} c_i + \beta \times \sum_{j \in P} n_j$

Subject to:

$CG_k - OCG_k - c_k < 0 \ \forall k \in K$
$CG_k - OCG_k + c_k \geq 0 \ \forall k \in K$
$\sum_{i \in (U_l, U_h)} \sum_{j : r_i \leq r_j} \tau_{ij} - \sum_{j : r_i \leq r_j} \tau_{ji} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

$\sum_{i \in (U_l, U_h)} \sum_{j : r_i \leq r_j} \tau_{ij} - \sum_{j : r_i \leq r_j} \tau_{ji} \leq 0 \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

Objective Function:

- $\alpha \times \sum_{i \in K} c_i + \beta \times \sum_{j \in P} n_j$
 - OF: Cost consumption
 - OF: Loading time

- $D \leq \sum_{i \in (U_l, U_h)} \sum_{j : r_i \leq r_j} \tau_{ij} - \sum_{j : r_i \leq r_j} \tau_{ji} \leq D$
 - Longitudinal stability

- $D \leq \sum_{i \in (U_l, U_h)} \sum_{j : r_i \leq r_j} \tau_{ij} - \sum_{j : r_i \leq r_j} \tau_{ji} \leq 0$
 - Lateral stability

- $\sum_{i \in (U_l, U_h)} \tau_{ij} \leq 1 \ \forall i \in P$
 - Allowable positions

- $\sum_{i \in (U_l, U_h)} \tau_{ij} \leq 1 \ \forall i \in P$
 - Full load

- $w_i \times x_{ij} \leq W_i \ \forall i \in (U_l, U_h), \ \forall j \in P$
 - Weight restrictions
- $w_i \times x_{ij} \leq W_i \ \forall i \in (U_l, U_h), \ \forall j \in P$

- $\sum_{i \in (U_l, U_h)} \sum_{j : r_i \leq r_j} \tau_{ij} \leq Q_i \ \forall i \in \mathbb{P}$
 - P & D

- $\sum_{i \in (U_l, U_h)} \sum_{j : r_i \leq r_j} \tau_{ij} \leq Q_i \ \forall i \in \mathbb{P}$
 - Hazardous goods

- $\sum_{i \in (U_l, U_h)} \sum_{j : r_i \leq r_j} \tau_{ij} \leq T_i \ \forall i \in \mathbb{P}$
 - Larger ULDs

- $\sum_{i \in (U_l, U_h)} \sum_{j : r_i \leq r_j} \tau_{ij} \leq T_i \ \forall i \in \mathbb{P}$
 - $x_{ij} = 0 \ \forall i \notin (U_l, U_h), \ \forall j \in P$
 - $x_{ij} = 0 \ \forall i \notin (U_l, U_h), \ \forall j \in P$

- $x_{ij} - x_{ji} \leq s_j \ \forall i \in U_k, \ \forall j \in P$

- $|x_{ij} - x_{ji}| \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

- $x_{ij} \leq n_j \ \forall i \in U_k, \ \forall j \in P$
 - $x_{ij} \leq n_j \ \forall i \in U_k, \ \forall j \in P$

- $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$
 - $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

- $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$
 - $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

- $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$
 - $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

- $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$
 - $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

- $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$
 - $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

- $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$
 - $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

- $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$
 - $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

- $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$
 - $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$

- $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$
 - $x_{ij} \leq |B_l| - |B_r| \ \forall j \in \mathbb{P}, \ \forall i \in U_k$
1 Motivation

2 Problem Description

3 Model
 - Main Parameters and Variables
 - Multi-criteria objective function
 - Constraints

4 Case studies

5 Conclusion and outlooks
Main Parameters and Variables

- **Set of routes** K
- **Set of ULDs** U
 - According to their origin and destination: three subsets of ULDs: U_1, U_2, U_3
- **Set of positions** P
 - There is only one central door situated at the extremity of the aircraft

Binary Variables

$$x_{ijk} = \begin{cases}
1 & \text{if ULD } i \text{ is in position } j \text{ during the route } k \\
0 & \text{otherwise}
\end{cases}$$
Outline

1. Motivation

2. Problem Description

3. Model
 - Main Parameters and Variables
 - Multi-criteria objective function
 - Constraints

4. Case studies

5. Conclusion and outlooks
Objective function: Most Aft CG

In terms of fuel consumption, the optimal location for the CG is the most aft within certified limits.

In mathematical terms, it gives:

$$\text{Min} \sum_{\forall k \in K} \epsilon_k$$

Subject to:

$$\begin{align*}
CG_k - OCG_k - \epsilon_k & \leq 0 \\
CG_k - OCG_k + \epsilon_k & \geq 0
\end{align*} \ \forall k \in K$$

where:

- CG_k is the CG obtained after assignment of ULDs in the aircraft during the route k
- OCG_k is the optimal CG, i.e. most aft CG on the route k
Objective function: minimize $\# \text{ ULDs to Unload}$

The loading time is function of the $\#$ of ULDs to be unloaded. We want to prevent the unnecessary unloads at the intermediate destination.

In mathematical terms, it gives:

$$\text{Min } \sum_{j \in P} n_j$$

Subject to:

$$\sum_{i' \in U_1} \sum_{j' \in B_j} x_{i'j'1} - n_j \times |B_j| - (1 - x_{ij1}) \times |B_j| \leq 0 \quad \forall j \in P, \forall i \in U_3$$

where:

- n_j is a binary variable
- B_j is the set of all position situated behind j relative to the door
In definitive, both objectives have to be considered together:

\[
\text{Min } E(\alpha) \times \sum_{\forall k \in K} r_k + E(\beta) \times \sum_{\forall j \in P} n_j
\]

Subject to:

\[
\sum_{\forall i' \in U_1} \sum_{\forall j' \in B_j} x_{i'j'1} - n_j \times |B_j| - (1 - x_{ij1}) \times |B_j| \leq 0 \quad \forall j \in P, \quad \forall i \in U_3
\]

\[
\begin{align*}
CG_k - OCG_k - \epsilon_k & \leq 0 \\
CG_k - OCG_k + \epsilon_k & \geq 0
\end{align*}
\] \quad \forall k \in K

where:
- α is the additional cost (fuel + emissions) for a deviation of one inch from the most aft CG
- β is the cost associated with the loading time of one ULD (in terms of wages, fees to the airport for the usage of the runway...)
Outline

1. Motivation
2. Problem Description
3. Model
 - Main Parameters and Variables
 - Multi-criteria objective function
 - Constraints
4. Case studies
5. Conclusion and outlooks
Cargo Load Planning

Model

Constraints

Standard Constraints

Stability

Longitudinal stability: CG within certified limits
Lateral balance of the aircraft

Full Load

Each ULD is loaded

Allowable positions

Each ULD fits in a position
A position accepts only one ULD
Overlapping positions: not simultaneously used

Weights restrictions

Maximum weight per position
Combined load limits
Cumulative load limits
Specific Constraints

Routes constraints

\[x_{ij1} = 0 \quad \forall i \notin (U_1 \cup U_3), \forall j \in P \]
\[x_{ij2} = 0 \quad \forall i \notin (U_2 \cup U_3), \forall j \in P \]

Same position for ULDs not unloaded

\[x_{ij1} - x_{ij2} \leq n_j \quad \forall i \in U_3, \forall j \in P \]
\[x_{ij2} - x_{ij1} \leq n_j \quad \forall i \in U_3, \forall j \in P \]

Allowable positions for ULDs loaded at the intermediate destination

\[\sum_{i' \in U_2} \sum_{j' \in B_j} x_{i'j'2} + (x_{ij1} - n_j)|B_j| \leq |B_j| \quad \forall j \in P, \forall i \in U_3 \]
Specific Constraints

Changing the position of an ULD with minimal unloading

\[x_{ij'1} - n'_j + n_j \leq 1 \quad \forall i \in U_3, \forall j \in P, \forall j' \in P \mid j' \text{ is before } j \]

Hazardous goods

\[x_{ij1} + x_{i'j'1} \leq 1 \quad \forall i, i', j, j' \mid d_{jj'} \leq e_{ii'}; \forall i, i' \in (U_1 \cup U_3), \text{ and } \forall j, j' \in P \]
\[x_{ij2} + x_{i'j'2} \leq 1 \quad \forall i, i', j, j' \mid d_{jj'} \leq e_{ii'}; \forall i, i' \in (U_2 \cup U_3), \text{ and } \forall j, j' \in P \]

ULDs of larger dimensions

\[x_{ij1} \leq \sum_{\forall j' \in A_j} x_{i'j'1} \quad \forall i \in (U_1 \cup U_3), \forall i' \in L_i, \forall j \in P \]
\[x_{ij2} \leq \sum_{\forall j' \in A_j} x_{i'j'2} \quad \forall i \in (U_2 \cup U_3), \forall i' \in L_i, \forall j \in P \]
Outline

1. Motivation
2. Problem Description
3. Model
 - Main Parameters and Variables
 - Multi-criteria objective function
 - Constraints
4. Case studies
5. Conclusion and outlooks
The case of a Boeing 747²

Data

- Parameters alpha and beta equal to 1
- 38 ULDs distributed as follows:

<table>
<thead>
<tr>
<th>Origin</th>
<th>Destination</th>
<th>Number of ULDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRA</td>
<td>LGG</td>
<td>28</td>
</tr>
<tr>
<td>FRA</td>
<td>LHR</td>
<td>10</td>
</tr>
<tr>
<td>LGG</td>
<td>LHR</td>
<td>/</td>
</tr>
</tbody>
</table>

- 67 standard positions, plus 10 larger ones

Results

- All constraints satisfied
- Deviations CG’s: 0 and 0.0028
- # ULDs unloaded: 5
- Computation time: 18’21”

²Model implemented in Java using IBM ILOG CPLEX 12 and tested on real data with personal computer (Windows 7, Intel Core i5-2450M, 2.50GHz, 8.00 GB of RAM)
Additional results

- Small instances (15 ULDs) and Larger instances (35 ULDs)
- Same set of data
- Variations of the origin and destination (randomly)

Results (15 tests for each)

<table>
<thead>
<tr>
<th></th>
<th>Small instances</th>
<th>Large instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status of solution</td>
<td>Optimal</td>
<td>Optimal</td>
</tr>
<tr>
<td>Longest computation</td>
<td>17’</td>
<td>nearly 8 hours</td>
</tr>
</tbody>
</table>

General trends
- The computation time ↗ when more ULDs present on several routes
- But it also depends on the number of position accepted by each ULD
Outline

1 Motivation

2 Problem Description

3 Model
 - Main Parameters and Variables
 - Multi-criteria objective function
 - Constraints

4 Case studies

5 Conclusion and outlooks
Conclusion and outlooks

- The goal of this paper was the development of a mixed integer linear programming model for loading optimally a set of unit load devices into a cargo aircraft that visits successively two airports.

- This sequence of destinations had never been considered in the literature before us.

- We can summarize results of our research as follows:

<table>
<thead>
<tr>
<th>Objective</th>
<th>Implies</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min fuel consumption</td>
<td>CG’s close to the aft limit</td>
<td>√</td>
</tr>
<tr>
<td>Min loading time</td>
<td>Minimizing the unloads</td>
<td>√</td>
</tr>
</tbody>
</table>

- Better results in terms of both fuel consumption and loading time.
- Computation time ↑ when the distribution of ULDs becomes more balanced
Conclusion and outlooks

To do list

✓ Mathematical formulation of the model

✓ Implementation of the model

✓ Tests on real instances

□ Consideration of lateral doors

□ Complexity of the model

□ Development of Heuristics?
Contact me

My email address: vlurkin@ulg.ac.be

QuantOM website: http://www.quantom.hec.ulg.ac.be

Thank you for your attention!