

2012 Interbull Meeting May 27 – May 29, Cork, Irland

Implementing a national routine genetic evaluation for milk fat compositions as first step towards genomic predictions

N. Gengler¹, T. Troch¹, S. Vanderick¹, C. Bastin¹ and H. Soyeurt^{1,2}

¹ Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège (GxABT, ULg) – Gembloux, Belgium

² National Fund for Scientific Research (FRS-FNRS) – Brussels, Belgium

Context

Walloon Region of Belgium:

- collecting fatty acid composition since March 2005
- first experimental on 25 farms
- currently nearly all cows under milk recording

Context

Walloon Region of Belgium:

- collecting fatty acid composition since March 2005
- first experimental on 25 farms
- currently nearly all cows under milk recording

Data collection status (April 2010):

864 835 test-days with fatty acid (all-lactation)

Context

Walloon Region of Belgium:

- collecting fatty acid composition since March 2005
- first experimental on 25 farms
- currently nearly all cows under milk recording

Data collection status (April 2010):

864 835 test-days with fatty acid (all-lactation)

INTERBULL Report 2010:

development of a genetic evaluation system

Context

This report:

- Status of the data collection
- Status of the model and needed (co)variances
- Expressing results
 - Nutritional Quality Index (NQI)
- First computations and results
 - Some examples of evaluated sires
- Towards genomic predictions
 - Using MACE for correlated traits
 - A proposal!
- Other traits

Status of Data Collection

- > Reminder:
 - □ fatty acids (FA) predicted from MIR spectral data
 - □ use of latest equation (Soyeurt et al., 2011)

April 2010:

864 835 test-day MIR spectra records (all-lactation)

March 2012:

2 150 404 test-day MIR spectra records (all-lactation)

Status of Data Collection

- > Reminder:
 - □ fatty acids (FA) predicted from MIR spectral data
 - □ use of latest equation (Soyeurt et al., 2011)

April 2010:

864 835 test-day MIR spectra records (all-lactation)

We are adding approximately 55 000 FA records / month

March 6016

2 150 404 test-day MIR spectra records (all-lactation)

Status of Model and (Co)variances

- Previous research done has shown for milk fat composition traits (e.g., Soyeurt et al., 2008):
 - □ genetic variation and
 - medium to high hertitabilities
- Some modelling issues however:
 - □ repeated records
 - □ longitudinal traits
 - □ highly correlated traits
 - □ with traditional traits (milk, fat, protein)
 - □ among different fatty acids and fatty acid groups

Status of Model and (Co)variances

- Previous research done has shown for milk fat composition traits (e.g., Soyeurt et al., 2008):
 - □ genetic variation and
 - □ medium to high hertitabilities
- Some modelling issues however:
 - □ repeated records <
 - More data, but rep. model
 - □ longitudinal traits
 - □ highly correlated traits
 - □ with traditional traits (milk, fat, protein)
 - □ among different fatty acids and fatty acid groups

Status of Model and (Co)variances

- Previous research done has shown for milk fat composition traits (e.g., Soyeurt et al., 2008):
 - genetic variation and
 - medium to high hertitabilities
- Some modelling issues however:
 - □ repeated records

 - □ highly correlated traits
 - □ with traditional traits (milk, fat, protein)
 - □ among different fatty acids and fatty acid groups

Status of Model and (Co)variances

- Previous research done has shown for milk fat composition traits (e.g., Soyeurt et al., 2008):
 - □ genetic variation and
 - □ medium to high hertitabilities
- > Some modelling issues however:
 - □ repeated records
 - □ longitudinal traits
 - □ highly correlated traits
 - □ with traditional traits (milk, fat, protein)

Use of historical test-day data

Status of Model and (Co)variances

- Previous research done has shown for milk fat composition traits (e.g., Soyeurt et al., 2008):
 - □ genetic variation and
 - medium to high hertitabilities
- Some modelling issues however:
 - □ repeated records
 - □ longitudinal traits
 - □ highly correlated traits
 - □ among different fatty acids and fatty acid groups

Large number of relevant traits

Status of Model and (Co)variances

- Selection of traditional traits
 - □ based on INTERBULL traits
 - ☐ milk, fat, and protein yield
- Selection of milk fat composition traits
 - □ based on potential place in breeding goal
 - □ milk pricing
 - □ saturated fatty acid content (SFA) in milk (g/100g)
 - □ potentially health related
 - □ monounsaturated fatty acid content (MUFA) in milk (g/100g)
 - ⇒ ML MT TD RRM

Status of Model and (Co)variances

Heritabilies (diagonal) and used genetic correlations (above) expressed on a lactation base

	Trait					
Trait	MILK	FAT	PROT	SFA	MUFA	
MILK (kg)	0.37	0.91	0.97	-0.28	-0.38	
FAT (kg)		0.43	0.93	0.00	0.01	
PROT (kg)			0.41	-0.22	-0.23	
SFA (%)				0.71	0.40	
MUFA (%)				J	0.56	

	ntus of Model d (Co)variances			ended	
Heritabili (above) e				netic corre	elations
Trait		Trait			
	MILK	FAT	PROT	SFA	MUFA
MILK (kg)	0.37	0.91	0.97	-0.28	-0.38
FAT (kg)		0.43	0.93	0.00	0.01
PROT (kg)			0.41	-0.22	-0.23
SFA (%)				0.71	0.40
					0.56

Expressing Results?

- Should be based on breeding goal!
- > Two potential components could contribute to breeding goal (even if there is no consensus)
 - trends In milk pricing: SFA
 - potentially human health related: MUFA
- To avoid: risk of deleterious effects on other important traits especially milk and fat
- Solution: restricted selection index
 - ☐ Std. relative "a values": -1 SFA and +1 MUFA
 - □ Restricting changes in milk and fat yields to 0!!!
 - □ Computation of "b values"

Expressing Results

- Computation of Nutritional Quality Index (NQI)
- Standardized b values:

□ Milk yield: + 0.478
 □ Fat yield: - 0.425
 □ Protien yield: 0.000
 □ SFA: - 0.934
 □ MUFA: + 0.934

- Some parameters for Nutritional Quality Index (NQI)
 - □ Heritability: 0.54
 - □ Correlation with

MILK FAT PROT SFA MUFA 0.00 0.00 0.05 -0.69 0.38

First Computations and Results

> Data from 1st, 2nd and 3rd lactation

Trait*	N	Mean	SD
MILK (kg)	16 029 574	18.80	8.10
FAT (kg)	16 024 529	0.75	0.34
PROT (kg)	15 992 387	0.62	0.25
PFAT (%)	16 024 529	4.03	0.74
PPROT (%)	15 992 387	3.37	0.41
SFA (%)	1 168 692	2.85	0.57
MUFA (%)	1 169 520	1.15	0.27

^{*} FAT = fat yield, PROT = protein yield, PFAT = fat content, PPROT = protein content, SFA = saturated fatty acid content in milk and MUFA = monounsaturated fatty acid content in milk

First Computations and Results

EBV for SFA and MUFA and NQI genetic base put to cow with FA records born 2005 (1196 sires REL ≥ 0.50 and at least one daugh. with SFA/MUFA record)

	EBV		REL	REL	
Trait	Mean	SD	Mean	SD	
SFA (%)	0.022	0.252	0.77	0.13	
MUFA (%)	-0.008	0.053	0.71	0.14	
NQI (standardized)	-0.10	0.69	0.75	0.13	

Name	Herds	Daughters
ALZI JUROR FORD	229	719
BRAEDALE GOLDWYN	166	593
CAROL PRELUDE MTOTO-ET	109	23:
COMESTAR LEE	240	528
ETAZON LORD LILY	65	108
FABER ET	191	594
JOCKO BESN	439	1658
LADINO PARK TALENT-IMP-ET	330	117
LADYS-MANOR WILDMAN-ET	149	509
LONARD	459	1454
MANAT	330	114
O-BEE MANFRED JUSTICE-ET	26	10:
PICSTON SHOTTLE	49	100
RAMOS	159	519
RICECREST MARSHALL-ET	51	120
ROYLANE JORDAN-ET	218	624

Perspectives > Adding more data: | currently > 500,000 records added every year | If international sires used ⇒ get reliable proofs ⇒ Opportunity foreign Al centers!

Perspectives

- Adding more data:
 - currently > 500,000 records added every year
 - ☐ If international sires used ⇒ get reliable proofs
 - ⇒ Opportunity foreign AI centers!
- Integration of external information for correlated traits:
 - ongoing development to integrate MACE EBV for MILK, FAT and PROT (e.g., Vandenplas and Gengler, 2012)
 - **⇒ Towards Genomic Predictions**

Remark on International Collaboration

- > Phenotypes (the "King" in the World of Genomics):
 - Other countries getting FA records (potentially limited subpopulations)
 - □ Pooling phenotypes for FA makes sense!
 - □ Directly (single evaluation)
 - Indirectly (including external EBV for FA)
 - □ But also for other traits based on MIR:
 - Collaboration and exchange

Remark on International Collaboration

- > Phenotypes (the "King" in the World of Genomics):
 - Other countries getting FA records (potentially limited subpopulations)
 - □ Pooling phenotypes for FA makes sense!
 - □ Directly (single evaluation)
 - □ Indirectly (including external EBV for FA)
 - But also for other traits based on MIR:
 - □ Collaboration and exchange
 - ⇒ Opportunity for partners to join forces

More on International Collaboration

- > Genotypes:
 - Optimum: combining all available phenotypes with genotypes
 - However: more Interaction between owners of both needed

More on International Collaboration ➤ Genotypes: □ Optimum: combining all available phenotypes with genotypes □ However: more Interaction between owners of both needed ⇒ Opportunity for both of them

Towards Genomic Predictions

> Following under hypothesis local development

Towards Genomic Predictions

- > Following under hypothesis local development
- > Single step method:
 - specific situation (ML-MT-TD-RRM)
 well suited to use one step approach
 (Aguilar et al., 2010)
 - integration of external MACE EBV straight forward as for normal BLUP only A ⇒ H
 - therefore information of all animals contributes (e.g. MACE EBV of ungenotyped ancestors)

Towards Genomic Predictions

- Single step method:
 - specific situation (ML-MT-RR-TDM)
 well suited to use one step approach
 (Aguilar et al., 2010)
 - □ integration of external MACE EBV straight forward as for normal BLUP only A ⇒ H
 - therefore information of all animals contribute (e.g. MACE EBV of ungenotyped ancestors)

⇒ Opportunity owners of foreign animals

Towards Genomic **Predictions**

- > Single step method:
 - specific situation (ML-MT-RR-TDM)
 well suited to use one step approach
 (Aguilar et al., 2010)
 - □ integration of external MACE EBV straight forward as for normal BLUP only A ⇒ H
 - therefore information of all animals contribute (e.g. MACE EBV of ungenotyped ancestors)
 - ⇒ Opportunity owners of foreign animals
- Given arrangements (e.g., providing genotypes)
 base for service to provide genomically enhanced NQI

Conclusions

- ➤ Implementation of genetic evaluation system for milk fat composition in the Walloon Region of Belgium: Expected in June 2012
- First step towards genomic prediction for novel traits
- > Not only FA trait, but all you can predict from MIR data
- Example of another novel trait: methane emissions
 - first results indicate R²_{cv} in the direction of 0.80 (Dehareng et al., 2012)
 - □ other results show genetic variation

Conclusions

- ➤ Implementation of genetic evaluation system for milk fat composition in the Walloon Region of Belgium: Expected in June 2012
- > First step towards genomic prediction for novel traits
- > Not only FA trait, but all you can predict from MIR data
- Example of another novel trait: methane emissions
 - ☐ first results indicate R²_{cv} in the direction of 0.80 (Dehareng et al., 2012)
 - □ other results show genetic variation
 - ⇒ Opportunity for collaborations

