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We simulate the implementation of a 3-qubit quantum Fourier transform gate in the hyperfine levels
of ultracold polar alkali dimers in their first two lowest rotational levels. The chosen dimer is 41K87Rb
supposed to be trapped in an optical lattice. The hyperfine levels are split by a static magnetic field.
The pulses operating in the microwave domain are obtained by optimal control theory. We revisit
the problem of phase control in information processing. We compare the efficiency of two optimal
fields. The first one is obtained from a functional based on the average of the transition probabilities
for each computational basis state but constrained by a supplementary transformation to enforce
phase alignment. The second is obtained from a functional constructed on the phase sensitive fidelity
involving the sum of the transition amplitudes without any supplementary constrain. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4812317]

I. INTRODUCTION

Information processing based on quantum mechanics ex-
ploiting superposed and entangled states is a promising way
to speed up operations1, 2 but it is expected that at least a
hundred of qubits will be necessary to overcome the power
of classical computers and no technology has reached this
requirement nowadays. It remains not clear which material,
photons,3 trapped ions,4, 5 quantum dots,6 atoms,7 or polar
molecules8, 9 will be ultimately more efficient.10 Molecules
offering long-lived nuclear spin states have been early investi-
gated with nuclear magnetic resonance technology.11 Molec-
ular rovibrational levels have also been proposed as promis-
ing candidates for encoding qubits in polyatomic or diatomic
molecules.12–40 Ultracold polar molecules which can inter-
act via dipole-dipole interaction are particularly interesting
to create entanglement between neighboring molecules and
to open the way toward qubit networks.41–48 Alkali dimers
also possess a rich spin structure because both nuclei have
a nonzero spin. The spin interactions and the coupling with
the overall rotation lead to hyperfine levels which can be fur-
ther manipulated in magnetic or electric fields.49, 50 The strong
state mixing resulting from the hyperfine interactions provide
many possibilities for quantum logical operations.51, 52 Our
recent simulations by stimulated Raman adiabatic passage
(STIRAP) or multi-target optimal control theory (MTOCT)
have shown that high fidelity intramolecular or intermolecu-
lar quantum gates could be implemented in these hyperfine
states of one or two neighboring molecules.53, 54 However, in
these previous works, we mainly focused on gates involving
population inversion, for instance, in a quantum adder. In this
paper, we consider a quantum Fourier transform (QFT) which
requires realization of numerous phase gates. We simulate the
implementation of a three-qubit gate in the hyperfine states

a)Author to whom correspondence should be addressed. Electronic mail:
michele.desouter-lecomte@u-psud.fr

of the N = 0 and N = 1 rotational manifolds of the 41K87Rb
dimer.

We take this example to revisit and illustrate the rela-
tion between the index chosen to measure the gate accuracy
and that chosen to construct the functional in MTOCT. It
seems intuitive to use the same quantity but it is not always
the case in many previous applications.33, 38, 44, 48, 54, 55 It has
been discussed early that realizing a gate transformation by
an optimal field requires a careful choice of the performance
measure.56, 57 The average transition probability for each com-
putational basis state is not sufficient because the laser pulse
is not able to drive any superposed state as it must do. On the
contrary, the fidelity based on the sum of the transition am-
plitudes is a correct phase-sensitive measure. This fidelity cri-
terion is used in many MTOCT works32, 34, 38, 39, 44–46, 48, 53, 54

but with an optimal field derived from the probability func-
tional by including a supplementary transition to enforce
phase alignment.17, 24 Here, we derive the optimal field us-
ing a functional based on the fidelity and we compare with
the mixed counterintuitive procedure. A similar optimal field
directly based on the fidelity has already been obtained by
Krotov method.56

The outline of the paper is organized as follows: Sec. II
summarizes theory and methods, i.e., the hyperfine Hamilto-
nian, the variational MTOCT, and the quantum Fourier trans-
form. Results of the simulations are given in Sec. III where we
compare the two strategies based on the different functionals
and Sec. IV concludes.

II. THEORY

A. Hyperfine levels

The dipolar molecules are assumed to be trapped in a
one-dimensional optical lattice whose frequency does not
interfere with any internal excitation. We do not use the
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translational motion of the mass centers to realize the gates
(see Ref. 58 for a recent OCT simulation using translational
states of trapped atoms). As the molecules are ultracold, this
translational motion corresponds to the ground state of the
trapped well (a Gaussian function in the harmonic approxi-
mation). The mass centers are supposed to be fixed at their
average position in each well.

We assume that the molecules are in the ground vibra-
tional state of the 1�+ ground electronic state. The internal
Hamiltonian which includes interaction with a static magnetic
field reads

Ĥ0 = Ĥrot + Ĥhf + ĤZ, (1)

Ĥrot = Bv=0N2 is the rotational Hamiltonian. The corre-
sponding rotational constant is taken in Ref. 59. We focus here
on the first rotational states of the ground vibrational state so
that the vibration-rotation separation is plainly justified. The
hyperfine structure in a 1�+ electronic state involves three
angular momenta: the rotational angular momentum N and
the nuclear spins I1 and I2. The hyperfine Hamiltonian is dis-
cussed in Refs. 59 and 60, it reads

Ĥhf =
2∑

k=1

Vk· Qk +
2∑

k=1

ckN · Ik + c3I1 · T · I2 + c4I1 · I2,

(2)
where the first contribution comes from the electric
quadrupole Qk coupling, the second one is the spin-rotation
coupling with the nuclear spin Ik with spin-rotation coupling
constants c1 and c2. The third and fourth terms are the tensor
and scalar interactions between the nuclear spins with spin-
spin coupling constants c3 and c4, respectively. The tensor T
describes the angle dependence of the spin-spin coupling. For
the considered alkali metal dimers, we have neglected the nu-
clear tensor spin-spin interaction because the constant c3 is
here an order of magnitude smaller than c4. The values of the
constants are taken from Refs. 59 and 60. The electric and
magnetic fields are applied in the laboratory Z direction. The
Zeeman Hamiltonian for a magnetic field B is

HZ = −grμN N · B −
2∑

k=1

gkμN Ik · B(1 − σk) (3)

with μN is the nuclear magneton, gr is the rotational g fac-
tor, gk is the nuclear g factor of each nucleus k, and σ k is
the nuclear shielding constant (isotropic part of the shielding
tensor).

The hyperfine states are obtained by diagonalizing the
Hamiltonian matrix in the basis set of uncoupled angu-
lar momentum functions |NmN〉|I1m1〉|I2m2〉.53, 54 For a lin-
early polarized field, the electric dipole transition selec-
tion rules are �mF = 0, �m1 = �m2 = 0. We consider
states with mF = 0 only. The eigenstates are denoted |w〉
= ∑

NmN m1m2
cNmN m1m2,w|NmNm1m2〉 where w labels the

states by increasing energy. When there is no external field ap-
plied, the large number of allowed transitions due to the state
mixing and the degeneracy would make the implementation
and manipulation of the qubit states impractical. However,
the Zeeman splitting reduces the number of allowed transi-

tions. The Zeeman splitting in 41K87Rb is shown in Fig. 2
of Ref. 49.

The time dependent coupling with a microwave field ε(t)
is described at the electric dipolar approximation. For a pulse
polarized along the laboratory Z direction, the total Hamilto-
nian becomes

Ĥ (t) = Ĥ0 − μ̂Zε(t) = Ĥ0 − μ̂z cos(θ )ε(t), (4)

where μ̂Z and μ̂z are the components of the dipole mo-
ment along the Z axis in the laboratory frame and along the
internuclear axis, respectively. Indeed, by using the tenso-
rial notation, one has μq = ∑

p (−1)pD(1)
q,p(θ, φ, χ )μp where

q = 0, ±1 denotes the dipole components in the laboratory
frame and p = 0, ±1 designates the components in the molec-
ular frame. The dipole for 1�+ state being aligned along
the z internuclear axis, the summation over p index reduces
to the p = 0 term, i.e., to the μz component. Knowing that
D

(1)
0,0(θ, φ, χ ) = cos(θ ), one obtains relation (4).

B. Optimal pulse design

Designing a single pulse that drives a quantum gate can
be done by the multi-target optimal control theory.13, 18 The
computational basis is defined by mapping the 2n logical
states of n qubits on 2n physical states |k〉 of the chosen sys-
tem. The gate is represented by a 2n × 2n matrix Og in the
computational basis set

Og|k〉 = |kf 〉. (5)

The output states |kf〉 may be one of the computational ba-
sis state or a superposition of these states, for instance,
in a HADAMARD gate |0f 〉 = (|0〉 + |1〉)/√2 and |1f 〉
= (|0〉 − |1〉)/√2. The goal of the control is to find a univer-
sal pulse steering any basis state or any superposition toward
the corresponding output at time T, i.e., U (T , 0)

∑
k bk|k〉

= ∑
k bk|kf 〉 where U(T, 0) is the evolution operator with

the time dependent Hamiltonian. Dynamics is carried out in a
complete basis set of dimension larger than 2n allowing tran-
sitory population of states orthogonal to the computational
basis set. In this work, the performance of the laser pulse
is measured by different criterions. The first one is the
phase insensitive average transition probability of the 2n

inputs-outputs

P =
∑2n

k=1
|〈kf |ψk(T )〉|2/2n, (6)

where |ψk(T)〉 = U(T, 0)|k〉 is the final state obtained with
an initial condition in a computational basis state |ψk(t = 0)〉
= |k〉 and |kf〉 is the corresponding output of the gate [Eq. (5)].
The second criterion is the normalized fidelity which is phase
sensitive56, 57

F = |T r(O†
gUg(T ))|2/22n =

∣∣∣∣
∑2n

k=1
〈kf |ψk(T )〉

∣∣∣∣
2 /

22n,

(7)
where Ug(T) = PgU(T)Pg and Pg projects on the computa-
tional subspace. In the variational MTOCT, the field maxi-
mizes a functional constructed with a chosen objective un-
der several constraints which limit the laser fluence and
impose that the Schrödinger equation be satisfied at any
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time. Most of the MTOCT simulations have been carried out
with an objective functional built from the average fidelity
P.32, 34, 38, 39, 44–46, 48, 53, 54 A phase constrain can be achieved
by optimizing simultaneously a supplementary transforma-
tion involving a superposed state17, 24

|s〉 = 2−n/2
∑2n

k=1
|k〉 → |sf 〉 = 2−n/2

∑2n

k=1
|kf 〉 eiφ,

(8)
where φ is a single phase taking any value between 0 and 2π .
Then the usual probability functional reads61–63

JP =
∑2n+1

k=1
|〈kf |ψk(T )〉|2 −

∫ T

0
α(t)ε2(t)dt

− 2�e

[∑2n+1

k=1
〈kf |ψk(T )〉

∫ T

0
〈λk(t)| ∂t

+ (i/¯)[H0 − μZε(t)]|ψk(t)〉dt

]
, (9)

where we assume a polarization along a Z direction. The sum-
mation involves the 2n transitions of the gate [Eq. (5)] and
the supplementary constraint |s〉 → |sf〉 [Eq. (8)]. The sec-
ond term in the right member limits the laser energy via the
penalty factor α(t) = α0/s(t) and s(t) = sin 2(π t/T). λk(t) is the
Lagrange multiplier for the Schrödinger equation constraint.
Variation of λk and ψk leads to evolution equations with initial
and final conditions, respectively,64

∂t |ψk(t)〉 = −(i/¯) [H0 − μZε(t)] |ψk(t)〉
|ψk(t = 0)〉 = |k〉, (10)

∂t |λk(t)〉 = −(i/¯) [H0 − μZε(t)] |λk(t)〉
|λk(t = T )〉 = |kf 〉. (11)

The optimum field then takes the form

εP (t) = − 1

α(t)
�m

[∑2n+1

k=1
〈λk(t)|ψk(t)〉 〈λk(t)| μZ|ψk(t)〉

]
.

(12)

In this work, we compare this field with the field generated by
the functional built from the phase sensitive fidelity F without
any supplementary transition

JF =
∣∣∣∣
∑2n

k=1
〈kf |ψk(T )〉

∣∣∣∣
2

−
∫ T

0
α(t)ε2(t)dt

− 2�e

[∑2n

j=1
〈jf |ψj (T )〉

∑2n

k=1

∫ T

0
〈λk(t)| ∂t

+ (i/¯) [H0 − μZε(t)] |ψk(t)〉dt

]
, (13)

where we have introduced a common factor containing the
sum of the amplitudes 〈jf |ψj (T )〉 for every λk(t) term with
the aim at decoupling the final conditions such as in Eq. (11).
Details are given in the Appendix. Variation of λk and ψk

leads to the same evolution equations [Eqs. (10) and (11)]

with the optimal field

εF (t) = − 1

α(t)
�m

[∑2n

j=1
〈λj (t)|ψj (t)〉

×
∑2n

k=1
〈λk(t)| μZ|ψk(t)〉

]
. (14)

A similar result has been obtained by Krotov’s method.57

The MTOCT nonlinear equations are solved by the Rabitz
iterative monotonous convergent algorithm. As suggested in
Ref. 57, at each iteration step i the field is obtained by ε(i)

= ε(i − 1) + �ε(i) where �ε(i) is estimated by Eq. (12) or (14),
respectively.

In the simulations presented below, we compare the two
strategies using εP(t) [Eq. (12)] computed by driving 2n + 1
transitions and εF(t) [Eq. (14)] involving 2n transitions. The
efficiency of the gate pulse is measured each time by the per-
formance index P and F. Further, we check the universality
of the gate fields εP(t) and εF(t) on some arbitrary super-
posed states

∑
k bk|k〉. We analyze the convergence of two

state distances, of the fidelity. The state distances are the trace
distance which is a measure for the distinguishability of two
states2, 65, 66

d1 = 1

2
T r

√
(ρ(T ) − ρt )

† (ρ(T ) − ρt ) (15)

and the Hilbert-Schmidt distance67

d2 =
√

T r (ρ(T ) − ρt )
† (ρ(T ) − ρt ), (16)

where ρ(T) and ρ t are the density matrices of the final state
U (T , 0)

∑
k bk|k〉 and of the target state

∑
k bk|kf 〉, respec-

tively. We also estimate the state fidelity by the relation

f =
√

T r [ρ(T )ρt ]. (17)

Finally, for the converged gate pulse, an average gate fidelity
is estimated.68, 69 This average could be experimentally de-
termined and can be obtained by choosing a set of quantum
states forming an operator basis. A standard set of initial states
can be built by the 4n tensor-product states of the one-qubit
states |0〉, |1〉, (|0〉 + |1〉)/√2, and (|0〉 + i|1〉)/√2.2, 70

C. Quantum Fourier transform

We consider a computational basis set |2n − 1〉, . . . ,
|0〉 of a n-qubit register. Each logical state |j〉 = |jn − 1, . . . ,
j0〉 is defined by the value jk = 0, 1 of each qubit Qn,
. . . , Q1. jn − 1, . . . , j0 gives the binary representation of j.
The quantum Fourier transform modifies a generic n-qubit
state

∑2n−1
j=0 aj |j 〉 into a state

∑2n−1
j=0 āj |j 〉 so that the vec-

tor (ā0, ...ā2n−1) is the discrete Fourier transform of the vec-
tor (a0, . . . , a2n−1). Each component of the output vector is
thus given by āl = 2−n/2 ∑2n−1

j=0 e2πij l/2n

aj . The global unitary
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H   R2 

1 0Q j

2 1Q j

Rn-1 1 2n nQ j

1n nQ j

H 

Rn-1 

R2 

 Rn 

  R2 

H 

H 

FIG. 1. Circuit implementing the quantum Fourier transform with n qubits
Qn. . . Q1. H is the Hadamard gate and Rk is the controlled phase shift of
exp (iφ) with φ = 2π /2k. The control qubit is indicated by a full circle. The
SWAP gates which reverse the order of the qubits at the end of the circuit are
not drawn.

transformation is

QFTn = 2−n/2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

1 ω ω2 ω2n−1

1 ω2 ω4 ω2(2n−1)

...

1 ω2n−1 ω2(2n−1) ω(2n−1)(2n−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(18)
where ω = exp (2iπ /2n). It could be decomposed into a cir-
cuit of elementary gates involving n HADAMARD gates
and n(n−1)/2 controlled phase gates as shown in Fig. 1.
The HADAMARD gate transformed each qubit state in
a superposition as follows: |0〉 → (|0〉 + |1〉)/√2 and |1〉
→ (|0〉 − |1〉)/√2. The phase gate Rk adds a phase exp (iφ)
with φ = 2π /2k to state |1〉 only, i.e., |0〉 → |0〉 and |1〉
→ eiφ|1〉. The controlled-Rk phase gate does this phase shift
in the target qubit only if the control qubit is in state |1〉 so that
|00〉 → |00〉, |01〉 → |01〉, |10〉 → |10〉, and |11〉 → eiφ|11〉.
At the end, n/2 or (n − 1)/2 SWAP operations Qn → Q1,
Qn−1 → Q2. . . (not shown in Fig. 1) are used to re-
order the qubits in the output (Qn, Qn−1. . . Q2, Q1 → Q1,
Q2. . . Qn−1,Qn).

III. RESULTS

The dimer is 41K87Rb (I1 = I2 = 3/2) and the magnetic
field is 500 G. The eight computational states of the three
qubits Q3Q2Q1 are mapped onto eight states belonging to the
manifolds N = 0 and N = 1. The four states |000〉, |001〉,
|010〉, and |011〉 are encoded in states |4〉, |7〉, |10〉, and |13〉
with N = 0. The states |100〉, |101〉, |110〉, and |111〉 are en-
coded in |30〉, |36〉, |41〉, and |47〉 with N = 1. Table I gives
the non-vanishing dipole matrix elements between the states
with N = 0 and N = 1. The dominant uncoupled states in the
eigenvectors are also given.

All the simulations are carried out by integrating the cou-
pled equations by the 4th order Runge Kutta method71 with a
time step of 48.5 ps. The trial field is a sum of 16 sine square
pulses ε0(t) = A0 sin 2(π t/T)cos (ωt) with the carrier frequen-
cies connecting the four selected states in N = 0 to the four
ones in N = 1 (see Table I). The maximum of the envelope A0

is the same for each pulse.
The physical implementation of a QFT by the circuit split

into seven elementary gates H (3)R
(3)
2 R

(3)
3 H (2)R

(2)
2 H (1)SW

should increase the total pulse duration and lead to an
accumulation of physical imprecision and decoherence.
MTOCT can in principle optimize a circuit in one single
step.28, 31, 35, 36, 58 To ensure small gate error below experimen-
tal error correction threshold, the fidelity must reach at least
0.99999. We first choose the pulse duration T and the ampli-
tude A0 of the trial field. For each case and for each func-
tional, we determine the best penalty factor α0 leading to the
fastest convergence. However, the main criterion to select T
and A0 is the shape of the pulse which must be experimen-
tally feasible and robust. So we analyze the Fourier transform
in the frequency domain to disregard conditions for which the
spectrum presents a large background requiring filtration pro-
cedures. A good compromise for the time duration appears
to be 108.5 μs (4.5 × 1012 a.u.). Table II gives the chosen
penalty factor and the number of iterations leading to a fidelity
equal to 0.99999 for the two fields εP(t) and εF(t) with dif-
ferent amplitudes A0. The order of magnitude of the fields is
fixed by A0. At any iteration, the corrections �ε(i) are given by

TABLE I. Non-vanishing dipole matrix elements in a.u. for linear polarization between the N = 0 and the N = 1 manifolds for 41K87Rb (I1 = I2 = 3/2) in a
magnetic field 500 G. The main uncoupled component |NmNm1m2〉 and the corresponding weight c2

NmN m1m2,w of the |w〉 eigenvectors are specified. The eight
computational states chosen to encode the 3-qubit states are in bold.

4 7 10 13∣∣0, 0,−3/2, 3/2
〉 ∣∣0, 0, −1/2, 1/2

〉 ∣∣0, 0, 1/2,−1/2
〉 ∣∣0, 0, 3/2, −3/2

〉
|w〉 Main component Weight 1 1 1 1

19
∣∣1, 0,−3/2, 3/2

〉
0.90 −1.22 × 10−1 5.81 × 10−3 −4.14 × 10−5 −2.24 × 10−5

24
∣∣1, −1,−1/2, 3/2

〉
0.88 2.88 × 10−2 2.47 × 10−2 −6.27 × 10−5 −1.03 × 10−4

30
∣∣1, −1, 1/2, 1/2

〉
0.92 −7.96 × 10−3 −2.25 × 10−3 3.89 × 10−3 6.71 × 10−4

36
∣∣1, 1,−3/2, 1/2

〉
0.88 −2.59 × 10−2 −2.38 × 10−2 −1.32 × 10−3 −2.67 × 10−4

40
∣∣1, 0,−1/2, 1/2

〉
0.92 −5.06 × 10−3 1.23 × 10−1 2.30 × 10−5 6.04 × 10−4

41
∣∣1, −1, 3/2, −1/2

〉
0.86 −2.87 × 10−4 5.24 × 10−3 −1.40 × 10−2 −3.48 × 10−2

47
∣∣1, 1,−1/2, −1/2

〉
0.89 −7.77 × 10−4 9.77 × 10−3 9.43 × 10−3 1.19 × 10−2

50
∣∣1, 0, 1/2, −1/2

〉
0.91 3.97 × 10−5 3.53 × 10−4 −1.23 × 10−1 5.07 × 10−3

53
∣∣1, 0, 3/2, −3/2

〉
0.91 1.21 × 10−7 9.98 × 10−5 −3.43 × 10−3 1.22 × 10−1

61
∣∣1, 1, 1/2, −3/2

〉
0.90 5.57 × 10−5 1.87 × 10−5 3.39 × 10−2 1.30 × 10−2
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TABLE II. Convergence of the fidelity up to 0.99999 obtained by the two
fields εP(t) [Eq. (12)] and εF(t) [Eq. (14)] for different amplitudes A0 of the
trial pulses and the best penalty factor.

εF(t) εP(t)

A0(V cm−1) α0 Iteration α0 Iteration

51.42 108 2140 1.5 × 107 2500
5.14 109 320 2 × 108 740
1.03 5 × 108 550 2 × 108 710

Eq. (12) or (14) which contain a quite different factor multi-
plying the dipole matrix element so that the best convergence
is reached for different penalty factors. It is always smaller for
JP by about one order of magnitude in the present case. For
a given guess field, one observes that, for the optimal penalty
factor, JF always converges the first.

As discussed below, according to the Fourier transform
criterion, we select the trial field amplitude A0 = 5.14 V cm−1

(10−9 a.u.). Figure 2 shows the convergence of the fidelity F
[Eq. (7)] for different α0 obtained with the fields εF(t) (panel
(a)) and εP(t) (panel (b)), respectively, for T = 108.5 μs. The
optimal α0 (red line in Figure 2) is 109 for JF and 2 × 108 for
JP. By using the best α0, εF(t) makes the fidelity converge up
to 0.99999 faster than εP(t). Comparing the convergence for
the same value of α0 would lead to the bad conclusion that JP

converges the first. For instance, for α0 = 2 × 108 both curves
cross after 245 iterations for F = 0.965.

Figure 3 compares the convergence of the performance
measured by the average probability P and by the fidelity F
for the best penalty factor in each strategy (109 for JF and 2
× 108 for JP) in the chosen conditions T = 108.5 μs and A0

= 5.14 V cm−1. Both index are very close with JF but, as ex-
pected, F converges slower than P with JP since this func-
tional is not directly built from F.

Figure 4 shows the optimal fields εF(t) (panel (a)) and
εP(t) (panel (b)) and the square modulus of their Fourier trans-
forms for the iteration number giving a fidelity of 0.99999
in the selected conditions of Figure 3 (T = 108.5 μs and
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FIG. 2. Fidelity F of the 3-qubit QFT driven by the optimal field with a pulse
duration 108.5 μs and an initial amplitude A0 = 5.14 V cm−1 for different
penalty factors α0. Panel (a) JF [Eq. (13)], panel (b) JP [Eq. (9)].
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FIG. 3. Convergence of the fidelity F and the average probability P obtained
with the best penalty factor in the two functionals JF (α0 = 109) or JP (α0
= 2 × 108) for the 3-qubit QFT. T = 108.5 μs and A0 = 5.14 V cm−1.

A0 = 5.14 V cm−1). The optimized fields and even their com-
plicated shapes still have a Fourier transform spectrum very
close to that of the trial pulse. The peaks correspond to the
transition frequencies between the states 4, 7, 10, and 13 be-
longing to the N = 0 manifold to states 30, 36, 41, and 47 of
the N = 1 manifold (see Table I). Both fields are very sim-
ilar as can be also seen in Figure 5 where are displayed the
spectrograms obtained by a Gabor transform72 of the opti-
mal spectra. One only observes a weak variation of intensity
for some peaks. The initial amplitude A0 determines the ini-
tial variation of the field intensity. With the present choice A0

= 5.14 V cm−1, the increase of the total energy
∫ T

0 ε2
F/P (t)dt

is only 0.8% (for εF) and 2.4% (for εP). When the variation of
the total energy is weak, the optimal spectrum remains simple
without unrealistic background. A counter example is given
below.

In Figure 6, we illustrate the universality of the gate
pulses of Figure 4 by driving the QFT gate on an arbitrary
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FIG. 4. Optimal field driving the 3-qubit QFT with a fidelity of 0.99999 in
one step and the square modulus of their Fourier transform. Panel (a): εF(t)
(320 iterations, α0 = 109), panel (b): εP(t) (740 iterations, α0 = 2 × 108. The
16 intense peaks correspond to those of the guess field. T = 108.5 μs and
A0 = 5.14 V cm−1.
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FIG. 5. Spectrograms of the control pulses presented in Figure 4. (Left panel)
εF(t), (right panel) εP(t). The intensity scale, in arbitrary units, is the same
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initial superposed state

|ψ〉 = 1

2
√

2
(|0, 0, 0〉 − |0, 0, 1〉 + |0, 1, 0〉 − |0, 1, 1〉

+ |1, 0, 0〉 − |1, 0, 1〉 + |1, 1, 0〉 − |1, 1, 1〉)
→ |ψf 〉 = |1, 0, 0〉. (19)

The evolution of the distances d1 [Eq. (15)] and d2 [Eq. (16)]
between the evolving state and the target as a function of
the iteration number are drawn in panel (a) and the fidelity
[Eq. (17)] in panel (b). The very small values of the final
distances confirm the quality of the field in each case. The
distances converge more quickly with εF(t) when the optimal
penalty factor is used.

To go beyond this single test on an arbitrary given state,
we compute the average gate fidelity and the worst case (min-
imum value) over the 23 × 23 initial states which are the
tensor- products of a standard 22 basis set for the one-qubit
case: |0〉, |1〉, (|0〉 + |1〉)/√2, and (|0〉 + i|1〉)/√2.2, 70 The
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FIG. 6. Convergence of the trace distance d1 and the Hilbert Schmidt dis-
tance d2 (panel (a)) and of the fidelity (panel (b)) for the 3-qubit QFT acting
on the superposed state |ψ〉 [Eq. (19)] driven by the optimal field obtained
from the functionals JF (α = 109) and JP (α = 2 × 108). T = 108.5 μs and
A0 = 5.14 V cm−1.
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FIG. 7. Square modulus of the Fourier transform of the gate field driving the
3-qubit QFT with a fidelity of 0.99999. Panel (a): εF(t) (550 iterations), panel
(b): εP(t) (707 iterations). T = 108.5 μs and A0 = 1.03 V cm−1. The optimal
α0 are given in Table II.

gate pulse εF(t) lead to an average fidelity of 0.9999974 and
a worst case of 0.99999295 while εP(t) gives 0.9999704 and
0.99998651, respectively.

Finally, we briefly discuss why we discard the low initial
amplitude 1.03 V cm−1 (2 × 10−10 a.u.) even if the conver-
gence is easy (see Table II). Figure 7 shows the correspond-
ing spectra for the optimal α0. For each strategy, the spectrum
is contaminated by a large background of unrealistic frequen-
cies which would require filtration and new iterations with the
filtered field. The initial energy of the trial field is too low and
gives rise to an important increase of the total energy pulse
which is doubled during the first hundred iterations. This il-
lustrates that a fast convergence is not a sufficient criterion
to get a simple spectrum. The choice of the initial energy of
guess field is also important to avoid a rapid variation of the
energy during the optimization.

IV. CONCLUDING REMARKS

Two points are illustrated in this work. First, we simulate
the implementation of gates involving controlled-phase trans-
formations and this completes our previous simulations53, 54

in the hyperfine structure of cold alkali dimers which mainly
involved population inversions. Second, we discuss the phase
alignment in MTOCT.

(i) This example confirms that very high fidelity logical op-
erations can be implemented in the hyperfine structure
the splitting of which being modulated by a magnetic
field. One of the achievements of this work is to opti-
mize the QFT involving a lot of phase gates. The one-
step QFT gate has been optimized with an average gate
fidelity larger than 0.99999 in about 100 μs. A single gate
such as the first Hadamard in Figure 1 requires at least
40 μs with a similar guess field. The pulse frequencies
belong to the microwave domain for which shaping tech-
nologies are available. To get a simple spectrum without
unrealistic background, the trial field must be carefully
chosen in order to avoid a large variation of the total
energy during the first iterations. It is obvious that fur-
ther work remain to be done to manipulate registers of
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several dozens of qubits. However, realizing intramolec-
ular gates is a first step and the dipole-dipole interaction
could be used to drive intramolecular gates.41, 44–46, 54 The
coupling with the translational motion in the trap could
also be an interesting perspective.

(ii) It is well known that two strategies exist to enforce
a good phase alignment with variational OCT. The JF

Kosloff method57 involves the 2n transitions of the uni-
tary transformation only while the strategy proposed by
de Vivie-Riedle18, 19 uses a functional JP built with the
average probability with 2n + 1 transitions. We complete
the previous discussions where JF was compared with JP

without the inclusion of the phase constraint.57 As the
expressions of the corresponding fields are different, it
is not relevant to compare their behavior for the same
penalty factor since the average pulse energy is then dif-
ferent for similar pulse duration and guess field. We have
thus compared the convergence for the best penalty fac-
tor in each strategy and obviously the JF is then more
efficient as it could be expected since it is directly based
on a phase sensitive index.
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APPENDIX: OPTIMAL FIELD FROM THE FIDELITY
FUNCTIONAL

In the variational MTOCT, one first constructs an
objective functional to be maximized under several con-
straints. We want to derive the expression of the optimal
field when the objective is the phase sensitive factor F

= |∑2n

k=1 〈kf |ψk(T )〉|2/22n. We make use of a functional sim-
ilar to that proposed in the early work of Zhu, Botina, and
Rabitz61 in order to maximize a transition probability and
generalized to the multi-target case13

JF =
∣∣∣∣
∑2n

k=1
〈kf |ψk(T )〉

∣∣∣∣
2

−
∫ T

0
α(t)ε2(t)dt

− 2�e

[∑2n

j=1
〈jf |ψj (T )〉

∑2n

k=1

∫ T

0
〈λk(t)| ∂t

+ (i/¯) [H0 − μZε(t)] |ψk(t)〉dt

]
. (A1)

The second term with penalty factor α(t) constraints the laser
energy and the third one imposes the Schrödinger equation to
be verified at all times. The corresponding Lagrange multi-
pliers are λk(t). Here, each term k of the summation over the
N transitions is multiplied by the same sum

∑2n

j=1 〈jf |ψj (T )〉
which is time invariant.61 This trick will lead to final condi-
tions for the propagation of λk(t) which are simply the target
states. One has then to apply the variation of the variables
ψk(t), λk(t), ε(t), and impose δJ = 0. Variation of the λk(t)

gives

δλl
JF = −2�e

∑2n

j=1
〈jf |ψj (T )〉

∫ T

0
〈δλl(t)| ∂t

+ (i/¯) [H0 − μZε(t)] |ψl(t)〉 dt. (A2)

δλl being arbitrary, this means that the function ψ l(t) must
satisfy the time-dependent Schrödinger equation

∂t |ψl(t)〉 = −(i/¯) [H0 − μZε(t)] |ψl(t)〉 with

|ψl(t = 0)〉 = |l〉. (A3)

Next, variation of the ψk(t) leads to

δψl
JF = 2�e

(∑2n

j=1
〈jf |ψj (T )〉〈lf |δψl(T )〉

)

− 2�e

(
〈lf |δψl(T )〉

∑2n

k=1

∫ T

0
〈λk(t)| ∂t

+ (i/¯) [H0 − μZε(t)] |ψk(t)〉dt

)

− 2�e

[∑2n

j=1
〈jf |ψj (T )〉

∫ T

0
〈λl(t)| ∂t

+(i/¯) [H0 − μZε(t)] |δψl(t)〉 dt

]
(A4)

δψ l being arbitrary, it may be chosen time-independent δψ l(t)
= δψ l. Then Eq. (A4) becomes

δψl
JF = 2�e

(∑2n

j=1
〈jf |ψj (T )〉〈lf |δψl〉

)

− 2�e

[∑2n

j=1
〈jf |ψj (T )〉

∫ T

0
〈λl(t)|

× (i/¯) [H0 − μZε(t)] |δψl〉 dt

]

or by using the adjoint operator

δψl
JF = 2�e

(∑2n

j=1
〈jf |ψj (T )〉〈lf |δψl〉

)

− 2�e

[∑2n

j=1
〈jf |ψj (T )〉

×
∫ T

0
〈(−i/¯)[H0 − μZε(t)]λl(t)|δψl〉dt

]
. (A5)

δψl
JF = 0 if λl(t) satisfies the Schrödinger equation with final

condition corresponding to the target

∂t |λl(t)〉 = −(i/¯) [H0 − μZε(t)] |λl(t)〉 with

|λl(t = T )〉 = ∣∣lf 〉
. (A6)

Finally, variation of the field gives

δεJF = −2
∫ T

0
α(t)ε(t)δε(t)dt

− 2�e(−i/¯)

[∑2n

j=1
〈jf |ψj (T )〉

×
∑2n

k=1

∫ T

0
〈λk(t)| μZδε(t)|ψk(t)〉dt

]
. (A7)
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To obtain δεJF, the optimal field is

εF (t) = − 1

α(t)
�m

(∑2n

j=1
〈jf |ψj (T )〉

∑2n

k=1
〈λk(t)| μZ|ψk(t)〉

)
.

By Eqs. (A3) and (A6), we use the time invariance of the over-
lap integrals 〈jf |ψj (T )〉 and insert the time-dependent func-
tions ψ j(t) and λj(t) so that the field takes the form

εF (t) = − 1

α(t)
�m

(∑2n

j=1
〈λj (t)|ψj (t)〉

∑2n

k=1
〈λk(t)| μZ|ψk(t)〉

)
.

(A8)

Note that one could use another functional by generalizing the
one proposed in Ref. 62 in the single target case

J
(2)
F =

∣∣∣∣
∑2n

k=1
〈kf |ψk(T )〉

∣∣∣∣
2

−
∫ T

0
α(t)ε2(t)dt − 2�e

[∑2n

k=1

∫ T

0
〈λk(t)| ∂

∂t

+ i [H0 − μZε(t)] |ψk(t)〉dt

]
. (A9)

Then variation of λl still leads to the same Eq. (A3) with
an initial condition |ψ l(t = 0)〉 = |l〉 but variation of ψ l

gives an equation with a different final condition |λl(T )〉
= ∑2n

j 〈jf |ψj (T )〉|lf 〉 which is the target with a phase fac-
tor. The optimal field then takes the form

ε
(2)
F (t) = − 1

α(t)
�m

[∑2n

k=1
〈λk(t)| μZ|ψk(t)〉

]
. (A10)

A similar result has also been obtained by optimizing the real
part of

∑2n

k=1 〈kf |ψk(T )〉.37, 56, 73
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