Computational & Multiscale Mechanics of Materials

Content

• Introduction

- Multi-scale modelling: Why?
- Multi-scale modelling: How?
- Mean-Field-Homogenization with non-local damage

Conclusions

Multi-scale modelling: Why?

Limitations of one-scale models

- Physics at the micro-scale is too complex to be modelled by a simple material law at the macro-scale
 - Engineered materials
 - Multi-physics/scale problems
 -
 - See next slides
- Lack of information of the micro-scale state during macro-scale deformations
 - Required to predict failure
 -
- Effect of the micro-structure on the macrostructure response
 - Grain-size effect in metals
 - ...
- Solution: multi-scale models

Université de Liège

Multi-scale modelling: Why?

- Examples of multi-scale problems
 - Different physics at the different scales
 - Stiction (adhesion of MEMS)

CM₃

• Examples of multi-scale problems (2)

- Continuum solid mechanics at the different scales
- Non-linear response of $[-45_2/45_2]_S$ composites

• Principle

- 2 problems are solved concurrently
 - The macro-scale problem
 - The micro-scale problem (Representative Volume Element)
- Scale transitions coupling the two scales
 - Downscaling: transfer of macro-scale quantities (e.g. strain) to the micro-scale to determine the equilibrium state of the Boundary Value Problem
 - Upscaling: constitutive law (e.g. stress) for the macro-scale problem is determined from the micro-scale problem resolution

Université Ug

- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought

- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought

- Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions

- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
 - Transition
 - Downscaling: $\overline{\epsilon}$ is used to define the BCs
 - Upscaling: $\overline{\sigma}$ is known from the reaction forces
 - Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions

- Computational technique: FE²
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
 - Transition
 - Downscaling: $\overline{\epsilon}$ is used to define the BCs
 - Upscaling: $\overline{\sigma}$ is known from the reaction forces
 - Micro-scale
 - Usual 3D finite elements
 - Periodic boundary conditions
 - Advantages
 - Accuracy
 - Generality
 - Drawback
 - Computational time

Ghosh S et al. 95, Kouznetsova et al. 2002, Geers et al. 2010, ...

- Mean-Field Homogenization
 - Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought

Mean-Field Homogenization

- Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought

- Micro-scale
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models

Mean-Field Homogenization

- Macro-scale _
 - FE model •
 - At one integration point $\overline{\varepsilon}$ is know, $\overline{\sigma}$ is sought
- Transition _
 - Downscaling: $\overline{\epsilon}$ is used as input of the MFH model •
 - Upscaling: $\overline{\sigma}$ is the output of the MFH model •
- Micro-scale _
 - Semi-analytical model •
 - Predict composite meso-scale response ٠
 - From components material models ٠

Mean-Field Homogenization

- Macro-scale
 - FE model
 - At one integration point $\overline{\epsilon}$ is know, $\overline{\sigma}$ is sought
- Transition
 - Downscaling: $\overline{\epsilon}$ is used as input of the MFH model
 - Upscaling: $\overline{\sigma}$ is the output of the MFH model
- Micro-scale
 - Semi-analytical model
 - Predict composite meso-scale response
 - From components material models
- Advantages
 - Computationally efficient
 - Easy to integrate in a FE code (material model)
- Drawbacks
 - Difficult to formulate in an accurate way
 - Geometry complexity
 - Material behaviours complexity

Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, ...

Université de Liège

- Semi analytical Mean-Field Homogenization - Based on the averaging of the fields $\langle a \rangle = \frac{1}{V} \int_{V} a(X) dV$ - Meso-response • From the volume ratios $(v_0 + v_1 = 1)$ $\begin{cases} \overline{\sigma} = \langle \sigma \rangle = v_0 \langle \sigma \rangle_{\omega_0} + v_1 \langle \sigma \rangle_{\omega_1} = v_0 \sigma_0 + v_1 \sigma_1 \\ \overline{\varepsilon} = \langle \varepsilon \rangle = v_0 \langle \varepsilon \rangle_{\omega_0} + v_1 \langle \varepsilon \rangle_{\omega_1} = v_0 \varepsilon_0 + v_1 \varepsilon_1 \end{cases}$
 - One more equation required

$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{\mathrm{0}}$$

Difficulty: find the adequate relations

$$\boldsymbol{\sigma}_{\mathrm{I}} = f(\boldsymbol{\varepsilon}_{\mathrm{I}})$$
$$\boldsymbol{\sigma}_{0} = f(\boldsymbol{\varepsilon}_{0})$$
$$\boldsymbol{B}^{\varepsilon} ?$$
$$\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} : \boldsymbol{\varepsilon}_{0}$$

- Single inclusion problem from Eshelby tensor S
 - $\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{H}^{\varepsilon}(\boldsymbol{I}, \overline{\boldsymbol{C}}_{0}, \overline{\boldsymbol{C}}_{\mathrm{I}}) : \boldsymbol{\varepsilon}^{\infty}$ with $\boldsymbol{H}^{\varepsilon} = [\boldsymbol{I} + \boldsymbol{S} : \overline{\boldsymbol{C}}_{0}^{-1} : (\overline{\boldsymbol{C}}_{1} \overline{\boldsymbol{C}}_{0})]^{-1}$
 - Results from a phase transformation analysis
- Multiple inclusions problem
 - $\boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} (\mathrm{I}, \overline{\boldsymbol{C}}_{0}, \overline{\boldsymbol{C}}_{\mathrm{I}}) : \boldsymbol{\varepsilon}_{0}$
 - Mori-Tanaka assumption $\boldsymbol{\varepsilon}^{\infty} = \boldsymbol{\varepsilon}_{0} \quad \Longrightarrow \quad \boldsymbol{B}^{\varepsilon} = \boldsymbol{H}^{\varepsilon}$

Computational & Multiscale Mechanics of Materials

Non-local damage-enhanced mean-field-homogenization

L. Wu (ULg), L. Noels (ULg), L. Adam (e-Xstream), I. Doghri (UCL)

SIMUCOMP The research has been funded by the Walloon Region under the agreement no 1017232 (CT-EUC 2010-10-12) in the context of the ERA-NET +, Matera + framework.

- Finite element solutions for strain softening problems suffer from:
 - The loss the uniqueness and strain localization
 - Mesh dependence

The numerical results change with the size of mesh and direction of mesh

The numerical results change without convergence

- Implicit non-local approach [Peerlings et al 96, Geers et al 97, ...]
 - A state variable is replaced by a non-local value reflecting the interaction between neighboring material points

$$\widetilde{a}(\mathbf{x}) = \frac{1}{V_{\rm C}} \int_{V_{\rm C}} a(\mathbf{y}) w(\mathbf{y}; \mathbf{x}) \mathrm{d}V$$

Use Green functions as weight w(y; x)

$$\implies \widetilde{a} - c \nabla^2 \widetilde{a} = a \implies$$
 New degrees of freedom

• Material models

- Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} \boldsymbol{R}(p) \leq 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$

• Material models

CM₃

- Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$
- Local damage model
 - Apparent-effective stress tensors $\boldsymbol{\sigma} = (1 D)\hat{\boldsymbol{\sigma}}$
 - Plastic flow in the effective stress space
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta p)$

- Material models
 - Elasto-plastic material
 - Stress tensor $\boldsymbol{\sigma} = \boldsymbol{C}^{\text{el}} : (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\text{pl}})$
 - Yield surface $f(\boldsymbol{\sigma}, p) = \boldsymbol{\sigma}^{eq} \boldsymbol{\sigma}^{Y} R(p) \le 0$
 - Plastic flow $\Delta \varepsilon^{\rm pl} = \Delta p N$ & $N = \frac{\partial f}{\partial \sigma}$
 - Linearization $\delta \sigma = C^{\text{alg}} : \delta \varepsilon$
 - Local damage model
 - Apparent-effective stress tensors $\boldsymbol{\sigma} = (1 D)\hat{\boldsymbol{\sigma}}$
 - · Plastic flow in the effective stress space
 - Damage evolution $\Delta D = F_D(\boldsymbol{\varepsilon}, \Delta p)$
 - Non-Local damage model
 - Damage evolution $\Delta D = F_D(\varepsilon, \Delta \widetilde{p})$
 - Anisotropic governing equation $\widetilde{p} \nabla \cdot (c_g \cdot \nabla \widetilde{p}) = p$
 - Linearization

Université Ug

Incremental-tangent model with damage in the matrix

$$\delta \boldsymbol{\sigma}_{0} = \left[(1 - D) \overline{\boldsymbol{C}}^{\text{alg}} - \hat{\boldsymbol{\sigma}}_{0} \otimes \frac{\partial F_{D}}{\partial \boldsymbol{\varepsilon}_{0}} \right] : \delta \boldsymbol{\varepsilon}_{0} - \hat{\boldsymbol{\sigma}}_{0} \frac{\partial F_{D}}{\partial \widetilde{\boldsymbol{p}}} \delta \widetilde{\boldsymbol{p}}$$

Composite

$$\delta \overline{\boldsymbol{\sigma}} = \boldsymbol{\nu}_{\mathrm{I}} \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} : \delta \boldsymbol{\varepsilon}_{\mathrm{I}} + \boldsymbol{\nu}_{0} (1 - D) \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}} : \delta \boldsymbol{\varepsilon}_{0} - \boldsymbol{\nu}_{0} \hat{\boldsymbol{\sigma}}_{0} \otimes \frac{\partial \overline{F}_{D}}{\partial \boldsymbol{\varepsilon}_{0}} : \delta \boldsymbol{\varepsilon}_{0} - \boldsymbol{\nu}_{0} \hat{\boldsymbol{\sigma}}_{0} \frac{\partial \overline{F}_{D}}{\partial \widetilde{p}} \delta \widetilde{p}$$

Mori-Tanaka on one loading interval: $\Delta \boldsymbol{\varepsilon}_{I} = \boldsymbol{B}^{\varepsilon} (\mathbf{I}, (1-D)\overline{\boldsymbol{C}}_{0}^{\text{alg}}, \overline{\boldsymbol{C}}_{1}^{\text{alg}}): \Delta \boldsymbol{\varepsilon}_{0}$

- Finite-element implementation
 - Strong form $\begin{cases}
 \nabla \cdot \overline{\sigma}^{T} + f = 0 & \text{for the homogenized composite material} \\
 \widetilde{p} - \nabla \cdot (c_{g} \cdot \nabla \widetilde{p}) = p & \text{for the matrix phase}
 \end{cases}$
 - Boundary conditions

 $\begin{cases} \boldsymbol{\sigma} \cdot \boldsymbol{n} = \boldsymbol{T} \\ \boldsymbol{n} \cdot \left(\boldsymbol{c}_{g} \cdot \nabla \widetilde{p} \right) = 0 \end{cases}$

Finite-element discretization

$$\begin{cases} \widetilde{p} = N_{\widetilde{p}}^{a} \widetilde{p}^{a} \\ u = N_{u}^{a} u^{a} \end{cases}$$
$$\longrightarrow \begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{u\widetilde{p}} \\ \mathbf{K}_{\widetilde{p}u} & \mathbf{K}_{u\widetilde{p}} \end{bmatrix} \begin{bmatrix} d\mathbf{u} \\ d\widetilde{p} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{ext} - \mathbf{F}_{int} \\ \mathbf{F}_{p} - \mathbf{F}_{\widetilde{p}} \end{bmatrix}$$

Université 🛛 🦉

• DNS vs. FE/MFH

- Fictitious composite
 - 30%-UD fibres
 - Elasto-plastic matrix with damage

Université de Liège

• Mesh-size effect

Laminate: calibration

- Carbon-fibres reinforced epoxy
 - 60%-UD fibres

- Laminate plate with hole (2)
 - Carbon-fibres reinforced epoxy
 - 60%-UD fibres
 - Elasto-plastic matrix with damage
 - [-45₂/45₂]_S staking sequence

50%-UD fibres

•

- Limitation of the method
 - Fictitious composite
 - 30%-UD fibres

Less accurate during softening for high fibres-volume-ratios

- Limitation of the method (2)
 - Fictitious composite
 - 50%-UD fibres
 - Analyse phases behaviours
 - Due to the incremental formalism, stress in fibres cannot decreases during loading

Université de Liège

Problem ۲

- We want the fibres to get unloaded during _ the matrix damaging process
 - For the incremental-tangent approach

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}} = \boldsymbol{B}^{\varepsilon} \Big(\mathrm{I}, (1-D) \overline{\boldsymbol{C}}_{0}^{\mathrm{alg}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{alg}} \Big) : \Delta \boldsymbol{\varepsilon}_{0}$$

- To unload the fibres ($\boldsymbol{\varepsilon}_{I} < 0$)with such approach would require $\overline{C}_{I}^{alg} < 0$
- · We cannot use the incremental tangent MFH
- We need to define the LCC from another _ stress state

Université Ug

• Idea

- New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components

• Idea

- New incremental-secant approach
 - Perform a virtual elastic unloading from previous solution
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components
 - Apply MFH from unloaded state
 - New strain increments (>0)

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}/0}^{\mathrm{r}} = \Delta \boldsymbol{\varepsilon}_{\mathrm{I}/0} + \Delta \boldsymbol{\varepsilon}_{\mathrm{I}/0}^{\mathrm{unload}}$$

Use of secant operators

$$\Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} = \boldsymbol{B}^{\varepsilon} \left(\mathrm{I}, (1-D) \overline{\boldsymbol{C}}_{0}^{\mathrm{Sr}}, \overline{\boldsymbol{C}}_{\mathrm{I}}^{\mathrm{Sr}} \right) : \Delta \boldsymbol{\varepsilon}_{0}^{\mathrm{r}}$$

Possibility of have unloading

$$\left\{ \begin{array}{l} \Delta \boldsymbol{\varepsilon}_{\mathrm{I}}^{\mathrm{r}} > 0 \\ \Delta \boldsymbol{\varepsilon}_{\mathrm{I}} < 0 \end{array} \right.$$

Université Ug

CM3

CM3

2013 - Effective Properties of Materials: Perspectives from Mathematics and Engineering Science - 35

Université de Liège

- Verification of the method
 - Spherical inclusions
 - 17 % volume fraction
 - Elastic
 - Elastic-perfectly-plastic matrix
 - Non-radial loading

Université Ug

- New results for damage
 - Fictitious composite
 - 50%-UD fibres
 - Analyse phases behaviours

Université de Liège

Conclusions

- Multi-scale methods
 - Allows considering
 - Micro-structure geometry
 - Non-linear behaviours of the micro-constituents
 - Rely on different techniques
 - Computational
 - MFH
 - ...
 - Accuracy depends
 - On the model
 - On the micro-structure complexity
 -
- Non-local damage-enhanced MFH
 - Good description of the meso-scale response
 - Can be used to study coupons problems

