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Multi-scale modelling: Why? 

• Limitations of one-scale models 

– Physics at the micro-scale is too complex to 

be modelled by a simple material law at the 

macro-scale 

• Engineered materials 

• Multi-physics/scale problems 

• …. 

• See next slides 

– Lack of information of the micro-scale state 

during macro-scale deformations 

• Required to predict failure 

• ….. 

– Effect of the micro-structure on the macro-

structure response 

• Grain-size effect in metals 

• … 

• Solution: multi-scale models 
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Multi-scale modelling: Why? 

• Examples of multi-scale problems 

– Different physics at the different scales 

– Stiction (adhesion of MEMS) 

 

 

 

Stiction failure in a MEMS sensor 
 ( Jeremy A.Walraven Sandia National 

Laboratories. Albuquerque, NM USA)   
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Multi-scale modelling: Why? 

• Examples of multi-scale problems (2) 

– Continuum solid mechanics at the different scales 

– Non-linear response of [-452/452]S composites 
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Multi-scale modelling: How? 

• Principle 

– 2 problems are solved concurrently 

• The macro-scale problem 

• The micro-scale problem (Representative Volume Element)  

– Scale transitions coupling the two scales 

• Downscaling: transfer of macro-scale quantities (e.g. strain) to the micro-scale to determine 

the equilibrium state of the Boundary Value Problem  

• Upscaling: constitutive law (e.g. stress) for the macro-scale problem is determined from the 

micro-scale problem resolution  

 

 

 

 

Assumptions: 

Lmacro>>LRVE>>Lmicro 

BVP 

Macroscale 

Material 

response 

Extraction of a RVE 
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• Computational technique: FE2 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

Multi-scale modelling: How? 

ε ?σ



CM3 2013 -   Effective Properties of Materials: Perspectives from Mathematics and Engineering Science   -    8 

• Computational technique: FE2 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

 

 

 

 

 

– Micro-scale 

• Usual 3D finite elements 

• Periodic boundary conditions 

Multi-scale modelling: How? 

?σε
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• Computational technique: FE2 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

– Transition 

• Downscaling: e is used to define the BCs 

• Upscaling: s is known from the reaction forces 

 

 

– Micro-scale 

• Usual 3D finite elements 

• Periodic boundary conditions 

Multi-scale modelling: How? 
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• Computational technique: FE2 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

– Transition 

• Downscaling: e is used to define the BCs 

• Upscaling: s is known from the reaction forces 

 

 

– Micro-scale 

• Usual 3D finite elements 

• Periodic boundary conditions 

 

– Advantages 

• Accuracy 

• Generality 

– Drawback 

• Computational time 

Multi-scale modelling: How? 

ε σ
ε

σ





Ghosh S et al. 95, Kouznetsova et al. 2002, Geers et al. 2010, …  
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• Mean-Field Homogenization 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

Multi-scale modelling: How? 

ε ?σ
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• Mean-Field Homogenization 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

 

 

 

 

– Micro-scale 

• Semi-analytical model 

• Predict composite meso-scale response  

• From components material models 

 

 

Multi-scale modelling: How? 

wI 

w0 
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• Mean-Field Homogenization 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

– Transition 

• Downscaling: e is used as input of the MFH model 

• Upscaling: s is the output of the MFH model 

 

– Micro-scale 

• Semi-analytical model 

• Predict composite meso-scale response  

• From components material models 

 

 

Multi-scale modelling: How? 

wI 

w0 

ε ?σ
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• Mean-Field Homogenization 

– Macro-scale 

• FE model 

• At one integration point e is know, s is sought 

 

 

– Transition 

• Downscaling: e is used as input of the MFH model 

• Upscaling: s is the output of the MFH model 

 

– Micro-scale 

• Semi-analytical model 

• Predict composite meso-scale response  

• From components material models 

– Advantages 

• Computationally efficient 

• Easy to integrate in a FE code (material model) 

– Drawbacks 

• Difficult to formulate in an accurate way  

– Geometry complexity 

– Material behaviours complexity 

Multi-scale modelling: How? 

wI 

w0 

ε ?σ

ε σ
ε

σ





Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 

95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, … 
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• Semi analytical Mean-Field Homogenization 

– Based on the averaging of the fields  

 

 

– Meso-response 

• From the volume ratios (                    ) 

 

 

 

 

 

• One more equation required 

 

– Difficulty: find the adequate relations 

 

 

 

 

 

Multi-scale modelling: How? 
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• Mean-Field Homogenization for linear materials 

– System of equations 

• From the volume ratios (                    ) 

 

 

 

 

• Assume linear behaviours 

 

 

 

• Relation between average strains 

– Single inclusion problem from Eshelby tensor 

•     with 

• Results from a phase transformation analysis 

– Multiple inclusions problem 

•   

• Mori-Tanaka assumption 

Multi-scale modelling: How? 
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Non-local damage mean-field-homogenization 

• Finite element solutions for strain softening problems suffer from:  

– The loss the uniqueness and strain localization 

– Mesh dependence  

 

 

 

 

 

 

 

 

• Implicit non-local approach [Peerlings et al 96, Geers et al 97, …] 

– A state variable is replaced by a non-local value reflecting the  interaction between 

neighboring material points  

 

 

– Use Green functions as weight w(y; x)   

     New degrees of freedom 

 

The numerical results change with the size of 

mesh and direction of mesh 
Homogenous unique solution 

  

Lose of uniqueness 

Strain localized 

The numerical results change without 

convergence 
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Non-local damage mean-field-homogenization 

• Material models 

– Elasto-plastic material 

• Stress tensor  

• Yield surface 

• Plastic flow   & 

• Linearization 
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Non-local damage mean-field-homogenization 

• Material models 

– Elasto-plastic material 

• Stress tensor  

• Yield surface 

• Plastic flow   & 

• Linearization 

– Local damage model 

• Apparent-effective stress tensors 

• Plastic flow in the effective stress space 

• Damage evolution 
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Non-local damage mean-field-homogenization 

• Material models 

– Elasto-plastic material 

• Stress tensor  

• Yield surface 

• Plastic flow   & 

• Linearization 

– Local damage model 

• Apparent-effective stress tensors 

• Plastic flow in the effective stress space 

• Damage evolution 

– Non-Local damage model 

• Damage evolution 

• Anisotropic governing equation 

• Linearization 
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• Incremental-tangent model with damage in the matrix 

– From the volume ratios (                    ) 

 

 

 

– Non-linear phases behaviours 

• Elasto-plastic inclusions 

 

 

• Non-local damaged matrix 

 

 

 

• Composite 

 

 

 

 

Non-local damage mean-field-homogenization 
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• Finite-element implementation 

– Strong form 

    for the homogenized composite material 

 

    for the matrix phase 

 

– Boundary conditions 

 

 

 

 

– Finite-element discretization 

 

 

Non-local damage mean-field-homogenization 
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• DNS vs. FE/MFH  

– Fictitious composite 

• 30%-UD fibres 

• Elasto-plastic matrix with damage 

   

Non-local damage mean-field-homogenization 
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• Mesh-size effect 

– Fictitious composite 

• 30%-UD fibres 

• Elasto-plastic matrix with damage 

– Notched ply 

   

Non-local damage mean-field-homogenization 
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• Laminate: calibration 

– Carbon-fibres reinforced epoxy 

• 60%-UD fibres 

• Elasto-plastic matrix with damage 

– [-452/452]S staking sequence 

   

Non-local damage mean-field-homogenization 
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• Laminate plate with hole 

– Carbon-fibres reinforced epoxy 

• 60%-UD fibres 

• Elasto-plastic matrix with damage 

– [-452/452]S staking sequence 

   

Non-local damage mean-field-homogenization 
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• Laminate plate with hole (2) 

– Carbon-fibres reinforced epoxy 

• 60%-UD fibres 

• Elasto-plastic matrix with damage 

– [-452/452]S staking sequence 

   

Non-local damage mean-field-homogenization 
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• Limitation of the method  

– Fictitious composite 

• 30%-UD fibres 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Less accurate during softening for high fibres-volume-ratios 

 

   

Non-local damage mean-field-homogenization 
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• 50%-UD fibres 
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• Limitation of the method (2) 

– Fictitious composite 

• 50%-UD fibres 

• Analyse phases behaviours 

– Due to the incremental formalism, stress in fibres cannot decreases during loading 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Non-local damage mean-field-homogenization 
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• Problem 

– We want the fibres to get unloaded during 

the matrix damaging process 

• For the incremental-tangent approach  

 

 

• To unload the fibres (             )with such 

approach would require  

• We cannot use the incremental tangent MFH 

– We need to define the LCC from another 

stress state 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Non-local damage mean-field-homogenization 
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• Idea 

– New incremental-secant approach 

• Perform a virtual elastic unloading from 

previous solution 

– Composite material unloaded to reach 

the stress-free state 

– Residual stress in components  

 

Non-local damage mean-field-homogenization 
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• Idea 

– New incremental-secant approach 

• Perform a virtual elastic unloading from 

previous solution 

– Composite material unloaded to reach 

the stress-free state 

– Residual stress in components  

 

• Apply MFH from unloaded state 

– New strain increments (>0) 

 

 

– Use of secant operators 

 

 

– Possibility of have unloading 

  

Non-local damage mean-field-homogenization 
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• Zero-incremental-secant method 

– Continuous fibres 

• 55 % volume fraction 

• Elastic 

– Elasto-plastic matrix 

– For inclusions with high hardening (elastic) 

• Model is too stiff 

Non-local damage mean-field-homogenization 
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• Zero-incremental-secant method 

– Continuous fibres 

• 55 % volume fraction 

• Elastic 

– Elasto-plastic matrix 

– Secant model in the matrix 

• Modified if stiffer inclusions (negative residual stress) 

Non-local damage mean-field-homogenization 
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• Verification of the method 

– Spherical inclusions 

• 17 % volume fraction 

• Elastic 

– Elastic-perfectly-plastic matrix 

– Non-radial loading 

Non-local damage mean-field-homogenization 
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• New results for damage 

– Fictitious composite 

• 50%-UD fibres 

• Analyse phases behaviours 
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Non-local damage mean-field-homogenization 
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• Multi-scale methods 

– Allows considering 

• Micro-structure geometry 

• Non-linear behaviours of the micro-constituents 

– Rely on different techniques 

• Computational 

• MFH 

• … 

– Accuracy depends  

• On the model 

• On the micro-structure complexity 

• … 

 

• Non-local damage-enhanced MFH  

– Good description of the meso-scale response 

– Can be used to study coupons problems 

Conclusions 




