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Abstract
Mouldboard shape identification is needed to compare and analyse the performance of different plough bottoms. This paper presents a method for describing an existing mouldboard mathematically. The technique used is based on a Bezier form of three dimensional parametric cubics, and it focuses on an algorithm to improve the efficiency of approximation of a theoretical surface and the actual one. The method is well suited to describing mouldboard designs.
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1. Introduction
The mouldboard plough has a complex surface and its design has resulted mainly from a 'trial and error' procedure rather than from a theoretical approach. Indeed, some means of identifying a mouldboard shape is needed in order to compare and analyse the performance of different plough bottoms, as well as for manufacturing purposes.
The studies involved in mouldboard identification can be divided conveniently into two types. In the first one, the mouldboard shape is identified by empirical methods. From measurements of coordinates for horizontal contours at 25.4 mm vertical intervals, it is possible to obtain a plane view of the mouldboard (Reed, 1941). The efficiency of this method is improved by an optical technique (Soehne, 1959) in which a narrow strip of light is projected onto the white-painted plough surface and the reflected light trace is recorded by means of a camera located at right angles to the plane of the light beam. The results can be correlated to field performance and especially to speed effects.
The second type of study involves mathematical expressions describing mouldboard shapes. Many plough bottoms have surfaces that can be fitted by equations representing hyperbolic paraboloids (White, 1918). Nichols and Kummer (1932) found that the entire surfaces of certain ploughs could be covered by arcs of circles moved along and rotated about the line of travel of the share wing tip or about a line directly above the wing tip. More recently, a mouldboard plough surface was described by using a three dimensional computer graphics technique based on parametric cubic equations (Richey et al., 1989). The draught force was predicted in conjunction with a simple soil-tool mechanics model.
The objectives of this paper are as follows.
(1) To express the mouldboard shape mathematically, to allow analysis of the forces acting upon a plough bottom and optimisation of the mouldboard design with regard to soil tillage objectives in future studies.
(2) To use the derived mathematical expressions to create a three dimensional graphical computer model. The spatial visualisation of such a complex shape is very useful for comparing different mouldboard models quickly. The precision of the model will be evaluated in comparison with a classical empirical method.
2. Modelling the mouldboard surface by means of Bezier surfaces
The mouldboard surface is a complex three dimensional surface, limited by spatial curves. Such curves and surfaces cannot be described by simple analytical functions, but curves can be defined in a piecewise manner and surfaces in patches, as indicated by Foley and VanDam (1982). The continuity and smoothness across the joints between the pieces and patches is ensured by conditions related to tangents, normals, curvatures and so on. In relation to this objective, parametric equations are a good tool since they greatly facilitate differentiation. Polynomials of high order can describe complex curves, but they require a large number of coefficients and may introduce unwanted oscillations in the curve. As a result of this, cubics are a good compromise in most applications where design is involved. Amongst these cubic equations, Bezier's form is interesting in that it makes the physical meaning of the coefficients apparent. Therefore, the mouldboard edges and shape will be modelled using Bezier's cubic curves and surfaces, respectively.
3. Three dimensional Bezier curve
The cubic Bezier curve (Fig. 1 ) is defined by four points: P0, P1, P2, P3. It passes through the end points P0 and P3 and is tangent to P0P1 and P2P3. The segments P0P1, P1P2 and P2P3 form the characteristic polygon of the curve, and the points P1 and P2 are called the control points.
Fig. 1. The Bezier curve.
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Fig. 2. The parametric equation.
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This curve is represented conveniently by using a vectorial representation as a function of parameter u (Fig. 2), as follows:
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where u is a parameter with values limited to 0≤ u ≤1, [image: image4.png]


(u) is a position vector of any point of the curve,[image: image5.png]Fof1s Pa, 73



 is a position vector of points P0P1P2P3.
The curvature of the curve is given by:
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with
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At this stage an important characteristic of the Bezier curve should be pointed out. If both end points and the direction of their tangent are given, the curvature may vary with the position of the control points (Fig. 3). This property will be used in the approximating procedure, as described below.
Fig. 3. Influence of the position of the control points on the curvature.
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3.1. Approximating the theoretical curve and the mouldboard edge
The explanation will start with a two dimensional curve lying in the xy plane, and will be extended to a three dimensional one.
3.1.1. Two dimensional curve
The principle of approximating implies the measurement of the coordinates of seven points on the mouldboard edge curve with reference to the fixed coordinate system. These points may be described as the end points of the edge P0 and P3, two pairs of supplementary points located near each end point, P01P02 and P31P32 and a point Pc near the middle of the curve. To clarify the explanation, this last point Pc will be called the 'experimental control point' (Fig. 4).
Fig. 4. Experimental points.
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The principle of matching experimental and theoretical curves is shown in Fig. 5. As a first step, the approximation of two algebraic polynomials of second degree (C1 and C2) is accomplished by means of interpolation with each set of the three experimental end points P0P01P02 and P3P31P32. The next step consists of evaluating the direction of the tangents to these functions ( T1 and T2 ). Points P1 and P2 of the Bezier curve have then to be chosen so that the curvature of the theoretical curve is as close as possible to the experimental one. This condition implies also that the theoretical curve should pass through the experimental control point Pc. This problem is solved by considering that, if the positions of P1 and P2 are independent, there is an infinite number of solutions and an infinite number of pairs of points P1 and P2 such that the Bezier curve passes through Pc. Supposing that the curvature were quite regular, the assumption is made that the points P1 and P2 are equidistant from P0 and P3. An iterative method is then used starting with P1=P0 and P2=P3, and assuming that P1 and P2 move simultaneously towards each along the tangents. Their x-coordinate is thus modified step by step, the corresponding y-coordinate is computed and the Bezier curve is evaluated. The computation is stopped when the difference between the y-coordinate of Pc and that of the corresponding theoretical point is less than 0.01 mm.
Fig. 5. Matching experimental and theoretical curves.
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3.1.2. Three dimensional curves
With a three dimensional curve, like the edges of the mouldboard, the approximating procedure must also be done in the z direction. The z-coordinate of the control points P1 and P2 has to be modified so that the computed curve passes through Pc which here is defined in three dimensional space. This procedure involves varying the slope of tangents T1 and T2. Considering again that the mouldboard curvature is very smooth, the assumption is made that these slopes may vary similarly for both control points. An iterative procedure is used consisting of step by step slope variation, computing the z-coordinates of the control points and evaluating the Bezier curve. As noted before, the computations are stopped when the difference between the coordinates of Pc and those of the corresponding theoretical point is less than 0.01 mm.
4. Bezier surfaces
The Bezier curve can now be expanded to a bicubic surface by specifying the path traced by each vertex of the characteristic polygon (Fig. 6 ). By analogy with the Bezier curves, this surface may be expressed by a vectorial representation as a function of parameters u and v.
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where u and v are parameters with values limited to 0≤ u≤1 and 0≤u≤1, [image: image12.png]


(u,v) are position vectors of any point on the curve, and [image: image13.png]1
oy



 are position vectors of control points.
It can be seen from Fig. 6 that only the corner points P00P03P30 and P33 lie on the surface. The peripheral vertices constitute the characteristic polygons of the curves forming the edges of the path, and the four interior vertices influence the cross derivatives at the four points.
Fig. 6. Bezier surface.
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4.1. Approximating the theoretical surface and the mouldboard surface
The approximation of the theoretical surface to the actual mouldboard surface is accomplished in two steps. The surface edge curves are modelled according to the method presented above. The computation of the entire surface requires knowledge of four additional experimental control points located on the interior of the surface P11, P12, P21, P22. The problem consists then of approximating the surface with an iterative method so that it passes through these four points. From a numerical point of view, this problem is very difficult to solve and does not always converge to the desired solution. A more satisfactory method is presented which requires Eq. (5) to be differentiated twice at the corner points. This gives:
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The assumption is then made that these derivatives may be considered as null. This seems realistic since the mouldboard is very smooth and has a regular curvature. The vector system becomes
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where the unknowns [image: image17.png]F11,72157225F12



 can be easily found.
This means that the surface computation requires 24 experimental points, namely the four corners and the 4 × 5 points used for the computation of the edge curves. No experimental points located on the interior of the surface are needed (Fig. 7). This is an important advantage of the method, since the approximation requires only points located on the surface edges, with easily measurable experimental coordinates.
Once the positions of the control points are known, the position of any surface point can be evaluated from Eq. (5) and an easy representation of the existing mouldboard surface can be obtained (Fig. 8). Modification of the design in relation to performance studies can thus be done quickly.
Fig. 7. Experimental points on the mouldboard surface.
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Fig. 8. Design of the mouldboard surface using Bezier surfaces.
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5. Measurement of the coordinates of the mouldboard points
The reference mouldboard surface to be modelled was obtained with a pantograph consisting of six kinematic links EG, FH, GJ, HI, GH, JI (Fig. 9). The two points E and F of this device are fixed to the plane P ensuring that link IJ and points K and M move in a vertical plane. The plough bottom is located so that its landside is parallel to plane P. By moving point K along the mouldboard, a vertical contour is described and plotted on a piece of paper fixed to the plane P by means of a pencil located in M. Plane P can move to different parallel positions and thus a family of regularly spaced vertical contours can be obtained to characterise the mouldboard shape. The distance between each contour was chosen to be 1 cm.
Fig. 9. The pantograph.
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The precision of the measured coordinates depends on the pantograph design and especially on the clearance in the joints. Special care was taken in its construction in order to minimise these clearances, and the accuracy of each measurement is estimated to be 0.5 mm.
6. Results
Measured data relative to a given mouldboard are compared with the results of the mathematical model proposed in order to evaluate its accuracy.
The coordinates of four sets of five points located on the surface edges I, II, III and IV were measured, the central points of these sets being the control points (Fig. 7). The coordinates of the three corners P00, P03, P30, also measured, while those of the fourth 'artificial' corner P33 were computed by searching the intersection between the two algebraic polynomial of second degree (CA and CB) passing through PA, PA1,PA2 and PB, PB1,PB2 respectively.
The evaluation of the model accuracy was carried out in two steps. In the first, the accuracy of the limiting edges was controlled. Curve IV is lying in the plane xz and was mathematically described by introducing z-coordinates into the model which computed x values. Curves I, II and III are three dimensional and their x and z coordinates were computed by the model from the y values. The measured values of x coordinate (curve IV), and of x and z coordinates (curves I, II, III) are compared with the computed ones. In all cases they differ by less than 1 mm.
In the second stage the accuracy of the points located on the mouldboard surface was estimated. The model computes the x-coordinates of the mouldboard from the y and z values (Table 1). In all cases the distance between the computed points and the experimental ones was smaller than 2 mm. This appears acceptable and could if necessary certainly be improved by using a more efficient experimental design.
Table 1 Comparison between the computed and measured coordinates of some mouldboard points
	Measured coordinates
	
	
	Computed coordinate X
(mm)

	X
(mm)
	Y
(mm)
	Z
(mm)
	

	71.0
	00.0
	90.0
	72.7

	157.0
	00.0
	265.0
	155.2

	116.0
	50.0
	90.0
	114.1

	201.5
	50.0
	285.0 
	202.7

	290.0
	210.0
	90.0
	292.0

	366.5
	210.0
	355.0
	367.9

	389.5
	300.0
	90.0
	391.1

	444.0
	300.0
	355.0
	445.6

	469.5
	320.0
	355.0
	468.2


7. Conclusion
This paper presents mathematical expressions based on Bezier's form of cubic surfaces to describe an existing mouldboard. Thanks to a convenient numerical algorithm, the use of control points is restricted to points located on the mouldboard edges. The plough bottom is represented three dimensionally by computer graphics. Given its high degree of accuracy, this technique will be a good tool for analysing alternative mouldboard shapes in relation to plough performance.
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