University of Liège Aerospace & Mechanical Engineering

Fracture studies of polycrystalline silicon based micro-electro-mechanical systems (MEMS)

Nanomechanics and nanotribology for reliability design of micro- and nanosystems - international exploratory workshop

24th October 2012

University of Liège G. Becker, Shantanu S. Mulay, L. Noels

Université Catholique de Louvain Renaud Vayrette, Jean-Pierre Raskin, Thomas Pardoen

Outline

Introduction

- Numerical fracture framework for polycrystalline silicon
 - Discontinuous Galerkin (DG) method
 - Hybrid DG/Extrinsic cohesive law (ECL)
 - Orthotropic plane-stress Hooke's law for core of grains
 - Intra-granular fracture
 - Thickness effect

Future work

- Characterize inter-granular strength
- Compare with experiments
- Apply to robust design

Introduction

Purpose

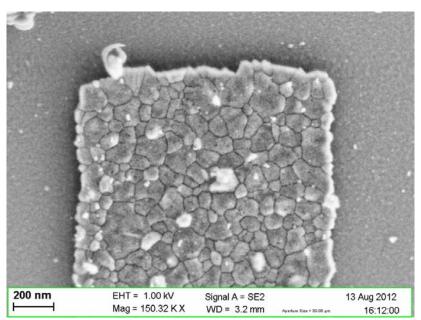
 To develop a numerical method to predict MEMS fracture

Difficulties

- Grain sizes are no longer negligible compared to the structure size
- Silicon is anisotropic
- Inter/intra granular fractures
- Dimensions are not perfectly controlled
- Two MEMS will have
 - Different grains orientations/sizes
 - Different dimensions/surface profiles

The numerical method should thus be probabilistic

 But impossible to perform many direct numerical simulations with grain size resolutions



Introduction

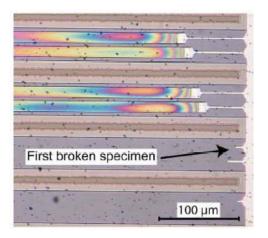
 Objective is to develop a robust design procedure of MEMS based on numerical stochastic 3-scale approaches

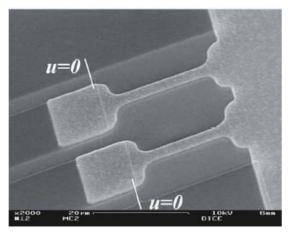
Grain-scale Meso-scale MEMS scale Mean value of strength Extraction of Stochastic fracture FE Probability response simulations FE size Variance of strength Macrostrength FE size

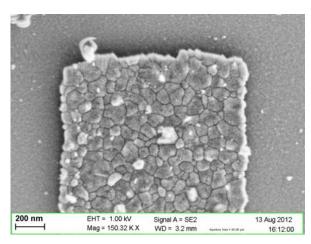
Introduction

Methodology

- Develop a numerical fracture framework for polycrystalline structures (ULg)
- Validate tool with on-ship testing (UcL)







[Gravier et al., JMEMS 2009]

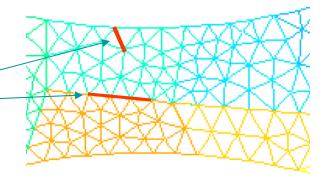
 Exploit numerical fracture framework in the 3-scale stochastic method (future work)

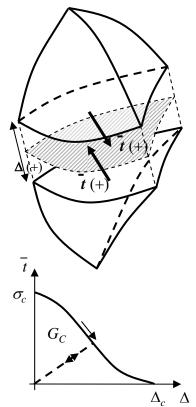
Fracture challenges

- Fracture can be
 - Inter-granular
 - Intra-granular
- Grains are anisotropic
- Initially there is no crack

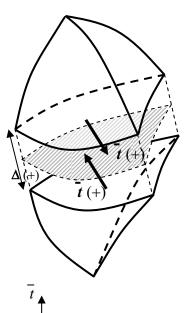
- Numerical approach

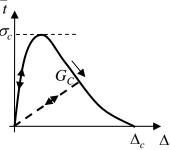
- Cohesive elements inserted between two bulk elements
- They integrate the cohesive Traction Separation Law
- Characterized by
 - Strength σ_c &
 - Critical energy release rate G_C
- Can be tailored for
 - Intra/inter granular failure
 - Different orientations

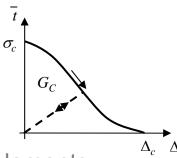




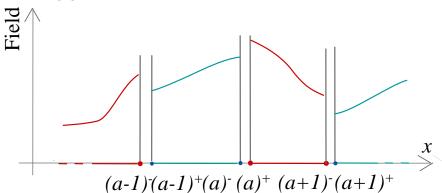
- Problems with cohesive elements
 - Intrinsic Cohesive Law (ICL)
 - Cohesive elements inserted from the beginning
 - Drawbacks:
 - Efficient if a priori knowledge of the crack path
 - Mesh dependency [Xu & Needelman, 1994]
 - Initial slope modifies the effective elastic modulus
 - This slope should tend to infinity [Klein et al. 2001]:
 - » Alteration of a wave propagation
 - » Critical time step is reduced
 - Extrinsic Cohesive Law (ECL)
 - Cohesive elements inserted on the fly when failure criterion is verified [Ortiz & Pandolfi 1999]
 - Drawback
 - Complex implementation in 3D (parallelization)
- Solution
 - Use discontinuous Galerkin methods embedding interface elements







- Discontinuous Galerkin (DG) methods
 - Finite-element discretization
 - Same discontinuous polynomial approximations for the
 - **Test** functions φ_h and
 - Trial functions $\delta \varphi$

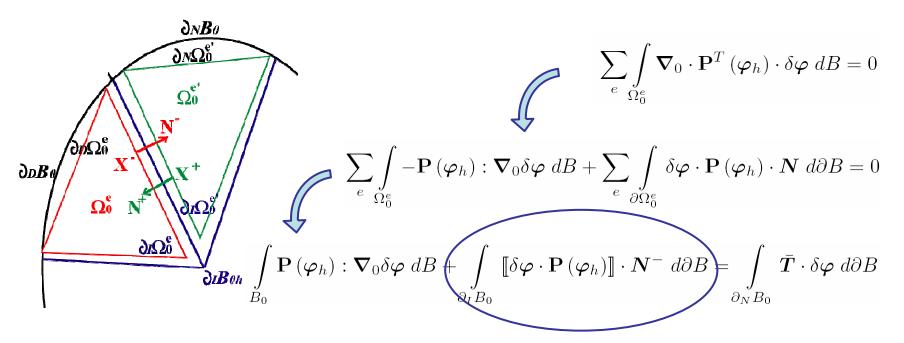


- Definition of operators on the interface trace:
 - **Jump** operator: $\llbracket \bullet \rrbracket = \bullet^+ \bullet^-$
 - Mean operator: $\langle \bullet \rangle = \frac{\bullet^+ + \bullet^-}{2}$
- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - Has the optimal convergence rate

- Discontinuous Galerkin (DG) methods (2)
 - Formulation in terms of first Piola-Kirchhoff stress tensor P

$$abla_0 \cdot \mathbf{P}^T = 0 \text{ in } \Omega \quad \& \quad \left\{ egin{array}{l} \mathbf{P} \cdot \mathbf{N} = \bar{\mathbf{T}} \text{ on } \partial_N \Omega \\ \boldsymbol{\varphi}_h = \bar{\boldsymbol{\varphi}}_h \text{ on } \partial_D B \end{array} \right.$$

Weak formulation obtained by integration by parts on each element Ω^e



New interface terms

- Discontinuous Galerkin (DG) methods (3)
 - Interface terms rewritten as the sum of 3 terms
 - Introduction of the numerical flux h

$$\int_{\partial_I B_0} \left[\!\!\left[\delta \boldsymbol{\varphi} \cdot \mathbf{P} \left(\boldsymbol{\varphi}_h \right) \right]\!\!\right] \cdot \boldsymbol{N}^- \, d\partial B \to \int_{\partial_I B_0} \left[\!\!\left[\delta \boldsymbol{\varphi} \right]\!\!\right] \cdot \boldsymbol{h} \left(\mathbf{P}^+, \, \mathbf{P}^-, \, \boldsymbol{N}^- \right) \, d\partial B$$

- Has to be consistent: $\left\{egin{array}{l} oldsymbol{h}\left(\mathbf{P}^{+},\,\mathbf{P}^{-},\,oldsymbol{N}^{-}
 ight) = -oldsymbol{h}\left(\mathbf{P}^{-},\,\mathbf{P}^{+},\,oldsymbol{N}^{+}
 ight) \\ oldsymbol{h}\left(\mathbf{P}_{\mathrm{exact}},\,\mathbf{P}_{\mathrm{exact}},\,oldsymbol{N}^{-}
 ight) = \mathbf{P}_{\mathrm{exact}}\cdotoldsymbol{N}^{-} \end{array}
 ight.$
- One possible choice: $m{h}\left(\mathbf{P}^{+},\,\mathbf{P}^{-},\,m{N}^{-}
 ight)=\langle\mathbf{P}
 angle\cdotm{N}^{-}$
- Weak enforcement of the compatibility

$$\int\limits_{\partial_I B_0} \llbracket \boldsymbol{\varphi}_h \rrbracket \cdot \left\langle \frac{\partial \mathbf{P}}{\partial \mathbf{F}} : \boldsymbol{\nabla}_0 \delta \boldsymbol{\varphi} \right\rangle \cdot \boldsymbol{N}^- \ d\partial B$$

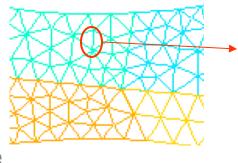
- Stabilization controlled by parameter β , for all mesh sizes h^s

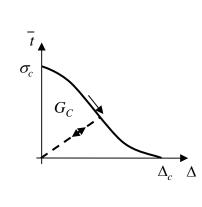
$$\int\limits_{\partial IB_0} \llbracket oldsymbol{arphi}_h
rbracket \otimes oldsymbol{N}^- : \left\langle rac{eta}{h^s} rac{\partial \mathbf{P}}{\partial \mathbf{F}}
ight
angle : \llbracket \delta oldsymbol{arphi}
ight
bracket \otimes oldsymbol{N}^- \ d\partial B :$$

Can also be explicitly derived from a variational form [Noels & Radovitzky, IJNME 2006 & JAM 2006]

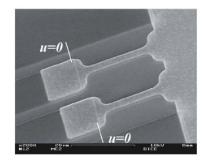
- Hybrid DG/ECL
 - Interface terms exist at the beginning

DG method ensures consistency/stability
 [Seagraves, Jerusalem, Radovitzky, Noels, CMAME 2012]





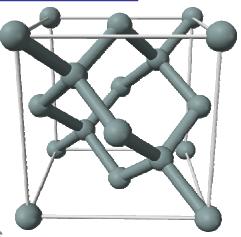
- Onset of fracture
 - When interface traction reaches σ_c
 - The cohesive law substitutes for the DG terms
- Advantages
 - Consistent
 - Easy to implement
 - Highly parallelizable
- In this work 2D plane-stress structures are studied



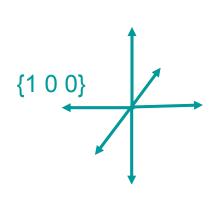
Silicon crystal

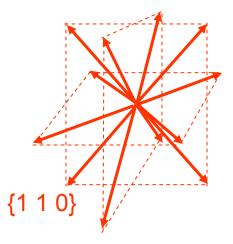
- Diamond-cubic crystal
- Has symmetry-equivalent surfaces
- Orthotropic material (at least two orthogonal planes of symmetry)
- Different fracture strengths along crystal lattice planes
 - 6 {1 0 0}-directions,

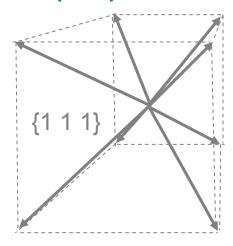
12 {1 1 0}-directions,



8 {1 1 1}-directions





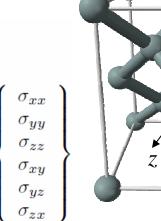


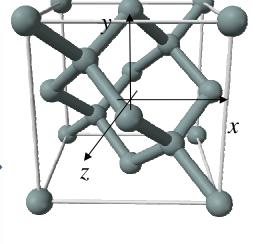
$$\sigma_{100} = 1.53 \text{ GPa}, \sigma_{110} = 1.21 \text{ GPa}, \sigma_{111} = 0.868 \text{ GPa}$$

Bulk law

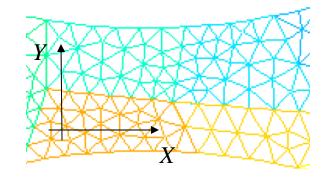
- In the referential (x, y, z) of the crystal
 - 9 constants (actually 3 ≠)

$$\left\{
\begin{array}{l}
\epsilon_{xx} \\
\epsilon_{yy} \\
\epsilon_{zz} \\
\epsilon_{xy} \\
\epsilon_{zx}
\end{array} \right\} =
\begin{bmatrix}
\frac{1}{E_x} & \frac{-\nu_{yx}}{E_y} & \frac{-\nu_{zx}}{E_z} & 0 & 0 & 0 \\
\frac{-\nu_{xy}}{E_x} & \frac{1}{E_y} & \frac{-\nu_{zy}}{E_z} & 0 & 0 & 0 \\
\frac{-\nu_{xz}}{E_x} & \frac{-\nu_{yz}}{E_y} & \frac{1}{E_z} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2G_{xy}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2G_{yz}} & 0
\end{bmatrix}$$



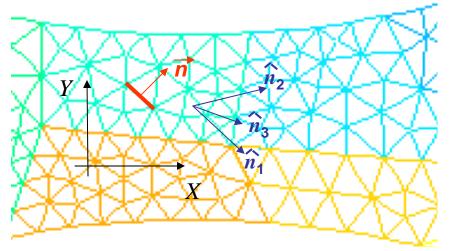


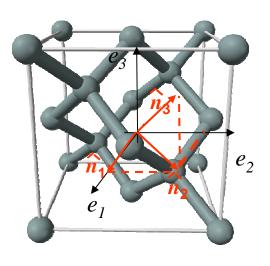
- Is rotated in the referential axes (X, Y, Z)
 - Different angles for different grains
 - Plane stress state $\sigma_{ZZ} = 0$



Intra-granular fracture

- Different fracture strengths along crystal lattice planes
 - 6 {1 0 0}-directions \hat{n}_1 , 12 {1 1 0}-directions \hat{n}_2 , 8 {1 1 1}-directions \hat{n}_3
- Mesh-interfaces are not along a fracture direction

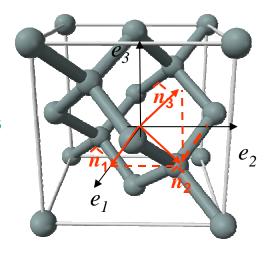




- Assumption: FE mesh > silicon crystal cell size (5.43 Å)
 - Compute effective fracture strength on any required plane
- But: \hat{n}_1 , \hat{n}_2 & \hat{n}_3 do not form an orthonormal basis
 - Consider the dual basis \hat{n}^1 , \hat{n}^2 & \hat{n}^3

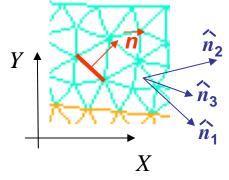
- Intra-granular fracture (2)
 - Surface normals of (1 0 0), (1 1 0), (1 1 1) known
 - \hat{n}_1 , \hat{n}_2 & \hat{n}_3 do not form an orthonormal basis
 - Consider the dual basis \hat{n}^1 , \hat{n}^2 & \hat{n}^3

$$\begin{vmatrix}
\hat{n}_1 = \hat{e}_1 \\
\hat{n}_2 = (1/\sqrt{2})(\hat{e}_1 + \hat{e}_2) \\
\hat{n}_3 = (1/\sqrt{3})(\hat{e}_1 + \hat{e}_2 + \hat{e}_3)
\end{vmatrix} \Rightarrow \begin{aligned}
\hat{n}^1 &= \hat{e}_1 - \hat{e}_2 \\
\hat{n}^2 &= \sqrt{2}(\hat{e}_2 - \hat{e}_3) \\
\hat{n}^3 &= \sqrt{3} \, \hat{e}_3
\end{aligned}$$



Extract component of surface normal in the dual basis

$$\begin{cases} n^{100} = \vec{n} \cdot \hat{n}^1 \\ n^{110} = \vec{n} \cdot \hat{n}^2 \\ n^{111} = \vec{n} \cdot \hat{n}^3 \end{cases}$$



Interpolate strength from strength along {1 0 0}, {1 1 0} and {1 1 1}

$$\vec{\sigma}_{eff} = \left[\sigma_{100} \ n^{100} + \frac{\sigma_{110} \ n^{110}}{\sqrt{2}} + \frac{\sigma_{111} \ n^{111}}{\sqrt{3}}\right] \hat{e}_1 + \left[\frac{\sigma_{110} \ n^{110}}{\sqrt{2}} + \frac{\sigma_{111} \ n^{111}}{\sqrt{3}}\right] \hat{e}_2 + \left[\frac{\sigma_{111} \ n^{111}}{\sqrt{3}}\right] \hat{e}_3$$

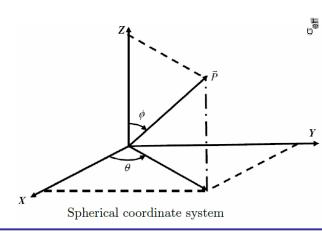
Intra-granular fracture (3)

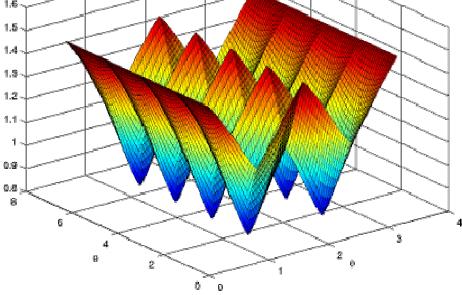
- At the end of the day
 - $\sigma_{100} = 1.53 \text{ GPa}, \sigma_{110} = 1.21 \text{ GPa}, \sigma_{111} = 0.868 \text{ GPa}$

•
$$\|\vec{\sigma}_{eff}\| = \sqrt{\left(\sigma_{100} n^{100} + \frac{\sigma_{110} n^{110}}{\sqrt{2}} + \frac{\sigma_{111} n^{111}}{\sqrt{3}}\right)^2 + \left(\frac{\sigma_{110} n^{110}}{\sqrt{2}} + \frac{\sigma_{111} n^{111}}{\sqrt{3}}\right)^2 + \left(\frac{\sigma_{111} n^{111}}{\sqrt{3}}\right)^2}$$

• Applicable when surface normal is in-between the solid angle formed by \hat{n}_1 , \hat{n}_2 & \hat{n}_3

• 48 solid angles are identified in $\theta \in [0, 360]$ and $\phi \in [0, 180]$

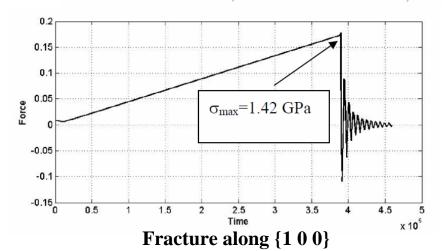


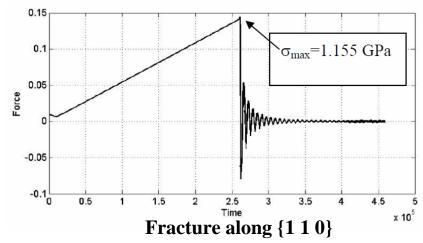


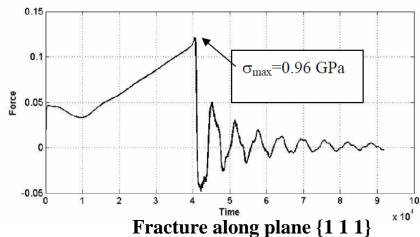
Preliminary tests:

All the grains along the same direction

$$-\sigma_{100} = 1.53 \text{ GPa}, \sigma_{110} = 1.21 \text{ GPa}, \sigma_{111} = 0.868 \text{ GPa}$$



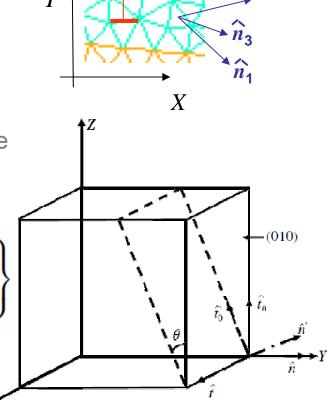




Thickness effect

- 2D-plane-stress model
- Reality is 3D
 - Anisotropy
 - Weakest plane is not always the section
- Find weakest plane passing through the interface edge
 - Iterate on θ

$$\left\{ \begin{array}{c} \hat{n}' \\ \hat{t}'_0 \\ \hat{t}' \end{array} \right\} = \left[\begin{array}{ccc} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{array} \right] \left\{ \begin{array}{c} \hat{n} \\ \hat{t}_0 \\ \hat{t} \end{array} \right\}$$



 \hat{n}_2

Rotation of interface element along thickness of MEMS

- Thickness effect (2)
 - Find weakest plane passing through the interface edge (2)
 - Iterate on θ
 - Compute new edge referential

$$\left\{ \begin{array}{c} \hat{n}^{'} \\ \hat{t}^{'}_{0} \\ \hat{t}^{'} \end{array} \right\} = \left[\begin{array}{ccc} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{array} \right] \left\{ \begin{array}{c} \hat{n} \\ \hat{t}_{0} \\ \hat{t} \end{array} \right\}$$

Compute normal and tangential stresses

in the new referential

Rotation of interface element along thickness of MEMS

$$\begin{cases} S_{\text{nor}} = (\sigma \, \hat{n}) \cdot \hat{n}' \\ \tau = (\sigma \, \hat{n}) \cdot \hat{t}' \\ \tau_0 = (\sigma \, \hat{n}) \cdot \hat{t}'_0 \end{cases} \implies \tau_{\text{resultant}} = \sqrt{(\tau)^2 + (\tau_0)^2}$$

- Compare these values to the strength along
 - Extrapolated as previously

-(010)

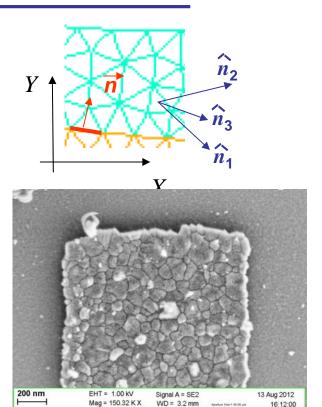
Future work

Inter-granular strength

- Characterize strength
- In terms of mis-orientations

Compare with experiments

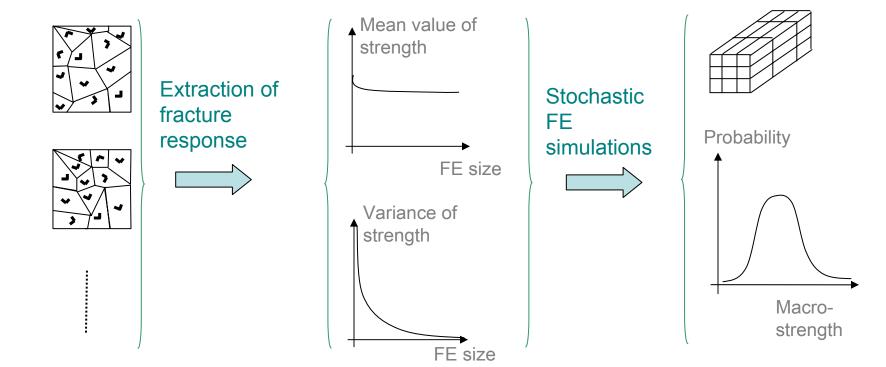
- Grains orientations by automated crystal oriented mapping (ACOM)
- Analysis of the competition between intergranular versus trans-granular crack path with respect to grain orientations



Future work

Robust-design

- Statistical fracture strength at meso-scale from micro-scale simulations involving different grain sizes and grain orientations
- Stochastic numerical method considering statistical distribution of fracture strength



Thank you

