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The previous experiments have shown that some phenothiazines have

antioxidant and anti-inflammatory properties in vitro. In this study the

inhibition of the production of reactive oxygen species (ROS) by neutrophils

was studied in two groups of horses, which received a dose of 0.1 mg ⁄ kg of

either acepromazine or promethazine intravenously. Blood samples were

collected before (T0) and 0.5, 1, 3 and 5 h after drug administration. The

chemiluminescence (CML) response of neutrophils was measured ex vivo in the

presence of luminol for a period of 10 min and the maximum CML value (peak

value) recorded. There was a significant inhibition of the ROS production in the

acepromazine treated group (49% inhibition) at 5 h after administration and in

the promethazine group (24% inhibition) at 3 h after administration (P < 0.05

vs. T0). These findings are of therapeutic relevance in the use of phenothiazines

in equine patients with inflammatory diseases where neutrophil activation and

ROS production are implicated.
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INTRODUCTION

The phenothiazine (PHE), acepromazine (ACP), has been used

for a long time for sedation, treatment of equine laminitis and as

premedication before general anaesthesia. It exerts sedative,

anti-arrhythmic and vasodilator properties, which are consid-

ered to explain the protective effect of this drug against

perioperative mortality during general anaesthesia (Johnston

et al., 2002). In particular, the vasodilation seems to decrease

the haemodynamic disturbances of a2-agonists, when both

drugs are administered concomitantly and probably increases

arterial oxygenation by maintaining cardiac output during total

intravenous (i.v.) anaesthesia in normovolemic horses (Marntell

et al., 2005). In addition, ACP is still the molecule of second

choice in the treatment of horses with acute laminitis (Slater

et al., 1995). Its vasodilatory effect can explain some of its

beneficial therapeutic properties (Ingle-Fehr & Baxter, 1999), but

other pharmacological properties, such antioxidant and anti-

inflammatory effects may contribute also to the therapeutic

result. For example, the excessive activity of equine polymor-

phonuclear neutrophils and the early release of myeloperoxidase

(MPO) and reactive oxygen species (ROS) occurring during the

prodromic stage of laminitis (Hurley et al., 2006; Loftus et al.,

2007; Riggs et al., 2007) are potential targets for therapeutic

intervention.

A number of PHEs including thioridazine, trifluoperazine and

chlorpromazine have very interesting immunomodulating activ-

ities, depending on the drug, the dose and the leucocyte model

used. PHEs inhibit the superoxide anion (O2·)) production of

phorbol myristate acetate (PMA)-stimulated human neutrophils

(Szuster-Ciesielska et al., 2004), modulate degranulation (Elfer-

ink, 1979; Richter, 1990; Blackwood & Hessler, 1995) and

result in the formation of immature neutrophils when used over

longer periods in the treatment of schizophrenic patients (Delieu

et al., 2001). At high doses, they diminish the motility of

T-lymphocytes as well as the production of TNF-a and IL-1b
(Steele & Brahmi, 1988; Matthews et al., 1995; Grabski et al.,

2001; Kowalski et al., 2001; Kiku et al., 2002).

In vivo experiments demonstrated that chlorpromazine

decreases mortality and prevents typical biological effects of
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lipopolysaccharide (LPS) such as the release of inflammatory

cytokines like TNF-a and IL-1b in rodents (Boraschi et al., 1991;

Ghezzi et al., 1996; Clancy et al., 2000), dogs (Molnar et al.,

1992) and calves (Ohtsuka et al., 1997). ACP inhibits the

differentiation of monocytes into macrophages and diminishes

monocyte TNF-a production (Serteyn et al., 2001, 2002). In

some conditions, these effects were compared with those of

dexamethasone and the results generally advantage chlorprom-

azine, which is a more specific inhibitor of TNF-a production and

increases the induction of IL-10, a ‘protective’ cytokine known

to reduce LPS dependant inflammation (Gadina et al., 1991;

Mengozzi et al., 1994). A review of the effects of phenothiazines,

on the cytokine networks was presented by Pollmacher et al.

(2000). Moreover, PHEs have shown to inhibit directly or

indirectly protein kinase-C (PKC) (Aftab et al., 1991; Chen et al.,

2001), phospholipase (Wightman et al., 1981; Watanabe et al.,

1986; Jain et al., 1991; Brufani et al., 1992; Babu & Gowda,

1995), NADPH-oxidase (Jones et al., 1982) and carboxylester-

ase (Radenovic & Kartelija, 2004). Finally, like tocopherol, ACP

has an antioxidant activity, which is interesting in pathophys-

iological situations where there is excessive formation of ROS

(Serteyn et al., 2000). In humans, controversial results have

been found regarding the influence of chlorpromazine on

spontaneous cytokine production, as the doses of chlorproma-

zine that can be safely given to humans failed in some

experiments to inhibit TNF-a and IL-1b release (Bleeker et al.,

1997). However, with doses close to those used in equine

practice, ACP and promethazine (PTZ) decrease the production

of ROS by activated neutrophils in vitro (Traykov et al., 1997;

Serteyn et al., 1999).

According to Ghezzi et al. (1996), the inhibition of TNF-a
production by chlorpromazine is likely to be related to these

antioxidant properties. The free radical scavenging effect of

PHEs, probably by linkage to their aromatic ring, has also been

well described (Dalla Libera et al., 1998; Hadjimitova et al.,

2002, 2004).

The aim of this study was to demonstrate that the in vivo

administration of ACP and PTZ to horses has antioxidant

properties by interacting with the capacity of equine neutrophils

to react to a stimulation ex vivo. Both compounds were

administered i.v. at the same dose of 0.1 mg ⁄ kg body weight

to two groups of adult horses and neutrophils were isolated from

the peripheral blood of these horses at different time points after

treatment. Neutrophils were simulated ex vivo with PMA, a

direct intracellular stimulator of PKC, which activates NADPH-

oxidase, the main responsible enzyme for ROS production.

Subsequently, the production of reactive oxidant species (ROS)

was measured by chemiluminescence (CML).

MATERIALS AND METHODS

Animal selection and blood sampling

Six healthy adult warmblood horses (Group A: three mares – two

geldings – one stallion in a body range of 412–589 kg) without

medication for at least 1 week received 0.1 mg ⁄ kg ACP

(Combisstress�, 20 mg ⁄ mL; KELA Laboratoria N.V., Hoogstraa-

ten, Belgium) i.v. A second group of warmblood horses (Group B:

three mares – three geldings in a body range of 453–602 kg)

received 0.1 mg ⁄ kg PTZ (Phénergan�, 25 mg ⁄ mL; Rhône-

Poulenc Rorer S.A., Brussels, Belgium). Blood samples

(300 mL) were collected before (T0) and 0.5, 1, 3 and 5 h after

the PHE injection. To avoid the potential effect of repeated

venipuncture on neutrophil activity, the blood was collected

through a catheter placed in the left jugular vein the day before

the study. Blood samples were collected into citrated transfusion

bags (Baxter transfusion pack�, PL146 – CPD; Baxter Healthcare

Corporation, Deerfield, IL, USA), refrigerated at 4 �C and

processed within 1 h.

Isolation of neutrophils

Neutrophils were isolated at room temperature (18–22 �C) by

centrifugation (400 g, for 35 min, at 20 �C) on a discontinuous

Percoll density gradient (PolymorphprepTM; Nycomed Pharma

S.A., Diagnostics, Oslo, Norway) according to the method of

Boyum (1976), modified by Pycock et al. (1987). The polymor-

phonuclear fraction was gently collected in the inferior band of

the gradient and washed in two volumes of Hanks’ balanced salt

solution (137 mM NaCl, 5.4 mM KCl, 4.2 mM NaHCO3, 0.34 mM

Na2HPO4, 0.44 mM KH2PO4; pH 7.4). The cells were

re-suspended at 4 �C in a phosphate-buffered saline solution

(137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.5 mM KH2PO4,

pH 7.4) and counted (Burker cell). The cell preparation

contained ‡95% neutrophils with viability ‡95% as measured

by Trypan blue exclusion test.

Measurement of the CML response of activated neutrophils

The ROS production was measured by CML according to the

method of Easmon et al. (1980), adapted to equine neutrophils

by Benbarek et al. (1996). Neutrophils (1.25 · 106 cells ⁄ assay)

were diluted in 400 lL of Hanks’ balanced salt solution with

luminol added at the final concentration of 10)4
M. For each

isolated cell suspension, two in vitro experiments were con-

ducted. In the first experiment, basal CML response of

1.25 · 106 nonstimulated neutrophils was recorded to evalu-

ate the effects of isolation and handling of the cells. In the

second experiment, CML was recorded after stimulation of

1.25 · 106 cells of the same batch with 8 · 10)7
M PMA. The

CML response of neutrophils (expressed in mV) was measured

using a luminometer Bio-Orbit 1251 at 37.8 �C and the

maximum CML value (CML peak value) recorded during

10 min of CML monitoring was considered as the final result

of the measurement.

Statistical analysis

The peak CML value per measurement was used for the

calculation of mean values (±SD). ANOVA with Tukey’s post hoc

test and a t-test for paired data were performed with the
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GRAPHPAD INSTAT 3.05 (GraphPadTM Software, San Diego, CA,

USA). The level of significance was set at 0.05.

RESULTS

Figure 1 shows the individual peak CML values for all horses at

T0 before treatment. The CML response of PMA stimulated

neutrophils is compared with that of nonstimulated neutrophils

(basal value). The results show that there is a significant increase

in the CML response after stimulation with PMA (to 12 times the

basal value). The mean CML value for unstimulated cells was

125 ± 87 mV, significantly different from the mean CML value

(1473 ± 479 mV) measured for stimulated neutrophils. For the

following results focused in this study, the basal CML value

measured for the nonstimulated neutrophils was subtracted from

the CML value measured with PMA activation.

Time evolution of the effects of the in vivo administration of ACP

or PTZ on the CML response of isolated neutrophils

Figure 2 shows the time-dependent CML response of neutrophils

for each horse after ACP (Fig. 2a) or PTZ (Fig. 2b) administra-

tion. For all horses, a decrease of the CML response and thus of

the ROS production after PHE administration was observed.

However, the time to reach the maximal inhibition differed. In

some cases, there was a very rapid and important decrease of

CML, persisting until 5 h especially in the ACP group (horses 1,

2 and 3), in other cases for both groups, the inhibitory effect

appeared later, often after a slight increase at 0.5 and 1 h.

Generally, it appeared that ACP exerted a more pronounced

inhibitory effect as compared with PTZ.

Time-dependent inhibition of CML by ACP or PTZ

Table 1 shows the mean (±SD) relative values of CML response

at each sampling time for the two groups of horses. There was a

significant inhibition of ROS production in the ACP group (49%

inhibition) at 5 h and in the PTZ group (24% inhibition) at 3 h.

In the ACP group, the mean neutrophil CML response was

Fig. 1. Individual luminol-enhanced chemiluminescence values (in mV)

produced by neutrophils isolated from 12 horses: response of the cells to an

in vitro stimulation by 8.10)7
M phorbol myristate acetate (h) compared

with the cell response without stimulation (d). The neutrophils were

isolated from blood drawn before the phenothiazine (PHE) injection (T0).

For each condition, the calculated mean values (±SD) for the 12 horses are

presented on the right side of the figure. *P < 0.05.
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Fig. 2. Time evolution of individual relative peak chemiluminescence

produced by 1.25 · 106 equine neutrophils stimulated with 8.10)7
M

phorbol myristate acetate in 12 horses. (a) Six horses (horses 1–6)

received 0.1 mg ⁄ kg acepromazine i.v. (b) Six horses (horses 7–12)

received 0.1 mg ⁄ kg promethazine. The peak CL response of neutrophils

measured at T0 [before acepromazine (ACP) or promethazine (PTZ)

administration] was taken as 100% for each horse. Blood sampling times:

T0: before ACP or PTZ administration, T0.5, T1, T3, T5: respectively 0.5,

1, 3 and 5 h after drug administration.

Table 1. Time evolution of mean peak value of chemiluminescence

produced by 1.25 · 106 equine neutrophils stimulated with 8.10)7
M

phorbol myristate acetate in 12 horses

Table 1 T0.5 T1 T3 T5

Group A

(ACP)

n = 6

65 ± 41% 72 ± 45% 68 ± 48% 51 ± 20%*

Group B

(PTZ)

n = 6

97 ± 20% 90 ± 22% 76 ± 15%* 84 ± 18%

Mean peak chemiluminescence values (±SD) are expressed in % of T0

value.

ACP, acepromazine; PTZ, promethazine.

*P < 0.05 vs. T0.
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829 ± 467 mV at 5 h compared with 1582 ± 449 mV at T0

(P < 0.05). For PTZ at 3 h the CML value was 1110 ± 741 mV

compared with 1364 ± 713 mV at T0 (P < 0.05).

DISCUSSION

The decrease of CML produced by equine neutrophils stimulated

by PMA was already demonstrated by our team in vitro for ACP.

Other PHE or thioxanthenes also possess similar antioxidant

properties as demonstrated with polymorphonuclear leucocytes

(Hadjimitova et al., 1999, 2003).

In in vitro models, ACP at 10)5
M showed an inhibitory

capacity of the ROS production by neutrophils of about 50%

whereas at 10)4
M, the inhibition was complete (Serteyn et al.,

1999). In our study, we also observed a decrease of ROS

production by equine neutrophils after a single i.v. administra-

tion of 0.1 mg ⁄ kg PHE, a dose which is estimated to result in a

plasma concentration of 4.6 · 10)6
M and 5.3 · 10)6

M for ACP

and PTZ respectively. This comparison indicates that the in vitro

and in vivo effects are comparable.

To our knowledge, it is the first time that the antioxidant

properties of an in vivo administration of PHE were demonstrated

ex vivo on isolated neutrophils. This approach showed also the

significant individual variability of the neutrophil response to

stimulation.

Luminol enhanced CML measures the global production of

ROS, including highly pro-oxidant species such as hypochlorous

acid (HOCl) and peroxynitrite (ONOO)), which are more reactive

with luminol than other ROS species such as superoxide anion

radicals (O2·)) or hydrogen peroxide (H2O2). The variable

inhibition of the neutrophil response to stimulation with PMA

was therefore not unexpected. However, it implies that the CML

response at the different sampling times after the PHE admin-

istration in a horse would need to be compared with a control

sample from the same horse before administration of the drug.

The important individual variability of the CML response also

explains the rather high standard deviation of the mean CML

values and the limited or lacking statistical significance.

The pharmacokinetic parameters of ACP in horse were

reported to be variable within the same experimental protocol

(Ballard et al., 1982; Hashem & Keller, 1993; Marroum et al.,

1994), which could also explain the variability of the CML

response. The diet, training status and level of anxiety of an

individual animal during the month preceding the study could

also have influenced the results. It has been shown that stress

and intensity of exercise influenced the oxidative metabolism of

human and equine neutrophils (Pyne et al., 2000; Art et al.,

2006). This implies that in in vivo studies the influence of

catecholamines on neutrophil functions such as trafficking and

activation needs to be taken into account (Abraham et al., 1999;

Altenburg et al., 2000).

Antioxidant effects of PHE were always found more important

in a cellular model than in a cell-free system (Serteyn et al.,

1999; Hadjimitova et al., 2004). This observation could show

that PHE have an intracellular target, which enhances their

fundamental scavenging effect on ROS. MPO, a specific haeme

enzyme of the azurophilic granules of the neutrophils which

participates in pathogen destruction within the phagocytic

vacuole, is specifically responsible for the production of a potent

oxidant agent, HOCl synthetized from chloride anion (Cl)) and

H2O2 and could be this specific intracellular target for PHE. The

reaction of PHE with MPO in a cellular model can result in the

establishment of a PHE-derived cationic radical, biologically

more active (nucleic acids and protein covalent binding) and

with more pronounced scavenging capacities than the mother

compounds (van Zyl et al., 1990; Kelder et al., 1991). Finally,

according to some authors (Ordway et al., 2002; Kristiansen

et al., 2007), PHE are concentrated in some tissues like the lungs

and in leucocytes. In our model, the PHE with an initial lower

plasma concentration had antioxidant effects comparable to

those observed in in vitro cellular models. The neutrophil

isolation steps included elimination of plasma and red blood

cells which implicate the absence of any free drug in the

buffered solution, but the anti-oxidant effects persisted. Thus,

we hypothesized that the PHE molecules were linked to the

neutrophil membrane, but kept their ROS scavenging functions,

or were inside the cell where they could inhibit the Ca2+ ⁄
calmodulin pathway of leucocyte activation or reacted with MPO

to produce the more active cationic radicals. These hypotheses

need to be confirmed in vitro for ACP and PTZ before a final

conclusion can be drawn on the mechanism of antioxidant

action observed in this study.

The vasodilatory effect of the drugs is considered as

interesting for the treatment of equine laminitis and to increase

muscular blood flow during anaesthesia. The antioxidant effect

demonstrated in this study could be relevant in the prevention

of these pathologies where ROS are implicated. Recently, some

authors have shown that ROS were implicated in the

endotoxin-induced impairment of b-adrenoceptor-mediated

vasodilation in equine digital veins (Mallem et al., 2003,

2006). In agreement with these authors, our results suggest

a synergistic effect of vasodilator and antioxidant properties of

ACP that could be beneficial for the treatment of laminitis in

horses. Compared with ACP, PTZ seems to be less efficient on

the activity of stimulated neutrophils. But PTZ shows less

cardiovascular depression in horses as it does in other species;

this molecule could therefore be interesting for horses with

severe cardiovascular failure, when an increase of ROS

production occurs and the use of ACP would not be optimal.

PTZ has also a more pronounced anti-histaminic effect than

ACP, but possesses anti-inflammatory properties (Gusdon et al.,

1972; Rychlik et al., 1988; Molnar et al., 1992) and could be

interesting particularly for horses with severe endotoxic shock,

because of its limited vasodilating effect (Covert et al., 1988;

Brown & Eckberg, 1997; Péters et al., 2002).

In conclusion, the inhibition by ACP and PTZ of the CML

produced by PMA-stimulated equine neutrophils is the first

confirmation of the antioxidant properties following an in vivo

administration of PHE. Therefore, PHE could have interesting

therapeutic perspectives in inflammatory diseases of horses

implicating neutrophil activation and ROS production.
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