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In this review we aim to provide a historical overview of the immunotherapeutic approaches
which have been developed for the treatment of hematological malignancies. After briefly
summarizing the development of the theory of cancer immune surveillance, we describe how
initial studies discovering the efficacy of the immune-mediated graft-versus-tumor effects after
allogeneic hematopoietic cell transplantation led to new transplantation approaches (termed
non-myeloablative transplantation) relying almost exclusively on graft-versus-tumor effects for
tumor eradication. We then summarize important steps in the development of tumor vaccines
and autologous adoptive immunotherapy in patients with hematological malignancies. Finally, we
describe historical discoveries leading to the recent success with monoclonal antibodies as
treatment for lymphomas, chronic lymphocytic leukemia, and acute myeloid leukemia.

Key words: hematopoietic cell transplantation; immunotherapy; graft-versus-tumor effects;
monoclonal antibody.

The notion of immunologic surveillance was first hypothesized in 1909 by Paul Ehrlich
who proposed that during fetal and post-fetal development aberrant cells occurred
frequently, but were eliminated or remained latent due to control by the immune sys-
tem.1,2 Fifty years later, Thomas and Burnet developed the ‘immunologic surveillance’
theory which proposed that, under normal circumstances, the immune system
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destroyed cancer cells when they were still in the early stages of tumor formation,
probably because tumor cells differed antigenically from normal cells.3e5 Among the
arguments in favor of this theory at that time were (1) the increased incidence of
both hematologic and solid tumors observed in thymectomized mice and patients
with primary immunodeficiencies; (2) the increased incidence of neoplasia in patients
given immunosuppressive therapy (for example after organ transplantation); and (3)
the demonstration that mice could be immunized against syngeneic tumors induced
by viruses or chemical carcinogens.6

Studies in recently characterized athymic nude mice in the 1970s seriously chal-
lenged the cancer immunosurveillance theory.2 Indeed, although it was evident that
thymus-deficient mice had increased incidences of lymphoma and virally induced tu-
mors, they were not more susceptible to spontaneous or chemically induced tumors.7

These observations led to a progressive loss of interest in the immunosurveillance the-
ory. However, the theory was resurrected in the 1990s because of four key observa-
tions.8,9 First, interferon-g (IFN-g) was shown to prevent both chemically induced and
spontaneous tumors.10 Second, mice lacking the perforin (perforin e/e) gene, and
mice deficient for the recombination-activating gene 1 (RAG-1) or RAG-2 (leading
to a complete lack of T cells and B cells without affecting non-lymphoid organs)
were shown to develop chemically induced tumors more frequently than their wild-
type counterparts.11,12 Third, further studies in mice demonstrated that both the in-
nate (NK-cell) and adaptative (T-cell) immune systems could be implicated in immune
surveillance, since mice deficient for NK cells, T cells, NK/T cells, IFN-g or interleukin
12 (IL12) all had increased susceptibilities to tumors (reviewed by Dunn et al).8,9

Finally, it was proposed that the immune system not only protected hosts again tumor
development, but also facilitated outgrowth of tumors with reduced immunogenicity
(the tumor editing hypothesis, recently reviewed by Dunn et al).9

Although documented in mice, the importance of cancer immune surveillance in
humans for prevention of non-viral tumors has remained highly controversial.8,9 Nev-
ertheless, a significant role for cancer immune surveillance in humans has been sug-
gested by epidemiological data showing increased incidences of both lymphoma and
various carcinomas in solid-organ graft recipients given immunosuppressive therapy13

and in patients with acquired immune deficiency syndromes.14

In parallel with e and with no initial relation to e the immune surveillance theory,
allogeneic hematopoietic cell transplantation (HCT) was introduced by Thomas et al
and Mathé et al as potential treatment for patients with hematologic malignancies.15e17

While the aim of the procedure was initially to administer supra-lethal doses of
irradiation with the hope of destroying all leukemic or abnormal cells16, it was rec-
ognized in the late 1970s that allogeneic immunocompetent cells transplanted with
the stem cells mediated therapeutic anti-tumor effects which were independent of the
action of the irradiation, termed graft-versus-tumor effects.18,19 These observations
encouraged the study of new strategies of immune therapy for hematological
malignancies via infusions of T cells specific for tumor antigens, or via vaccination against
leukemia-associated antigens (see the excellent review by Morris et al).20

In addition to the progress made with cellular-based immunotherapy, advances in the
field of tumor-targeting monoclonal antibodies (mAbs) have taken place in recent years,
as illustrated by the development of chimeric mAbs targeting the CD20 antigen, which
are now used in all types of B-cell non-Hodgkin lymphomas (NHLs)21, or CD52 or
CD33 antigens, used increasingly for the treatment of chronic lymphocytic leukemia
(CLL)22 or acute myeloid leukemia (AML)23,24 respectively. In addition, b-emitting radio-
nuclides conjugated to mAb directed against the CD45 antigen (expressed on all
YBEHA442_proof � 5 July 2006 � 2/17
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hematopoietic cells) have been investigated as a way of increasing the anti-leukemic po-
tency of conditioning regimens for HCTwithout inducing undue systemic toxicities.25,26

The aim of this chapter is to provide a brief historical overview of immunothera-
peutic approaches developed to treat hematological malignancies. We have divided
the chapter into three sections: (1) immunotherapy with allogeneic HCT; (2) autolo-
gous cell-based immunotherapy and vaccines; and (3) antibody-based therapies. How-
ever, these strategies are not independent from each other, as illustrated by recent
studies combining mAbs with allogeneic HCT.25e27

IMMUNOTHERAPY WITH ALLOGENEIC HEMATOPOIETIC
CELL TRANSPLANTATION

Demonstration of graft-versus-tumor effects in rodents and humans

Several studies have demonstrated graft-versus-tumor effects in rodent models. In
1957 Barnes and Loutit first showed that mice with leukemia could not be cured by
total body irradiation (TBI, 9.5 Gy) and infusion of syngeneic marrow, whereas mice
given allogeneic marrow after the same dose of TBI survived for longer periods of
time without evidence of leukemia, although eventually almost uniformly dying of
graft-versus-host disease (GVHD).28 They proposed that a reaction of the donor mar-
row killed leukemic cells. This reaction was termed graft-versus-leukemia effect by G.
Mathe in 1965.17 Further studies showed that, while transplantation of H-2-incompat-
ible marrows caused GVHD and prevented leukemia relapses, transplantation of im-
munocompetent cells from syngeneic or from H-2-identical murine donors did not
cause GVHD, but did not produce detectable graft-versus-tumor effects either.29

The first evidence for graft-versus-tumor effects in humans came from a study pub-
lished in 1979 showing a 2.5-fold lower risk of leukemic relapse rates in allogeneic mar-
row recipients who developed acute GVHD in comparison with those who did not.18

However, this did not translate into improved progression-free survival, since acute
GVHD was associated with increased non-relapse mortality. Two years later, the
same authors observed that chronic GVHD, a disease mimicking autoimmune disor-
ders and generally occurring late after HCT, was also associated with a reduced risk
of leukemic relapse and improved progression-free survival in patients with advanced
acute leukemia given allogeneic marrow grafts.19 Interestingly, the highest survival rate
was observed in patients with chronic GVHD who did not have acute GVHD (de novo
chronic GVHD, Figure 1). The anti-leukemic effects of acute and chronic GVHD were
confirmed in 1990 in a large study from the International Bone Marrow Transplant
Registry (IBMTR).30 Further, patients given syngeneic marrow were shown to have in-
creased risks of relapse in comparison to patients given allogeneic marrow who did
not develop GVHD, demonstrating that graft-versus-tumor effects could be dissoci-
ated from clinically apparent GVHD.18,30 Finally, the important role of donor T cells
in the graft-versus-tumor effect was highlighted by reports demonstrating that,
although the incidence of GVHD was decreased following transplantation of T-cell-
depleted marrow, graft failure and leukemia relapse were significantly increased by
this procedure.30e32

First attempts at increasing graft-versus-tumor effects in patients with high-risk leu-
kemia by shortening the duration of post-grafting immunosuppression or by infusing
donor buffy coats early after transplantation were not successful because of increased
incidence of severe acute GVHD and increased non-relapse mortality.33
YBEHA442_proof � 5 July 2006 � 3/17
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Donor lymphocytes infusion (DLI)

Given the primary role of donor T cells in the graft-versus-tumor effect30e32 and the
observation that patients who relapsed after transplantation occasionally achieved
complete remission during flares of GVHD activity34, Kolb et al35 investigated the
efficacy of donor lymphocyte infusions (DLI) in patients with leukemia relapse after
allogeneic transplantation. The induction of durable complete remissions by DLI in
a number of patients with either acute or chronic leukemia36,37, multiple myeloma38,
or lymphomas39 demonstrated that graft-versus-tumor effects were capable of erad-
icating hematological malignancies, even in the absence of preceding chemotherapy.

Two large multicenter studies37,40 have analyzed outcomes after DLI in more than
400 patients with relapse after HCT. DLI induced sustained complete remissions in
more than 60% of patients with chronic myeloid leukemia, and in 10e40% of patients
with other hematologic malignancies. Acute GVHD and chronic GVHD were each as-
sociated with increased probabilities of disease responses40, although some patients
achieved complete remissions without clinically evident GVHD.37,40

Non-myeloablative and reduced-intensity conditioning

Due to regimen-related toxicities, the use of conventional (myeloablative) allogeneic
HCT has been restricted to younger and medically fit patients.16,41e43 This is

Figure 1. Disease-free survivals of patients with hematological malignancies given cyclophosphamide and

high-dose total body irradiation (TBI), HLA-matched related hematopoietic cell transplantation (HCT),

and methotrexate (MTX) for prevention of graft-versus-host disease (GVHD). Data in patients with and

without acute and chronic GVHD are shown. Modified from Weiden et al (1981, New England Journal of

Medicine 304: 1529e1533) with permission.
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unfortunate since the median ages at diagnosis of patients with most hematological
malignancies ranges from 65 to 70 years (Table 1). Given the increasingly recognized
importance of graft-versus-tumor effects for controlling cancer, several groups of
investigators have explored allogeneic HCT after reduced-intensity or truly non-
myeloablative conditioning regimens44e49 in which some or all the burden of tumor
eradication was shifted from high-dose chemoradiotherapy towards graft-versus-
tumor effects.50

On the basis of preclinical observations in a canine model of transplantation51, we
have been investigating a very-low-intensity regimen combining low-dose TBI (2 Gy)
with or without added fludarabine (90 mg/m2) and post-grafting immunosuppression
with mycophenolate mofetil and cyclosporine.46,52,53 To date, more than 800 patients
have been given allogeneic HCT after this non-myeloablative conditioning regimen on
clinical trials carried out in several centers in the US and Europe, as described in the
following paragraphs.

The regimen has been usually very well tolerated, and has been associated with
fewer infections54 and less transplant-related toxicity55e61 than myeloablative condi-
tioning, despite the fact that non-myeloablative conditioning was offered in older pa-
tients and those with medical comorbidities. Characteristics of the regimen included
modest declines in peripheral-blood cell counts46,55, and gradual replacement of recip-
ient hematopoiesis by donor-derived hematopoiesis.62,63 Acute GVHD of grades II, III
and IV was seen in 33%, 10% and 5% of patients given grafts from HLA-matched re-
lated donors (MRDs), compared with 41%, 9% and 3% in those given grafts from un-
related donors (URDs), respectively.64 Chronic GVHD occurred in 43% of MRD and
in 45% of URD recipients.64 In comparison with patients given myeloablative condi-
tioning, grade IIeIV acute GVHD was significantly less frequent in non-myeloablative
recipients, but the incidences of chronic GVHD were similar among patients given
non-myeloablative or myeloablative conditioning.65

Table 1. Median ages of patients at diagnoses and at hematopoietic cell transplantation (HCT) using

myeloablative or non-myeloablative conditioning.

Disease Median ages of patients (years)

Related donors Unrelated donors At diagnoses

(SEERS)41

Myeloablative

conditioninga
Non-myeloablative

conditioningb
Myeloablative

conditioninga
Non-myeloablative

conditioningb

CML 4041 5870 3641 5471 67

AML 2841 5873 3341 5773 68

NHL 3341 53.568 3541 53.5a 68 65

MM 4541 5267 4541 52106 70

CLL 5141 5569 4641 5869 71

HD 2941 37107 2841 37107 34

MDS 4041 6273 4141 6273 68

Overall 4041 5564 3541 5564 e

SEERS, surveillance, epidemiology and end results; CML, chronic myeloid leukemia; AML, acute myeloid

leukemia; NHL, non-Hodgkin lymphoma; MM, multiple myeloma; CLL, chronic lymphocytic leukemia;

HD, Hodgkin disease; MDS, myelodysplastic syndrome.
a At the Fred Hutchinson Cancer Research Center (FHCRC).
b FHCRC consortium.
YBEHA442_proof � 5 July 2006 � 5/17
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Sustained tumor responses have been seen across all disease categories.66e72 Over-
all complete responses in patients with measurable disease at HCT approached
50%50,64, while the remainder of the patients had partial responses or stable disease,
or experienced disease progression or relapse. Chronic GVHD was associated with
decreased relapse/progression (P¼ 0.006), and better progression-free survival (P¼
0.003).50 However, grades II and III/IV acute GVHD had no statistically significant
impact on relapse/progression. Instead, acute GVHD was associated with increased
non-relapse mortality. In agreement with what was observed after myeloablative con-
ditioning19, the best progression-free survival was observed in patients with de novo
chronic GVHD.50

We have recently reported on the efficacy of allogeneic HCT following non-
myeloablative conditioning in specific disease categories. Hegenbart et al summarized
results of non-myeloablative HCT in 122 patients with acute myeloid leukemia, 117 of
whom were ineligible for conventional HCT because of age and/or comorbidities.73

Median age at HCTwas 58 (range 17e74) years. Two-year probabilities of overall sur-
vival were 51% for patients transplanted in first complete remission (n¼ 51), 61% for
those transplanted in second remission (n¼ 39), and 28% for those transplanted be-
yond second remission (n¼ 32). Kerbauy et al reported outcomes in 24 patients (me-
dian age 58 years) with chronic myeloid leukemia in the first chronic phase (n¼ 14) or
beyond the first chronic phase (n¼ 10) given grafts from HLA-matched related do-
nors.70 Most patients were deemed ineligible for conventional HCT either because
of age �65 years (n¼ 5), or because of comorbidities (n¼ 15). The 2-year overall sur-
vival was 70% for patients transplanted in the first chronic phase and 56% for those
with more advanced diseases. Most patients with sustained engraftment achieved
molecular remissions (Figure 2).70,71 Scott et al compared efficacy of HCT after
non-myeloablative (n¼ 38) versus myeloablative conditioning (busulfan and cyclophos-
phamide, n¼ 112) in patients over 40 years of age with myelodysplastic syndromes.72

In multivariate analyses, there were no significant differences in overall survival (HR
1.2, P¼ 0.56), progression-free survival (HR 1.1, P¼ 0.60), and relapse risk (HR 1.3,
P¼ 0.43) between the non-myeloablative versus myeloablative recipients, suggesting
that graft-versus-tumor effects were more important than conditioning intensity in
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Figure 2. Evolution of BCR/ABL mRNA in four patients with chronic myeloid leukemia (CML-CP#1) and

one patient with CML-AP given unrelated grafts after 2 Gy total body irradiation (TBI) and fludarabine. Mo-

lecular remissions were achieved 84e524 (median 230) days after hematopoietic cell transplantation (HCT).

Reprinted from Baron et al (2005, Biology of Blood and Marrow Transplantation 11: 272e279) with permission.
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preventing relapse in patients with myelodysplastic syndromes. Results in 33 patients
with mantle-cell lymphoma given grafts from related (n¼ 16) or unrelated (n¼ 17)
donors were reported by Maris et al.68 Fourteen patients had failed high-dose autol-
ogous HCT. Of patients with measurable disease at HCT (n¼ 20), 85% achieved par-
tial (10%) or complete (75%) remissions (Figure 3). Two-year incidences of relapse,
non-relapse mortality, overall survival and progression-free survival were 9%, 24%,
65%, and 60%, respectively. Finally, Sorror et al reported results of non-myeloablative
allogeneic HCT in 64 patients with fludarabine-refractory chronic lymphocytic leuke-
mia69; 44 patients received grafts from related donors, and 20 received grafts from un-
related donors. Of patients with measurable disease at HCT (n¼ 61), 67% achieved
partial (17%) or complete (50%) remissions. Two-year incidences of relapse, non-relapse

Figure 3. Example of graft-versus-tumor response in a patient with mantle-cell lymphoma treated with al-

logeneic hematopoietic cell transplantation (HCT) after non-myeloablative conditioning with fludarabine and

low-dose (2 Gy) total body irradiation (TBI). At the time of allogeneic HCT the patient had recurrent dis-

ease following treatment with high-dose radiolabeled antibodies and autologous peripheral-blood stem-cell

support. (A) Pretransplantation computed tomography (CT) scan image (day e27) through the upper pelvis

demonstrating a mass 8 cm� 7 cm extending through 12 0.5-cm cuts. (B) CT scan image through the same

region demonstrating complete resolution of the mass on day þ74 after non-myeloablative transplantation

from an HLA-matched unrelated donor. The patient has remained in remission 30 months after trans-

plantation with no evidence of graft-versus-host disease (GVHD). From Maris et al (2004, Blood 104:

3535e3542) with permission.
YBEHA442_proof � 5 July 2006 � 7/17
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mortality, overall survival and progression-free survival were 18%, 22%, 60%, and
52%, respectively.

NK cell alloreactivity: lessons from HLA-mismatched HCT

In the late 1970s a subpopulation of lymphocytes e termed natural killer (NK) cells e
was described that could spontaneously kill (i.e. without previous immunization) a va-
riety of target cell types, usually tumor cells or allogeneic hematopoietic cell lines.74

Those cells were believed to play a role in immunosurveillance against leukemias, ge-
netic resistance to marrow allografts, and resistance to viral infections.74 However, al-
though NK activity was found to be low in patients with leukemias, possibly as a result
of the presence of blasts diluting or replacing NK cells, it was observed that NK func-
tion returned to normal by day 30 after allogeneic HCT, and that NK function did not
correlate with subsequent risk of relapse, suggesting that NK cells did not play a signif-
icant immunosurveillance role against leukemia after HLA-identical sibling HCT.75

Moreover, analyzing data from patients with aplastic anemia, there was no correlation
between host NK-cell activity before HCT and the risk of graft rejection, suggesting
that NK cells did not play a significant role in the graft rejection process after HLA-
identical sibling HCT.75 Subsequent observations in patients with severe combined
immunodeficiency lacking T-cell function but having NK-cell function confirmed earlier
canine studies76,77 showing that NK cells were not involved in graft rejection of
HLA-identical sibling marrows but played an important role in rejecting unrelated
or MHC-haploidentical grafts.78

The identification of mechanisms regulating NK-cell activity in the mid 1990s re-
newed interest in NK cells.79 The activity of NK cells was regulated by a quantitative
balance between inhibitory signals mediated by inhibitory killer immunoglobulin-like
receptors (KIRs) and CD94/NKG2A, and by activating signals mediated by natural
cytotoxicity receptors (NCRs), including recently identified NKG2D or DNAX
accessory molecule-1 (DNAM-1, CD226).79,80 The mechanisms of NK-cell inhibition
were also identified. KIRs recognized allotypic determinants shared by different
HLA-class 1 alleles: KIR2/DL2 and KIR2/DL3 recognized HLA-C group 1 alleles,
KIR2/DL1 recognized HLA-C group 2, and KIR3/DLI recognized HLA-Bw4 alleles.80

Conversely, CD94/NKG2A recognized overall expression of HLA class 1 molecules
on target cells via the expression of HLA-E molecules on their surface.80 It was pos-
tulated that most tumor cells that lacked HLA class 1 molecules were promptly killed
by NK cells because of the predominant effect of several activating receptors such as
NKG2D or DNAX. It was also shown that the ligands for NK activating receptors
were over-expressed on the surface of many tumor cells.81

These discoveries prompted Velardi et al to study the role of NK cells after HLA-
haploidentical (donor and recipient pairs identical for one HLA haplotype but fully mis-
matched for the unshared haplotype) HCT.82 The authors proposed that all mature
NK cells expressed at least one inhibitory receptor for self-HLA, and thus that the
presence or absence of functioning KIRs could be deduced by HLA-genotype.82

They then presented a simple algorithm in which comparisons between the donors’
and recipients’ HLA genotyping allowed prediction of NK alloreactivity (KIR ligand in-
compatibility model). Applying this model in patients given HLA-haploidentical HCT,
they found that donor-versus-recipient NK-cell alloreactivity was associated with re-
duced risks of graft rejection, lower incidences of acute GVHD, and lower risks of re-
lapse in patients with acute myeloid leukemia but not in acute lymphoblastic
YBEHA442_proof � 5 July 2006 � 8/17
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leukemia.82 Several groups of investigators subsequently tested the KIR ligand
incompatibility model in patients given grafts from HLA-mismatched unrelated
donors.83e86 Two studies found lower risks of relapse in patients with KIR ligand
incompatibility in the graft-versus-host direction,83,86 while two others did not find
such associations.84,85

Given that HLA and KIR genes are on chromosomes 6 and 19, respectively, they
are inherited independently.87 In addition, phenotyping of peripheral NK cells has
demonstrated that the HLA genotype has only a subtle impact on KIR expression
on peripheral NK cells.88,89 These observations were the basis for the ‘missing
KIR ligand model’ in which donorerecipient NK-cell alloreactivity was predicted
by analysis of donor KIR genotype and recipient HLA genotype.90,91 Because HLA
and KIR segregate separately, the missing KIR ligand model could be applicable to
HLA-identical HCT. Suggesting a potential role for NK cells in patients with acute
myeloid leukemia given grafts from HLA-identical recipients, Hsu et al found a lower
risk of relapse and better disease-free survival among patients who lacked the HLA
ligand for one or more donor inhibitory KIR, in comparison to patients who had all
of the HLA ligands.92

AUTOLOGOUS CELLULAR-BASED IMMUNOTHERAPY
AND VACCINES

The concept of using autologous adoptive immunotherapy or cancer vaccine has had
a long history of success in rodent models, but until now these successes have not
been fully translated in humans. However, the discoveries of potential tumor-associated
antigens and advances in tumor immunology have opened the way for the development
of more effective strategies.

Tumor-associated antigens and transfer of tumor-specific T cells

The existence of tumor-specific antigens was first demonstrated in the 1950s by
studies showing that mice could be immunized against syngeneic tumors induced by
chemical carcinogens or oncoviruses.4 While the lower incidences of relapse after
allogeneic HCT compared with syngeneic HCT30 demonstrated the importance of
T-cell responses to minor histocompatibility antigens as targets of graft-versus-tumor
effects, other types of protein exclusively expressed by tumor cells e such as the im-
munoglobulin idiotype (Ig-Id) in B-cell lymphoma or multiple myeloma, bcr/abl protein
in chronic myeloid leukemia (CML), or EpsteineBarr-virus- (EBV-) associated proteins
in Hodgkin disease or Burkitt’s lymphoma e or protein over-expressed by tumor cells
(such as proteinase-3, or WT-1), were thought to also play roles in graft-versus-tumor
effects. For example, Molldrem et al observed a strong correlation between T-cell re-
sponses directed against proteinase 3 and clinical responses of chronic myeloid leuke-
mia cells to interferon-g or allogeneic HCT.93

By optimizing culture conditions it became possible to isolate from normal donors
or from leukemia patients infrequent T cells which had cytotoxic activity against such
tumor-associated antigens both in vitro and in xenotransplantation models.20,94 Stud-
ies in the early 1990s showed that it was possible to restore T-cell immunity to cyto-
megalovirus (CMV) after allogeneic HCT by transfer of CMV-specific T cells.95 Similar
results were obtained with EBV as target.96 However, generating sufficient numbers of
tumor-specific T cells with a high affinity against patient-specific tumor-associated
YBEHA442_proof � 5 July 2006 � 9/17
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antigen, and assuring their persistence after injection, have remained challenging.20

These limitations might be overcome by recent approaches that have used genetic
modifications of T cells, for example by transfer of genes coding for tumor-specific
T-cell receptors with or without genes coding for signaling domains of co-stimulatory
molecules (see excellent reviews by Morris et al and Rossig and Brenner).20,97

Vaccination

A recent review of vaccination trials performed in over 400 patients with solid cancer
(mainly metastatic melanomas) showed an objective response rate of only 2.6%.98

However, more encouraging results have been observed in patients with non-Hodgkin
B-cell lymphoma (NHL) by targeting the tumor-specific Ig-Id, with 20e35% of patients
achieving objective responses.21,99

B-cell NHL has been an ideal target for tumor vaccines because malignant B cells
express both co-stimulatory molecules and a highly immunogenic target antigen (the
Ig-Id).98 Early observations in 1982 provided proof of principle that the immune sys-
tem was able to target Ig-Id and kill Ig-Id-positive (lymphoma) cells, since mAbs di-
rected against the Ig-Id induced tumor regression and even sustained clinical
remissions in a subset of patients with NHL.100 However, in a number of patients tu-
mors recurred which originated from cells that contained mutations of the unique Ig-
Id antigen that was recognized by the mAbs.99 This prompted investigations of specific
Ig-Id vaccination in the early 1990s. Researchers at Stanford University pioneered this
strategy, and used Ig-Id conjugated to the carrier protein keyhole limpet hemocyanin
(KLH), and an adjuvant (Syntax adjuvant formulation). This strategy led to polyclonal-
antibody and T-cell responses directed against several Ig-Id epitopes and resulted in
a decreased risk of tumor escape.99 Other investigators added injection of granulo-
cyte-macrophage-colony-stimulating factor (GM-CSF) in order to promote immune
responses.21 Results of phase-II studies in patients with follicular NHL who were in
complete remission at the beginning of the trial suggested effectiveness of the vaccine
in promoting anti Ig-Id immunity and clinical efficacy. This has led to the development
of phase-III clinical trials. Similarly, Ig-Id immunization has led to anti-idiotype immunity
in patients with multiple myeloma, although apparently this has as yet not translated
into improved survival.101

One strategy to increase antigen presentation has consisted of first pulsing matur-
ing dendritic cells in vitro and then administering the cells, followed by Ig-Id protein
boosts. This has resulted in objective responses in 20e35% of patients with B-cell
NHL who had measurable disease at the time of the vaccination.102

Ongoing studies are testing efficacy of vaccines directed against other tumor-
associated antigens, such as BCR/ABL protein or proteinase 3.24

Another approach involved injecting autologous or allogeneic tumor cells that were
genetically modified to secrete cytokines (such as GM-CSF) locally. This might allow
generation of immunity against several tumor-selective antigens (polyvalent vaccina-
tion), thereby reducing the risk of antigen escape of tumor cells.24

MONOCLONAL ANTIBODIES

The development of murine and rat hybridoma technologies in the 1970s has allowed
the production of mAbs of predefined specificity.103 Despite the relative success with
anti- mAbs directed against Ig-Id (see above)100, most rodent mAbs directed against
YBEHA442_proof � 5 July 2006 � 10/17
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human myeloid, B-cell or T-cell antigens have failed to produce significant responses in
vivo.104 These studies also revealed the deleterious effects of human anti-mouse anti-
bodies (HAMA).104 In 1994, it was shown that adding the human IgG1 Fc region to
murine mAb allowed more efficient complement-dependent cytotoxicity (CDC) and
increased antibody-dependent cellular cytotoxicity (ADCC) in comparison with the
murine Fc region.105 The use of human chimeric mAb has decreased host anti-mAb
responses, and increased the mAbs’ serum half-lives.105

Another important consideration for the efficacy of mAbs has been the characteris-
tics of the target antigens. Ideal antigens should be expressed at high density on the tumor
cells (>10000 binding sites per cell) and be weakly expressed by normal cells.104

Two different groups of humanized mAbs have been developed. The first group of
mAbs has targeted antigens (such as CD20, CD45 or CD52) that were slowly or min-
imally internalized after binding and relied on extracellular mechanisms of cytotoxicity
such as CDC or ADCC, or on being conjugated with b-emitting radionuclides. Exam-
ples of humanized antibodies directed against such targets currently in clinical use
include rituximab (anti-CD20)21 and alemtuzumab (anti-CD52).22 An example of a
radiolabeled mAb is a 131I-anti-CD45 antibody used before allogeneic HCT.25

The second group of mAbs was directed at target antigens that are internalized
after binding, such as CD33. Internalization has been required for those mAbs that
were developed for delivering toxins or chemotherapeutic drugs into the cytoplasm
of tumor cells. An example of a humanized mAb in clinical use is gemtuzumab ozogamicin,
a mAb that targets CD33 and is conjugated with calicheamicin, a highly potent antitumor
antibiotic that cleaves double-stranded DNA at specific sequences.23

SUMMARY

During the past 50 years, the use of the immune system to destroy hematological
malignancies has moved from a hypothesis to an effective therapy for thousands of
patients. Efficacy of immunotherapy has been demonstrated in patients with
hematological malignancies undergoing allogeneic HCT following non-myeloablative
conditioning. Independent from advances in allogeneic HCT, MAbs targeting CD20,
CD52, CD45 or CD33 have been developed and become important therapeutic tools
for B-cell NHL, chronic lymphocytic leukemia, and acute myeloid leukemia. Finally, re-
cent progress in tumor immunology might lead to successful tumor vaccines and to
the development of highly cytotoxic autologous tumor-specific T cells.

Practice points

� allogeneic immunocompetent cells transplanted with the graft mediate thera-
peutic anti-tumor effects after allogeneic HCT (graft-versus-tumor effect)
� efficacy of graft-versus-tumor effect has been demonstrated in patients

with hematological malignancies undergoing allogeneic HCT following non-
myeloablative conditioning
� monoclonal antibodies targeting CD20, CD52, CD45 or CD33 have been de-

veloped and become important therapeutic tools for the treatment of B-cell
non-Hodgkin lymphoma, chronic lymphocytic leukemia, and acute myeloid
leukemia
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