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Introduction

The classical setting

A vector field X on an ordinary smooth manifoldM can be lifted in a natural way to a vector
field on T ∗M , thereby defining an action of the algebra of vector fields on M , Vect(M), on
the subspace of functions on T ∗M that are polynomial in the fibers. Those functions are
called “symbols”. It turns out that there is a unique (up to a normalization) Vect(M)-
equivariant map from the space of symbols of degree at most one to the space of differential
operators onM , namely geometric quantization [?]. However, geometric quantization cannot
be extended to the whole space of symbols if one requires equivariance with respect to the
Lie algebra Vect(M), due to cohomological reasons [?].

One can ask whether there exists a Lie subalgebra g ⊂ Vect(M) for which geometric quanti-
zation can be extended as a g-equivariant quantization map. This g should be “as big as pos-
sible” to attain the uniqueness, but “small enough” to acquire the extension of the geometric
quantization to the whole space of symbols. WhenM = Rn with a PGL(n+1,R)-structure,
the quantization map has been investigated by P. Lecomte and V. Ovsienko [?]. They
showed that there exists a unique quantization map that is pgl(n+ 1,R)-equivariant.

The concept of pgl(n+1,R)-equivariant quantization on Rn has a counterpart on an arbitrary
smooth manifold M [?]. It aims at constructing, for any manifold M , a quantization map
QM,∇ by means of a connection, depending only on its projective class (i.e. projectively
invariant) and natural in all of its arguments. The existence of such a quantization procedure
was proved by M. Bordemann [?].

This natural projectively invariant quantization (NPIQ) on smooth manifolds is a general-
ization of projectively equivariant quantization on Rn. Indeed, if Q is a natural projectively
invariant quantization, then QRn,∇0

(where ∇0 stands for the canonical flat connection on
Rn) is a projectively equivariant quantization. The idea of the proof is as follows: naturality
means that Q is equivariant with respect to all vector fields on Rn, but only vector fields in
pgl(n+ 1,R) (seen as a subalgebra of Vect(M)) preserve the projective class of ∇0, so that
QRn,∇0

is projectively equivariant only with respect to those vector fields.
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The super setting

In 2011, P. Mathonet and F. Radoux [?] extended the problem of projectively equivariant
quantization (PEQ) from ordinary smooth manifolds to supermanifolds. As a starting point,
they managed to embed the Lie superalgebra pgl(p+1|q,R) in the Lie superalgebra of vector
fields on the flat supermanifold Rp|q. Their embedding provides formulas that superize the
classical ones, and so does their construction of a PEQ.

In the same way as in the classical case, one can wonder if projectively equivariant quan-
tization on Rp|q has a counterpart on arbitrary supermanifolds. A partial positive answer
to this question has first been given in [?], where a projectively invariant quantization on
supermanifolds has been constructed for symbols of degree less than or equal to two. Then
F. Radoux and the author [?] showed that both the problem of NPIQ and M. Borde-

mann’s method can be extended to the super setting (except for some peculiar values of the
superdimension p− q).

At this stage, one could think that the super picture was complete since it encompassed
both projectively equivariant quantization and natural projectively invariant quantization.
Nevertheless, some important pieces of the puzzle were missing.

(i) The super projective embedding of pgl(p+1|q,R) found by P. Mathonet and F. Radoux

was not constructed in terms of fundamental vector fields associated with an action
of a projective supergroup on a supermanifold (as in the classical case). Indeed, their
construction goes as follows: with each element of pgl(p+ 1|q,R), they first associate
a linear vector field on Rp+1|q; this linear vector field, restricted to some homogeneous
superfunctions, then amounts to a vector field on Rp|q.

(ii) Although the explicit formula found by P. Mathonet and F. Radoux for pgl(p +

1|q,R)-equivariant quantization could be recovered by means of M. Bordemann’s
construction, no proof could be given that the problem of NPIQ was a priori a gener-
alization of projectively equivariant quantization on the flat superspace.

(iii) No geometric interpretation in terms of supergeodesics could be given for the condi-
tion of projective invariance imposed on super NPIQ. In the classical setting, thanks
to a result due to H. Weyl [?], it is known that the algebraic condition used to
define projective equivalence between two torsion-free connections (i.e., their differ-
ence tensor can be expressed in terms of 1-form) means that the connections have the
same geodesics up to reparametrization. As geodesics on smooth manifolds generalize
the notion of straight lines in Rn, H. Weyl’s result relates somehow the projective
invariance condition imposed on NPIQ to the projective origin of PEQ.
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This document

We focus mainly on answering the following questions:

(i) Does the projective embedding of pgl(p + 1|q,R) as a subalgebra of Vect(Rp|q) arise
from the action of a supergroup on a supermanifold of graded dimension p|q ?

(ii) Does the problem of NPIQ on supermanifolds in graded dimension p|q generalize a
priori the problem of PEQ on Rp|q ?

(iii) Does the algebraic condition of projective equivalence of torsion-free connections have
a geometric counterpart in terms of supergeodesics ?

The text is divided into four chapters.

In the first chapter, we answer question (i): we recover the realization of pgl(p + 1|q,R) as
a subalgebra of vector fields starting from an action of a supergroup on a supermanifold.
Moreover, we describe the problem of projectively equivariant quantization and we recall
the results of F. Radoux and P. Mathonet about existence and uniqueness of such a
quantization.

In the second chapter, we prepare the study of question (ii). More precisely, we set up a
geometric definition for the Lie derivative of geometric objects (as a derivative along the
flow of a vector field) and we establish a Peetre-like result for local linear operators between
vector geometric objects. To this aim, we propose a definition of super natural bundles
over A-manifolds, a superization of natural bundles (over smooth manifolds) in the sense of
A. Nijenhuis [?, ?].

In the third chapter, we answer question (iii): we show that projectively equivalence can be
equivalently described in algebraic terms or in terms of super geodesics. This is based on
a joint paper [?] with F. Radoux and G. Tuynman. Moreover, in the perspective of the
study of question (ii), we show that the vector fields obtained in Chapter 1 by means of the
projective embedding preserve the projective class of the canonical flat connection on the
flat superspace.

In the fourth chapter, we finally answer question (ii): we prove that the problem of natural
projectively invariant quantization on supermanifolds is a priori a generalization of the
problem of projectively equivariant on the flat superspace. Moreover, we describe how the
superization of M. Bordemann’s procedure allows one to construct a NPIQ for most values
of the graded dimension and we discuss the situation in the peculiar cases. This is based on
a joint paper [?] with F. Radoux.
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The language of A-manifolds

We will work with the geometric H∞ version of DeWitt supermanifolds, which is equivalent
to the theory of graded manifolds of Berezin, Leites and Kostant (see [?, ?, ?, ?, ?]). More
precisely, we will use the language of A-manifolds introduced by G. Tuynman [?]. The
choice of this language is motivated by the fact that it is well-suited to dealing with geometric
notion like smooth supergroup actions, supercurves, etc.

For the reader who is not familiar with A-manifolds, we provide a quick introduction to
A-manifolds (Appendix A) and fiber bundles over them (Appendix B). The presentation
is very incomplete and covers only some basic ingredients of the formalism. For a more
comprehensive presentation, the reading of G. Tuynman’s book [?] is highly suggested.
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Chapter 1

Projectively Equivariant

Quantization

in Super Geometry

In this chapter, we first aim to recover a geometric origin for the “super projective embed-
ding” found by P. Mathonet and F. Radoux [?]. In the language of A-manifolds, the
superization of the classical construction turns out to be pretty straightforward and we do
recover the formulas of P. Mathonet and F. Radoux for the embedding of pgl(p+ 1|q,R)

into the Lie algebra of vector fields on the flat superspace of dimension p|q.

Remark. Actually, the construction yields a bit more: a smooth family of (not necessarily
smooth) vector fields indexed by an A-Lie algebra, with respect to which the projective
embedding of pgl(p + 1|q,R) is just the restriction to the smooth elements. This family
will play a major role in Chapter 4, where we prove that Natural Projectively Invariant
Quantization (NPIQ) is a generalization of Projectively Equivariant Quantization (PEQ).

Having recovered the geometry of the projective embedding, we describe the problem of
Projectively Equivariant Quantization on Ep|q0 , the flat superspace of dimension p|q. An im-
portant point there is that all objects involved in the quantization problem are obtained in an
algebraic way from the real superalgebra C∞(E

p|q
0 ). Consequently, because of the canonical

isomorphism C∞(E
p|q
0 ) ∼= C∞(Rp|q), PEQ on Ep|q0 in our sense is the same as pgl(p+1|q,R)-

equivariant quantization on Rp|q in the sense of P. Mathonet and F. Radoux. In partic-
ular, their main result about existence and uniqueness of pgl(p+ 1|q,R)-equivariant quanti-
zation rules existence and uniqueness of PEQ here.
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There is a local action of the projective supergroup
on the flat superspace.

1.1 There is a local action of the projective supergroup

on the flat superspace.

Preliminary Remark

In the framework of R-manifolds, matrix mutliplication provides a smooth (left) action of the
Lie group GL(p+ 1,R) on Rp+1. This action corresponds to the evaluation of the elements
of the group Aut(Rp+1) through the canonical matrix representation associated with any
automorphism of Rp+1. In the framework of A-manifolds, remember [?]:

“Special attention has to be paid to matrices associated to linear maps. Whereas in usual

linear algebra there is a single natural way to associate a matrix to a linear map when a

basis has been given, in graded linear algebra there are three natural ways to do so. Each

of these three ways has its own advantages and disadvantages.”

The different matrix representations for elements of EndR(E) ∼= E ⊗ E∗ correspond to the
choice of either the left-, right- or middle-coordinates associated with the basis vectors ei⊗ej .

In view of this subtlety, we shall mainly speak in terms of automorphisms. When using
matrices (i.e., when performing computations in coordinates), we shall always specify which
coordinates are understood.

1.1.1 The flat superspace

By definition, the A-vector space Ep+1|q is the A-module Ap+1 × (ΠA)q, where Π is the
parity reversal operation (see [?, pg 102] or Appendix B), together with the equivalence class
of bases of the canonical basis{

ei = (
(0)

0 , . . . , 0,
(i)

1 , 0, . . . ,
(p+q)

0 ) : i = 0, . . . , p+ q

}
.

The elements of the even part Ep+1|q
0 are thus represented by p + 1 even (commuting)

coordinates and q odd (anti-commuting) coordinates in any basis of E.

Definition. The flat supermanifold of dimension p+ 1|q is Ep+1|q
0

∼= Ap+1
0 ×Aq1.

By definition, Ep+1|q
0 is an A-manifold covered by the chart id

E
p+1|q
0

: E
p+1|q
0 → E

p+1|q
0 .

Moreover, the topology on Ep+1|q
0 is the De witt topology: a subset U is open in Ep+1|q

0 if
BU is open in BE

p+1|q
0 ' Rp+1 and U = B−1(BU).

7



There is a local action of the projective supergroup
on the flat superspace.

1.1.2 The projective superspace

Roughly speaking, the projective superspace of dimension p|q is the space of (even) straight
lines in the flat superspace Ep+1|q

0 .

Definition. Any two points x, y ∈ Ep+1|q
0 \B−1({0}) are projectively equivalent if there is

an element a ∈ A0 \B−1({0}) such that y = a · x. The corresponding quotient space

P(E
p+1|q
0 ) = (E

p+1|q
0 \B−1({0})) / (A0 \B−1({0})) ,

endowed with the quotient topology, is called the projective superspace of dimension p|q.

Local charts

The space P(E
p+1|q
0 ) is an A-manifold. For any i = 0, ..., p, we set

Vi = {[(x0, ..., xp, ξ1, ..., ξq)] ∈ P(E
p+1|q
0 ) : Bxi 6= 0} .

Obviously, we have P(E
p+1|q
0 ) =

⋃p
i=0 Vi. We also define

ϕi : Vi → E
p|q
0 = (Ap ×ΠAq)0 , [(x0, ..., xp, ξ1, ..., ξq)] 7→ x−1

i · (x0, , ...̂i..., xp, ξ1, ..., ξq) ,

where î means that xi is omitted. Each map ϕi is a homeomorphism with inverse

ϕ−1
i : E

p|q
0 → Vi , (x1, ..., xp, ξ1, ..., ξq) 7→ [(x1, ..., xi, 1, xi+1, ..., xp, ξ1, ..., ξq)] .

The change of charts ϕji = ϕj ◦ϕ−1
i are smooth because multiplying and inverting elements

in A are smooth operations. Thus, we have endowed P(E
p+1|q
0 ) with an atlas.

1.1.3 The projective supergroup

Definition. We say that any two automorphisms g, h ∈ Aut(Ep+1|q) are projectively equiv-
alent if there is an element a ∈ A0 \B−1({0}) such that g = λa ◦ h, where λa stands for the
left multiplication by a (i.e., λa(x) = a · x). The corresponding quotient space

PAut(p+ 1|q,A) = Aut(Ep+1|q) / (A0 \B−1({0})) ,

endowed with the quotient topology, is called the projective supergroup in dimension p|q.
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There is a local action of the projective supergroup
on the flat superspace.

An A-Lie group

The space PAut(p+1|q,A) is an A-manifold. Indeed, PAut(p+1|q,A) can easily be covered
with charts similar to those of the projective space, but valued in (A(p+1)2+q2−1×ΠA2pq)0:
for any (i, j) ∈ I = {0, ..., p}2 ∪ {p+ 1, ..., p+ q}2, we set

Vi,j =
{

[g] ∈ PAut(p+ 1|q,A) : (Bg)ij 6= 0
}
,

where Bg is seen as an element of GL(p+ 1|q,R). Then we define

ϕi,j : Vi,j → E
(p+1)2+q2−1|2(p+1)q
0 ,

g =

p+q∑
k,l=0

ykl · ek ⊗ el
 7→ (yij)

−1·
(
y0

0 , ..., y
0
p+q, y

1
0 , ...(̂i, j)..., y

p+q
p+q

)
.

The A-manifold PAut(p+ 1|q,A) is an A-Lie group. Indeed, for any g, h ∈ Aut(Ep+1|q), we
have a smooth multiplication (smoothness is easily shown using charts):

[g] · [h] = [g ◦ h] .

Action on the projective superspace

The A-Lie group PAut(p+ 1|q,A) acts (smoothly, on the left) on the projective superspace
of dimension p|q by means of the map

Φ̃ : PAut(p+ 1|q,A)× P(E
p+1|q
0 )→ P(E

p+1|q
0 ) , ([g], [x]) 7→ [g(x)] .

The body of this action recovers the usual action of PGL(p+ 1,R) = GL(p+ 1,R)/R0.Id on
the projective space PpR = (Rp+1\{0})/R0, i.e., we have a commutative diagram

PAut(p+ 1|q,A)× P(E
p+1|q
0 )

Φ̃ //

B

��

P(E
p+1|q
0 )

B

��
PGL(p+ 1,R)× PpR BΦ̃ // PpR

with

BΦ̃ : PGL(p+ 1,R)× PpR→ PpR , ([A], [x]) 7→ [Ax] .

9



There is a local action of the projective supergroup
on the flat superspace.

1.1.4 The projective superalgebra

Definition. We denote by paut(p+1|q,A) theA-Lie algebra of theA-Lie group PAut(p+ 1|q,A).

We have

paut(p+ 1|q,A) = EndR(Ep+1|q)/A.Id .

Indeed, the A-Lie algebra of Aut(Ep+1|q) can be interpreted as the whole A-vector space
EndR(Ep+1|q), endowed with the usual (graded) commutator of endomorphisms (see [?]).
Moreover, since Lie((A0 \B−1({0}).Id) = Lie(Aut(A)) = EndR(A) = A.Id , it follows from
[?, Theorem VI.5.9] that theA-Lie algebra of PAut(p+1|q,A) is nothing but EndR(Ep+1|q)/A.Id,
where two automorphisms g, h ∈ EndR(Ep+1|q) belong to the same coset if there is an ele-
ment a ∈ A such that g − h = λa : x 7→ a · x.

The 3-grading of pgl(p+ 1|q,R)

In the classical context, the Lie algebra pgl(p + 1,R) has a natural decomposition into a
direct sum of 3 Lie algebras. This decomposition was extended to the super context in [?]
as follows: any element g of pgl(p+ 1|q,R) can be represented in the canonical coordinates
of Rp+1|q by a matrix(1)(

ag vg

ξg Ag

)
, (1.1)

where ag ∈ R, vg ∈ Rp|q , ξg ∈ (Rp|q)∗ and Ag ∈ gl(p|q,R); this decomposition of matrices
defines an even R-linear bijection

j : pgl(p+ 1|q,R)→ Rp|q ⊕ gl(p|q,R)⊕ (Rp|q)∗ : [g] 7→ (vg, (Ag − ag · Idp|q), ξg) .

Using this bijection, the Lie algebra structure of pgl(p+ 1|q,R) can be transported to Rp|q⊕
gl(p|q,R)⊕ (Rp|q)∗: the transported Lie bracket reads


[v, w] = 0 , [A, v] = A(v) ,

[A,B] = A ◦B − (−1)ε(A).ε(B)B ◦A , [ξ, v] = −ξ(v) · Idp|q − (−1)ε(ξ).ε(v) · v ⊗ ξ ,
[ξ, ζ] = 0 , [ξ, A] = ξ ◦A ,

(1.2)

where v, w (resp. A,B, resp. ξ, ζ) stand for elements of Rp|q (resp. gl(p|q,R), resp. (Rp|q)∗).
1 Note that in the context of real super vector spaces, the entries of matrices are real numbers and the

matrix representation of a linear map is unique.
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There is a local action of the projective supergroup
on the flat superspace.

The 3-grading of paut(p+ 1|q,A)

In turn, the A-Lie algebra paut(p + 1|q,A) inherits a similar decomposition through the
body map. Indeed, there is a unique even A-linear bijection

Gj : paut(p+ 1|q,A)→ g(−1) ⊕ g(0) ⊕ g(1) ,

where g(−1) = Ep|q, g(0) = EndR(Ep|q) and g(1) = (Ep|q)∗, such that BGj = j. More
explicitly, we have

Gj

([
p+q∑
k=1

yk0 · ek ⊗ e0

])
=

p+q∑
k,l=1

ykl · ek ∈ Ep|q

Gj

y0
0 · e0 ⊗ e0 +

p+q∑
k,l=1

ykl · ek ⊗ el
 =

p+q∑
k,l=1

(ykl − δkl · y0
0) · ek ⊗ el ∈ EndR(Ep|q)

Gj

([
p+q∑
l=1

y0
l · e0 ⊗ el

])
=

p+q∑
l=1

y0
l · el ∈ (Ep|q)∗

UsingGj, we can transport theA-Lie algebra structure from paut(p|q,A) = EndR(Ep+1|q)/A.Id
to Ep|q ⊕ EndR(Ep|q)⊕ (Ep|q)∗:

[h1, h2] = Gj
([
A ◦B − (−1)ε(A).ε(B) ·B ◦A

])
,

if Gj−1(h1) = [A] and Gj−1(h2) = [B]. Doing so, we recover formulas (1.2) but now with
v, w (resp. A,B, resp. ξ, ζ) in Ep|q (resp. gl(p|q,A), resp. (Ep|q)∗).

1.1.5 The projective embedding

Identifying Ep|q0 with the open subset ϕ−1
0 (E

p|q
0 ) ⊂ P(E

p+1|q
0 ), we can associate with each

element h ∈ g(−1) ⊕ g(0) ⊕ g(1) a vector field Xh on Ep|q0 , namely (the local expression of)
the fundamental vector field corresponding to Gj−1(h) ∈ paut(p+ 1|q,A).

Proposition 1. In terms of the Euler vector field E =
∑
k y

k · ∂yk , we have
Xv = −

∑p+q
i=1 v

i · ∂yi , if v =
∑p+q
i=1 v

i · ei ∈ g(−1) ,

XA = −
∑p+q
i,j=1(−1)εj .(εi+εj) ·Aij · ∂yi , if A =

∑p+q
i,j=1A

i
j · ei ⊗ ej ∈ g(0) ,

Xξ =
∑p+q
j=1(−1)εj · ξj · yj · E , if v =

∑p+q
j=1 ξj · ej ∈ g(1) .

(1.3)

In particular, the vector field Xh is smooth if and only if h lies in the body of Ep|q ⊕
EndR(Ep|q)⊕ (Ep|q)∗, i.e., the components of h in any basis are real numbers.
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There is a local action of the projective supergroup
on the flat superspace.

Proof. By definition of the fundamental vector fields [?, VI.5.1], the value of Xh at x ∈ Ep|q0

is given by the local expression of the generalized tangent map −T Φ̃ϕ−1
0 (x), evaluated at

Gj−1(h) ∈ paut(p+ 1|q,A) (seen as a tangent vector at the identity of PAut(p+ 1|q,A)). In
practice, we then have

Xh(x) = hi ·
(

(∂xiΦ̃
j)(x)

)
· ∂xj |x ,

where the hi are the left coordinates of h ∈ g(−1)⊕g(0)⊕g(1) and where the Φ̃j are the p+ q

components of the local expression

ϕ0 ◦ Φ̃ϕ−1
0 (x) ◦ ϕ

−1
0,0(x) : ϕ0,0(V0,0) ⊂ Ep

2+q2−1|2pq
0 → E

p|q
0 ,

Computations are straightforward.

Corollary 2. If for any two h1, h2 ∈ g, we define the Lie bracket of Xh1 and Xh2 by

[Xh1 , Xh2 ](x) = Tπ3([Z1, Z2](h1, h2, x)) ,

where each Zi is the smooth vector field on g × g × Ep|q0 defined by Zi(h1, h2, x) = 0h1
+

0h2
+Xhi

x , then the map h 7→ Xh becomes a morphism of A-Lie algebras. In particular, the
set of smooth vector fields {Xh : h ∈ Bg} is canonically isomorphic to pgl(p + 1|q,R) as a
real superalgebra .

Proof. Computations are straightforward from the local expression of the vector fields Xh

and the local formula for the graded bracket of vector fields [?, V.1.21]. Note that for
h1, h2 ∈ Bg, we deal with matrices having real entries and our computations coincide with
those of [?] since they used formulas (1.3) too.

For arbitrary h1, h2 ∈ g, you basically have to use the usual local formula for the graded
bracket of super vector fields, taking care to treat the coefficients of h as constant with
parities. Doing so, you can check that the local formulas forX [h1,h2] and [Xh1 , Xh2 ] coincide.
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A PEQ is a quantization that is equivariant with
respect to the projective superalgebra of vector fields.

1.2 A PEQ is a quantization that is equivariant with

respect to the projective superalgebra of vector fields.

With {Xh : h ∈ Bpaut(p + 1|q,A)}, we have somehow recovered the realization found by
F. Radoux and P. Mathonet [?] of the real superalgebra pgl(p + 1|q,R) as a subalgebra
of vector fields on the flat superspace of graded dimension p|q. We are now in position to
describe the problem of Projectively Equivariant Quantization (or PEQ, for short) in the
language of A-manifolds.

1.2.1 Tensor densities and weighted symmetric tensors

Definition. The space Fλ of densities of weight λ over Ep|q0 is an R-linear representation
of Vect(E

p|q
0 ) on the (infinite-dimensional, Z2-graded) R-vector space F = C∞(E

p|q
0 ). The

action of Vect(E
p|q
0 ) ∼= DerC∞(E

p|q
0 ) is defined by the Lie derivative

LλXf = DX(f) + λ · div(X) · f, (1.4)

where DX is the derivation associated with X and where div, the divergence, is the even
R-linear operator whose value on a homogeneous vector field X =

∑p+q
i=1 X

i ·∂yi is given by

div(X) =

p+q∑
i=1

(−1)εi.(ε(X)+εi) · (∂yiXi) ∈ F . (1.5)

Definition. The space of symmetric tensor fields of weight δ and degree k is an R-linear
representation of Vect(E

p|q
0 ) on the (infinite-dimensional, Z2-graded) R-vector space

Skδ = Fδ ⊗C∞(E
p|q
0 )
∨kVect(E

p|q
0 ) .

The action of Vect(E
p|q
0 ) is defined by the Lie derivative

Lδ,kX (f ⊗X1 ∨ · · · ∨Xk) = LδXf ⊗X1 ∨ · · · ∨Xk

+

k∑
i=1

(−1)ε(X).(
∑i−1
l=1 ε(Xl)) ·X1 ∨ · · · ∨ [X,Xi] ∨ · · · ∨Xk . (1.6)

Remark. Because of the definition of the partial derivatives (see Subsection A.2.2), the
canonical isomorphism of real superalgebras Φ : C∞(E

p|q
0 ) ∼= C∞(Rp|q) (see formula (A.2))

induces an isomorphism Φ∗ between the representation of Vect(E
p|q
0 ) on Skδ and the rep-

resentation of Vect(Rp|q) on the space of weighted symmetric tensor fields considered by
F. Radoux and P. Mathonet [?]: Φ∗(f ⊗ ∂y1 ∨ · · · ∂yp+q ) = Φ(f)⊗ ∂y1 ∨ · · · ∂yp+q .
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A PEQ is a quantization that is equivariant with
respect to the projective superalgebra of vector fields.

1.2.2 Differential operators and symbols

Let k ∈ N. We denote by Dkλ,µ the (infinite-dimensional, Z2-graded) R-vector space of R-
linear differential operators D : Fλ → Fµ of order at most k. Any differential operator
D ∈ Dkλ,µ reads in coordinates as

D(f)(y1, . . . , yp+q) =
∑
|α|6k

Dα(y1, . . . , yp+q) ·
(
(∂yαf)(y1, . . . , yp+q)

)
, (1.7)

where α is a multi-index, each Dα is a local δ-density (δ = µ − λ), |α| =
∑p+q
i=1 αi,

αp+1, . . . , αp+q are either 0 or 1 and ∂yα stands for ∂α1

y1 · · · ∂
αp+q
yp+q .

The natural (left) linear representation of Vect(E
p|q
0 ) on Dkλ,µ is given by the graded com-

mutator: for any homogeneous D ∈ Dλ,µ and X ∈ Vect(E
p|q
0 ), we set

Lk,λ,µX D = LµX ◦D − (−1)ε(X).ε(D) ·D ◦ LλX . (1.8)

The Vect(E
p|q
0 )-module of symbols is then the graded space associated with the filtered

space Dλ,µ =
⋃
k∈NDkλ,µ. It is isomorphic (as a representation of Vect(E

p|q
0 )) to the space

of weighted symmetric tensor fields

Sδ =
⊕
k∈N
Skδ , δ = µ− λ .

Indeed, the isomorphism comes from the principal symbol operator, σk : Dkλ,µ → Skδ , whose
value on an element D which reads as (1.7), is given by

σk(D) =
∑
|α|=k

Dα ⊗ ∂α1

y1 ∨ · · · ∨ ∂
αp+q
yp+q . (1.9)

This operator commutes with the action of smooth vector fields and induces an R-linear
even bijection from Dkλ,µ/D

k−1
λ,µ to Skδ .

Remark. Let Φ : C∞(E
p|q
0 ) ∼= C∞(Rp|q) be the canonical isomorphism of real superalge-

bras. The map D 7→ Φ∗(D) = Φ ◦D ◦Φ−1 is an isomorphism between the representation of
Vect(E

p|q
0 ) on Dkλ,µ and the representation of Vect(Rp|q) on the space of differential operators

from λ-densities to µ-densities considered by F. Radoux and P. Mathonet [?].

14



A PEQ is a quantization that is equivariant with
respect to the projective superalgebra of vector fields.

1.2.3 Projectively Equivariant Quantization

Let λ, µ ∈ R and δ = λ− µ. By a quantization on Ep|q0 , we mean an even R-linear bijection

Q : Sδ → Dλ,µ

that preserves the principal symbol, i.e., for any k ∈ N and any T ∈ Skδ , Q must satisfy

σk(Q(T )) = T . (1.10)

We say that a quantization Q is projectively equivariant when we have

Lk,λ,µ
Xh

◦Q = Q ◦ Lk,δ
Xh

for all h ∈ pgl(p+ 1|q,R) ,

where pgl(p+ 1|q,R) is identified to Bpaut(p+ 1|q,A).

Existence and uniqueness

Through the canonical isomorphism of real superalgebras Φ : C∞(E
p|q
0 ) ∼= C∞(Rp) ⊗R∧

Rq = C∞(Rp|q), the problem of PEQ described above is just a rewording of the problem
of pgl(p + 1|q,R)-equivariant quantization studied by P. Mathonet and F. Radoux in
[?]. In particular, their main result about existence and uniqueness rules existence and
uniqueness of PEQ here.(2)

Definition. When n−m 6= −1, we define the numbers

γ2k−l =
(n−m+ 2k − l − (n−m+ 1)δ)

n−m+ 1
.

A value of δ is said to be critical if there exist k, l ∈ N such that 1 ≤ l ≤ k and γ2k−l = 0.

Theorem 3 (Mathonet-Radoux).

(i) When p − q 6= −1 and δ = µ − λ is not critical, there is a unique pgl(p + 1|q,R)-
equivariant quantization Q : Sδ → Dλ,µ.

(ii) When p− q = −1, there is a 1-parameter family of pgl(p+ 1|q,R)-equivariant quanti-
zations Q : Sδ → Dλ,µ (without any restriction on the values of λ and µ).

2If Q is a pgl(p+ 1|q,R)-equivariant quantization on Rp|q , then Φ∗ ◦Q ◦ Φ∗ is a PEQ on Ep|q0 .
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A PEQ is a quantization that is equivariant with
respect to the projective superalgebra of vector fields.

1.2.4 About the equivariance condition

So far, the condition of projective equivariance composed on PEQ is mainly algebraic: it is
expressed in terms of algebraic Lie derivatives, not in terms of Lie derivatives corresponding
to derivatives along the flow of vector fields. Moreover, since our algebraic Lie derivatives
exist only for smooth vector fields, the equivariance condition is limited to asking for equiv-
ariance with respect to the fundamental vector fields associated with elements in the body
of the A-Lie algebra paut(p+ 1|q,A).

We shall see that the equivariance condition can be stated equivalently in terms of the
fundamental vector fields associated with the whole even part of paut(p+ 1|q,A), this even
part being known to capture the whole information about the Lie group action (see [?,
Chapter VI, paragraph 5]). But before being in position to see it, we shall need to develop
a geometric language for symbols, differential operators and their Lie derivatives in the
direction of (not necessarily smooth) vector fields. The development of this language will
be the core of Chapter 2.

As often, the “semantic limitation” (here, the fact that algebraic Lie derivatives make sense
only for smooth vector fields) will be removed by means of a change of viewpoint: rather
then restricting the projective embedding h 7→ Xh to pgl(p + 1|q,R) to avoid non-smooth
vector fields, we can see it as a smooth family of (possibly non-smooth) vector fields, i.e.,
we can consider h as a variable and look at the smooth map

Z : paut(p+ 1|q,A)0 × Ep+q0 → TEp+q0 , (h, x) 7→ Xh
x

The geometric equivariance condition will consist in asking for equivariance with respect to
the (yet to define) Lie derivative in the direction of this smooth family of even vector fields.
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Chapter 2

Natural Bundles over

A-Manifolds

The concept of a natural bundle over a smooth manifold was introduced in the 1970’s by
A. Nijenhuis [?] in order to formalize in modern terms the idea of a geometric object on a
smooth manifold.

In this chapter, we first aim at extending the concept of a natural bundle from ordinary
smooth manifolds toA-manifolds. Following A. Nijenhuis, we shall define geometric objects
on manifolds by means of natural bundle functors, i.e., functors that associate with an A-
manifold a fiber bundle over it.

As often in supergeometry, it will be useful to perform a slight change of viewpoint in order
to circumvent some semantic obstructions. For instance, remember that although the flow
of a vector field X ∈ Γ(TM) is smooth as a map A0×M →M , the induced maps M →M

corresponding to a fixed t ∈ A0 are not smooth in general. Since natural bundle functors
should be able to lift the flow of vector fields in order to define Lie derivatives, natural bundle
functors in the context of A-manifolds need to be defined not only on local diffeomorphisms
M → N , but on all smooth families P ×M → N (where P is an A-manifold of parameters)
of locally invertible maps M → N .

By the way, also our spaces of geometric objects will be larger than what a straightforward
superization would suggest: given a natural bundle functor F , a geometric object of type F
on a A-manifold is any smooth family of local sections, i.e., smooth maps P ×M → FM
such that for any p ∈ P , the induced map M → FM is a section (not necessarily a smooth
one) of the bundle π : FM →M built by F over M .

In terms of these “extended” geometric objects, we will then give a definition of natural
operators between natural bundle functors. At the end of this chapter, we will then show
that natural linear operators are differential operators.
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Natural bundle functors on A-manifolds can lift
smooth families of local homeomorphisms.

2.1 Natural bundle functors on A-manifolds can lift

smooth families of local homeomorphisms.

2.1.1 From local diffeomorphisms to smooth families

The classical setting

In the classical setting, natural bundle functors operate from the category of smooth mani-
folds and local diffeomorphisms between them to the category of fiber bundles and fibered
smooth maps between them. They are defined as follows (see [?]):

A natural bundle functor in dimension n is a covariant functor

F : Manm → Fibn

possessing the following three properties.

(P) Prolongation:

(i) Each FM is a fiber bundle πFM : FM →M over M .

(ii) The image of a morphism Φ : M → N is a morphism

FΦ : FM → FN

such that the following diagram commutes.

FM
πFM

��

FΦ // FN
πFN

��
M

Φ // N

(R) Regularity: if Φ : P ×M → N is a smooth map such that all Φp = Φ(p, ·) are local
diffeomorphisms, then F̃Φ : P×FM → FN , defined by (F̃Φ)p = FΦp, is also smooth.

(L) Locality: If ι : U →M is the inclusion of an open submanifold, then FU = π−1
FM (U)

and Fι : FU → FM is the inclusion of π−1
FM (U) in FM .

The regularity property was shown to be a consequence of the other two requirements
(prolongation and locality). However, it is very useful in the theory of natural bundles,
especially for defining Lie derivatives of geometric objects (the regularity condition ensures
that the pullback of a geometric object by the flow of a vector field is smooth with respect
to the time parameter). Therefore, one usually continues to include it in the definition of
(classical) natural vector bundle functors.
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Natural bundle functors on A-manifolds can lift
smooth families of local homeomorphisms.

The super setting

Passing from ordinary manifolds to A-manifolds, a quick look at how the regularity condition
should be superized suggests that a change of viewpoint could be necessary. Indeed, if super
natural bundle functors could only lift local diffeomorphisms between A-manifolds, then the
regularity condition would not be applicable to the flow of super vector fields (the flow is
not made of local diffeomorphisms because if we fix the time parameter, the resulting local
homeomorphism is in general not smooth). Therefore, if we want super natural bundles to
be able to lift the flow of vector fields (and we do want it in order to define Lie derivatives),
we need to enlarge the space of morphisms.

Definition. We denote by M̃an(A) the category whose objects are A-manifolds. The
space Hom

M̃an(A)
(M,N), also denoted by C̃∞(M,N), is made of all smooth maps Φ : W ⊂

P×M → N , whereW is an open subset in P×M (the A-manifold P is called the parameter
space of Φ). Morphisms are thus of the form

Φ(p, x) = Φp(x)

for some (not necessarily smooth) maps Φp : M → N . By definition, the composition of two
morphisms Φ : W ⊂ P ×M →M ′ and Φ′ : W ′ ⊂ P ′ ×M ′ → N is

Φ′◦Φ : {(p′, p, x) : (p, x) ∈W and (p′,Φp(x)) ∈W ′} ⊂ P ′×P×M → N, (p′, p, x) 7→ Φ′p′◦Φp(x) .

In particular, we have (Φ′ ◦ Φ)(p′,p) = Φ′p′ ◦ Φp.

Definition.

• We denote by M̃ann|m(A) the subcategory of M̃an(A) whose objects are A-manifolds
of graded dimension n|m. The space Hom

M̃ann|m(A)
(M,N) is the subset of all elements

Φ : W ⊂ P ×M → N in C̃∞(M ;N) for which the map

Φ̃ : W ⊂ P ×M → P ×N , (p, x) 7→ (p,Φp(x))

is a local diffeomorphism.(1)

• We denote by F̃ibn|m(A) the category whose objects are fiber bundles π : Eπ → M

over A-manifolds of graded dimension n|m. The space Homn|m(π, η) is the subset of
all fiber-preserving elements in C̃∞(Eπ, Eη), i.e., smooth maps Ψ : W ⊂ P ×Eπ → Eη

such that ψp(Eπ(e)) ⊂ Eη(ψp(e)) for all (p, e) ∈W .

1In view of the inverse function theorem for Φ̃ and of the definition of the generalized tangent map (see [?]),
asking for Φ̃ to be a local diffeomorphism amounts to asking for all the maps TΦp|TxM : TxM → TΦp(x)N

to be (even, left) A-linear bijections.
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Natural bundle functors on A-manifolds can lift
smooth families of local homeomorphisms.

2.1.2 Natural bundle functors on A-manifolds

Definition. A natural bundle functor in graded dimension n|m is a covariant functor

F : M̃ann|m(A)→ F̃ibn|m(A)

possessing the following three properties.

(P1) Prolongation: Each FM is a fiber bundle πFM : FM →M over M .

(R) Regularity: The image of a map Φ : W ⊂ P ×M → N is a map

FΦ : {(p, e) ∈ P ×FM : (p, πFM (e)) ∈W} ⊂ P ×FM → FN

Moreover, each (FΦ)p depends only of Φp in the sense that

Φ′p′ = Φp ⇒ (FΦ′)p′ = (FΦ)p

In particular, if p ∈ BP , then (FΦ)p = FΦp.(2)

(P2) Prolongation: Each (FΦ)p is over the corresponding Φp, i.e., the following diagram
commutes.

FM
πFM

��

(FΦ)p // FN
πN

��
M

Φp // N

(L) Locality: If ι : U →M is the inclusion of an open submanifold, then FU = π−1
FM (U)

and Fι : FU → FM is the inclusion of π−1
FM (U) in FM .

Remark. The locality property (L) and the regularity property (R) ensure together that
a natural bundle functor F is local on morphisms in the sense that

(Φ′p′)|U = (Φp)|U ⇒ (FΦ′)p′ |π−1(U) = (FΦ)p|π−1(U) .

Indeed, we have Φp|U = (Φ ◦ ι)p and Φ′p′ |U = (Φ′ ◦ ι)p′ , where ι : U → M is the inclusion.
Using this and both the locality and the regularity property, we obtain (FΦ′)p′ |π−1(U) =

(FΦ′)p′ ◦ Fι = (FΦ′ ◦ Fι)p′ = (F(Φ′ ◦ ι))p′ = (F(Φ ◦ ι))p = (FΦ ◦ Fι)p = (FΦ)p|π−1(U).

2Now that we consider smooth maps with a parameter space, regularity of an operator means that this
operator somehow leaves the parameter untouched and that it is compatible with reparametrizations. In the
sequel, all operators acting on smooth families will be assumed to have this property.

21



Natural bundle functors on A-manifolds can lift
smooth families of local homeomorphisms.

Geometric objects on A-manifolds

Definition.

• A natural bundle is a fiber bundle πFM : FM → M built from the data of an A-
manifold M by means of a natural bundle functor F .

• A geometric object of type F on M is a smooth family of (not necessarily) smooth
sections of πFM : FM →M , i.e., a smooth map

σ : W ⊂ P ×M → FM ,

such that for any (p, x) ∈ W , we have πFM ◦ σ(p, x) = x. The space of geometric
objects of type F on M is denoted by Γ̃(FM).

Remark. Let us stress that the space Γ̃(FM) contains smooth families of sections with
all possible parameter A-manifolds P . In particular, the space Γ(FM) of (unparametrized)
smooth sections is a subset of Γ̃(FM) (corresponding somehow to P = {0}).

The typical fiber of a natural bundle functor

If F is a natural bundle functor, all fiber bundles FM share the same typical fiber. Indeed,
note first that FEn|m0 is trivial: a global trivialization is given by the map

FEn|m0 → E
n|m
0 × F , e 7→ (π(e),F(t)(−π(e), e)) ,

where F = F0E
n|m
0 is the fiber at 0(3) and t : E

n|m
0 × En|m0 → E

n|m
0 is the smooth family

of all translations in En|m0 . By the locality property, it follows that

FO ∼= O × F

for all open subsets O ⊂ E
n|m
0 . Then, if (Ua, ϕa : Ua → Oa) is a chart of M , the locality

property gives

FM |Ua = FUa
Fϕa∼= FOa ∼= Oa × F ∼= Ua × F ,

showing that F is also the typical fiber of FM .

Remark. In the paragraph above, we constructed local trivializations to show that all fiber
bundles FM share the same typical fiber. Note that these local trivializations are completely
determined by the lifts Fϕa of local charts (Ua, ϕa) of M .

3Remember that when we have a fiber bundle, the fibers above the base points with real coordinates are
diffeomorphic to the typical fiber. Therefore we can assume here that the fiber at 0 is the typical fiber.
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Natural bundle functors on A-manifolds can lift
smooth families of local homeomorphisms.

2.1.3 Natural vector bundles

Definition. A natural vector bundle functor in graded dimension n|m is a natural bundle
functor F : Mann|m(A)→ Fibn|m(A) such that

• all bundles FM are vector bundles;

• all maps FΦ are smooth families of fiberwise even A-linear maps.

Transition functions on a natural vector bundles

When F is a natural vector bundle functor, the typical fiber F = F0E
n|m
0 is an A-vector

space. Moreover, the local trivializations of FM that we constructed in 2.1.2 from local
charts (Ua, ϕa) of M , namely

Ψa : FM |U → U × F , e 7→ (π(e),Ft(−ϕa(π(e)),Fϕa(e))) ,

are fiberwise even A-linear because both Ft and Fϕa are. In other words, the maps Ψa are
local trivializations of FM as a vector bundle.

Given an atlas {(Ua, ϕa)} of M , we claim that the morphisms Fϕba completely determine
the vector bundle structure of FM . On the one hand, we have

Ψb ◦Ψ−1
a (x, f) = (x,Ft(−ϕb(x),Fϕba ◦ Ft(ϕa(x), f))) ,

showing that the transition functions are the maps

Ψba(x) = (Ft)(−ϕb(x)) ◦ Fϕba ◦ (Ft)(ϕa(x)) . (2.1)

On the other hand, these maps are completely determined by the knowledge of the atlas
{(Ua, ϕa} and the collection of all maps {Fϕba}. Hence the claim.
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Natural bundle functors on A-manifolds can lift
smooth families of local homeomorphisms.

The space of geometric objects

If F is a natural vector bundle, the space Γ̃(FM) of geometric object of type F on M is a
C∞(M)-module. Indeed, the zero section 0 : M → FM is an element of Γ̃(FM). Moreover,
for any σ, σ′ ∈ Γ̃(FM), we can define

(σ + σ′)(p, p′, x) = σ(p, x) + σ′(p′, x) ∈ FxM .

for all (p, p′, x) such that (p, x) ∈ W and (p′, x) ∈ W ′. Finally, given a smooth function
f ∈ C∞(M), we form

(f · σ) : W ⊂ P ×M → FM , (p, x) 7→ f(x) · σ(p, x) ∈ FxM .

This being said, the space Γ̃(FM) also has a linear structure (over A). Indeed, for an
arbitrary a ∈ A, the maps (p, x) 7→ a · σ(p, x) and (p, x) 7→ σ(p, x) · a are in general
not smooth because a is not considered as a variable. However, nothing prevents us from
considering a as an additional parameter, i.e., we can define smooth families of sections

A · σ : A×W ⊂ A× P × U → FM , (a, p, x) 7→ a · (σ(p, x)) ∈ FxM

and

σ · A : A×W ⊂ A× P × U → FM , (a, p, x) 7→ (σ(p, x)) · a ∈ FxM .

With these new operations at hand, we introduce what is A-linearity for an operator acting
on geometric objects over an A-manifold.

Definition. A regular map T : Γ̃(FM) → Γ̃(GM) is said to be left A-linear (resp. right
A-linear) if{

T (σ + σ′) = T (σ) + T (σ′)

T (A · σ) = A · (T (σ)) (resp. T (A · σ) = A · (T (σ))) .

for all σ, σ′ ∈ Γ̃(FM).

Example 4. From any left linear vector bundle morphism Φ : FM → GM over φ = idM ,
we can define a map TΦ : Γ̃(FM)→ Γ̃(GM) by setting

TΦ(σ)(p, x) = Φ(σ(p, x)) ∈ GxM

Because of the fiberwise left A-linearity of Φ, TΦ is both C∞(M)-linear and left A-linear.
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Natural bundle functors on A-manifolds can lift
smooth families of local homeomorphisms.

Example : the tangent bundle

Let M be an A-manifold of dimension n|m and let {(Ua ⊂ M,ϕa : Ua → Oa ⊂ E
n|m
0 )} be

an atlas of M . The tangent bundle of M is the vector bundle TM with typical fiber En|m

and structure group Aut(En|m) determined by the transition functions

Ψba = Jac(ϕba) ◦ ϕa : Ub ∩ Ua → Aut(En|m) .

Remember that in terms of a basis {ei} of En|m, the Jacobian Jac(ϕba) ∈ C∞(ϕa(Ua ∩
Ub),HomL(En|m, En|m)) is given by

ι(hk · ek)(Jac(ϕba)(x)) = h̃l · el ,

where

h̃l = hk · (∂xkϕlba(x)) . (2.2)

Remark. The fact that the functions Jac(ϕba) ◦ ϕa satisfy the cocycle conditions (B.1)
follows from the chain rule:

Ψaa(x) = Jac(idOa)(ϕa(x)) = idEn|m

Ψcb(x) ◦Ψba(x) = Jac(ϕcb)(ϕb(x)) ◦ Jac(ϕba)(ϕa(x))

= Jac(ϕcb ◦ ϕba)(ϕa(x)) = Jac(ϕca)(ϕa(x)) .

Remark. Let U be an open subset of M . Since {(U ∩ Ua, ϕa|Ua} is an atlas of U , we have
the first part of the locality condition: TU = TM |U = π−1(U).

Definition. The tangent bundle functor associates with an A-manifold M its tangent
bundle TM while the image of a morphism Φ : W ⊂ P ×M → N is the smooth family of
all generalized tangent maps, i.e., TΦ : {(p, h) : (p, π(h)) ∈ W} ⊂ P × TM → TN is given
in fibered coordinates by

ι
(
hi · ∂xi |x

)
(TΦ)p = hi ·

(
(∂xiΦ

j)(p, x)
)
· ∂yj

∣∣
Φ(p,x)

.

The fact that T is a functor is an immediate consequence of the chain rule. The regularity
and locality conditions are obvious from the local expression of TΦ because there is no
derivative in the direction of the parameter p.

Remark. Comparing the local expression of TΦ with the definition of the maps Ψba shows
that the transition functions of the tangent bundle correspond to the tangent maps Tϕba of
the transition functions between charts.
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Natural bundle functors on A-manifolds can lift
smooth families of local homeomorphisms.

Smooth families of vector fields

Smooth families of sections of the tangent bundle, are called (smooth families of) vector
fields. As shown in [?, Chapter V], there is a one-to-one correspondence between (un-
parametrized) smooth vector fields and R-linear graded derivations of the algebra C∞(M).

Now from a smooth familyX ∈ Γ̃(TM) of vector fields, we can define a mapDX : C̃∞(M)→
C̃∞(M) by setting, in local coordinates,

DX(f)(p, p′, x) =
∑
i

Xi(p, x) · (∂xif)(p′, x) ,

if Xi(p, x) = Xi(p, x) · ∂xi |x. If X ∈ Γ̃(TM) and f, g ∈ C̃∞(M) are such that all Xp and all
fp are homogeneous, we have

DX(f ·g)(p, p′, p′′, x) = DX(f)(p, p′, x) ·g(p′′, x)+(−1)ε(Xp).ε(fp′ )f(p′, x) ·DX(g)(p, p′′, x) ,

so that a smooth family of even vector fields can be seen as a smooth family of “derivations”.

2.1.4 Natural affine bundle functors

Definition. A natural affine bundle functor in graded dimension n|m is a natural bundle
functor F : Mann|m(A)→ Fibn|m(A) such that all bundles FM are affine bundles while all
maps FΦ are morphisms of affine bundles.

The space of geometric objects

Definition. A geometric object of affine type (or simply, a affine geometric object) in
graded dimension n|m is an element σ ∈ Γ̃(FM) with F a natural affine bundle functor.

If F is a natural affine bundle functor, the space Γ̃(FM) of geometric object of type F on
M is an affine space modeled on the C∞(M)-module Γ̃( ~FM) of smooth families of sections
of the underlying vector bundle. The affine space structure is defined fiberwise, i.e., we set

(σ + s)(p, p′, x) = σ(p, x) + s(p′, x) ∈ πx .

for all σ ∈ Γ(FM) and all s ∈ Γ( ~FM).

Remark. Since the fibers πx of an affine bundle do not come with an origin (because affine
transition functions do not preserve the origin of the typical fiber), spaces of affine geometric
objects do not come with a canonical element as it was the case for vector geometric objects.
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Natural bundle functors on A-manifolds can lift
smooth families of local homeomorphisms.

Example: the bundle of connections

Definition. Let M be an A-manifold modeled on an A-vector space E and let {(Ua ⊂
M,ϕa : Ua → E0)} be the atlas of all charts for M (i.e., the differentiable structure). We
define maps C(ϕba) : ϕa(Ua ∩ Ub)→ Aff(E∗ ⊗ EndRE) by analogy with the transformation
law of the Christoffel symbols of a linear connection on M under a change of chart from
(Ua, ϕa) to (Ub, ϕb): in terms of a basis (e1, ..., em+n) of E, we set

ι
(∑

se⊗ te · Γrst ⊗ er
)

(C(ϕba))(x) =
∑

ve⊗ we · Γ̄uvw ⊗ eu ,

with

Γ̄uvw = (−1)εv(εt+εw) · (∂ywϕtab(ϕba(x)))) · (∂yvϕsab(ϕba(x)))) · Γrst · (∂xrϕuba(x))

+ (∂2
yvywϕ

k
ab(ϕba(x))) · (∂xkϕuba(x)) . (2.3)

Now we can define the functions ψba : Ub ∩ Ua → Aff(E∗ ⊗ EndR(E)) by

ψba = C(ϕba) ◦ ϕa .

It can be checked using the chain rule that these functions satisfy the cocycle conditions,
but this is actually an immediate consequence of the fact that the transformation law is that
of Christoffel symbols under the effect of a coordinate change (see formula 3.11). The affine
bundle π : CM →M so obtained is called the bundle of connections of M .

The bundle functor C associates with an A-manifold M its bundle of connections while the
image of a morphism Φ : W ⊂ P ×M → N is the smooth collection CΦ : {(p,Γ) : (p, π(Γ)) ∈
W} ⊂ P × CM → CN defined in fibered coordinates as

ι
(

dxk
∣∣
x
⊗ dxj

∣∣
x
· Γijk ⊗ ∂xk |x

)
(CΦ)p =

∑
dyw|x ⊗ dyv|x · Γ̄

u
vw ⊗ ∂yu |x (2.4)

with

Γ̄uvw = (−1)εv(εr+εu) · (∂yw Φ̃−1,k(Φ̃(p, x)))(∂yv Φ̃−1,j(Φ̃(p, x))) · Γijk · (∂xiΦu(p, x))

+ (∂2
yvyv Φ̃−1,i(Φ̃(p, x))) · (∂xiΦu(p, x)) , (2.5)

where Φ̃−1 stands for a local inverse of Φ̃ : (p, x) 7→ (p,Φp(x)).

Remark. Comparing the definition of the lifted map CΦ with the definition of the transition
functions for the bundle CM shows that the latter correspond to the lifted maps of the
transition functions between the charts.
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Natural bundle functors on A-manifolds can lift
smooth families of local homeomorphisms.

Smooth families of covariant derivatives

From a smooth family σ : P ×M → (CM)(0) of even sections of CM , we can define a map
∇ : Γ(TM)× Γ(TM)→ Γ̃(TM) by setting, in local coordinates,

(ι(X,Y )∇σ)(p, x) =
∑
ij

Xj(x) · ∂Y
i

∂xj
(x) · ∂xi |x

+
∑
i,j,k

(−1)εj(ε(Y )+εk) ·Xj(x) · Y k(x) · Γijk(p, x) · ∂xi |x . (2.6)

In other words, a smooth family of even connections defines a smooth family of covariant
derivatives.

Proposition 5. There is a one-to-one correspondence between even sections of CM and
covariant derivatives on M .

Proof. With an even section σ of CM , we associate the covariant derivative whose Christoffel
symbols in a chart (Ua, ϕa) of M are the local components Γijk of the local expression of σ
in the local adapted coordinates on CM associated with (Ua, ϕa).

This correspondence is well-defined because the transformation law (2.3) of the local com-
ponents of sections is the same as the transformation law of the Christoffel symbols of a
covariant derivative under a change of local coordinates.

This correspondence is also bijective because a covariant derivative on M is completely
determined by its Christoffel symbols in an atlas of M .

Remark. If Φ : M → N is a diffeomorphism, then for any smooth section σ ∈ Γ(CM), the
covariant derivative corresponding to CΦ ◦ σ ∈ Γ(CN) is given by

ι(X,Y )∇CΦ◦σ = TΦ
(
ι(TΦ−1 ◦X,TΦ−1 ◦ Y )∇σ

)
.

In other words, the action of the functor C on morphisms correspond to the push-forward
of covariant derivatives along (local) diffeomorphisms.
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The Lie derivative of vector/affine geometric objects
is a derivation along the flow of a vector field.

2.2 The Lie derivative of vector/affine geometric objects

is a derivation along the flow of a vector field.

2.2.1 The flow of a smooth family of even vector fields

Let X : P ×M → TM be a smooth family of even vector fields on M . From X, we can
define an even vector field X̂ ∈ Γ(T (P ×M)) by setting X̂(p, x) = 0p +Xp(x). The flow

ΦX̂ : WX̂ ⊂ (A0 × P )×M → P ×M

satisfies TΦX̂ ◦ ∂t = X̂ ◦ ΦX̂ and ΦX̂(0, ·, ·) = idP×M . It is of the form

ΦX̂(p, t, x) = (p, πM ◦ ΦX̂(p, t, x)) .

By definition , the flow of the smooth family X is the map

ΦX = πM ◦ ΦX̂ : WX̂ ⊂ (A0 × P )×M →M .

It is an element of H̃omn|m(M,M).

2.2.2 The Lie derivative of vector geometric objects

Differentiating with respect to the time parameter

Let π : Eπ →M be a vector bundle. Given a smooth family of sections σ : W ⊂ (A0×P )×
M → Eπ , it is possible (see [?, V.3.6]) to define the smooth family of sections

∂t · σ : W ⊂ (A0 × P )×M → Eπ .

Locally, in terms of a set {ej ∈ ΓU (Eπ)} of local trivializing sections, ∂t · σ is given by

(∂t · σ)|U (t, p, x) =
∑
j

∂t(σ
j)(t, p, x) · ej(x) ,

if σ|U =
∑
j σ

j · ej .

Remark. Remember that the function ∂t(σj) is obtained by differentiating with respect to
the time coordinate each of the ordinary smooth functions on R×BP ×BM appearing in
the Taylor expansion of the local expressions of σj in charts (see Subsection A.2.2).
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The Lie derivative of vector/affine geometric objects
is a derivation along the flow of a vector field.

Differentiating along the flow

Let F be a natural vector bundle functor. Given a smooth family of even vector fields,
X : P ×M → TM (0), and a smooth family of sections σ : P ′ ×M → FM , we can form the
smooth family of local sections

Φ∗Xσ : WX̂ ⊂ (A0×P ×P ′)×M → FM , (t, p, p′, x) 7→ (FΦX)(−t,p) ◦σp′ ◦ΦX,(t,p)(x) .

Definition. The Lie derivative of a smooth section σ ∈ Γ(FM) in the direction of a smooth
family of even vector fields, X : P×M → TM (0), is the smooth family LXσ ∈ Γ̃(FM) whose
value at (p, x) ∈WX̂ is given by

(LXσ)(p, x) = (∂t · (Φ∗Xσ)) (0, p, x) ∈ FxM .

Example : the Lie derivative of smooth functions

If X : P × M → TM (0) is a smooth family of even vector fields on M , then for any
f ∈ C∞(M), we have LXf = DX(f). Indeed, it follows from the definitions and the chain
rule that

(LXf)(p, x) = (∂t · (f ◦ ΦX)) (0, p, x)

=
∑
i

(
∂ΦiX
∂t

(0, p, x)

)
·
(
∂f

∂xi
(ΦX(0, p, x))

)
=

∑
i

Xi(p, x) · ∂f
∂xi

(x) ,

if X reads as X(p, x) =
∑
iX

i(p, x) · ∂xi |x.

Example : the Lie derivative of smooth vector fields

If X : P×M → TM is a smooth family of even vector fields onM , then for any Y ∈ Γ(TM),
we can show using the chain rule that

(LXY )(p, x) =

n+m∑
i=1

(
Xj(p, x) · ∂Y

i

∂xj
(x)− Y j(x) · ∂X

i

∂xj
(p, x)

)
· ∂xi |x .

In particular, (LXY )p = [Xp, Y ] for all p ∈ BP .

30



The Lie derivative of vector/affine geometric objects
is a derivation along the flow of a vector field.

2.2.3 The Lie derivative of affine geometric objects

Differentiating with respect to the time parameter

Let π : Zπ → M be an affine bundle. Given a smooth family of sections, σ : W ⊂
(A0 × P )×M → Zπ, it is possible to define the smooth family of sections (of ~π)

∂t · σ : W ⊂ (A0 × P )×M → E~π .

Given a local section a0 ∈ ΓU (Zπ) and a set {ej ∈ ΓU (E~π)} of local trivializing sections, if
σ|U = a0 +

∑
j σ

j · ej , then ∂t · σ is given by

(∂t · σ)|U (t, p, x) =
∑
j

∂tσ
j(t, p, x) · ej(x) ,

Differentiating along the flow

Definition. Let F be a natural affine bundle functor. The Lie derivative of σ ∈ Γ(FM) in
the direction of the smooth family X ∈ Γ̃(TM) is the smooth family LXσ ∈ Γ̃( ~FM) whose
value at (p, x) ∈WX̂ is given by

(LXσ)(p, x) = (∂t · (Φ∗Xσ)) (0, p, x) ∈ FxM ,

where Φ∗Xσ : WX̂ ⊂ (A0 × P )×M → FM is defined as in the vector case.

Example : the Lie derivative of covariant derivatives

If X : P×M → TM is a smooth family of even vector fields onM , then for any Y ∈ Γ(TM),

(LX∇)(p, x) =

n+m∑
i,j,k=1

dxk
∣∣
x
⊗ dxj

∣∣
x
· Sijk(p, x)⊗ ∂xi |x

with

Sijk(p, x) = X l(p, x) ·
∂Γijk
∂xl

(x)− Γljk(x) · ∂X
i

∂xl
(p, x) + (−1)j(l+k)

(
∂X l

∂xk
(p, x)

)
· Γijl(x)

+

(
∂X l

∂xj
(p, x)

)
· Γilk(x) +

∂2Xi

∂xj∂xk
(p, x) (2.7)

In particular, (LX∇)p(Y, Z) = [Xp,∇Y Z]−∇[Xp,Y ]Z −∇Y [Xp, Z] for all p ∈ BP .
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Natural operators on A-manifolds transform
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2.3 Natural operators on A-manifolds transform

smooth families of sections.

2.3.1 Natural operators on A-manifolds

By definition, natural operators from F to G transform geometric objects of type F into
geometric objects of type G. In our context, natural operators are thus operators acting
between smooth families of sections of natural bundles.

Definition. A natural operator from F to G is a collection of operators

D = {DM : Γ̃(FM)→ Γ̃(GM)}M∈Ob(Mann|m(A))

with the following properties.

(R) Regularity: The image of a smooth family

σ : W ⊂ P ×M → FM

is a smooth family

DM (σ) : W ⊂ P ×M → GM .

Moreover, DM (σ)p only depends on σp in the sense that if σ′ : W ′ ⊂ P ′ ×M → FM
is such that σp = σ′p′ for some p ∈ P and some p′ ∈ P , then we must have

DM (σ)p = DM (σ′)p′ .

In particular, (unparametrized) smooth sections are transformed into (unparametrized)
smooth sections and for any p ∈ BP , we have D(σ)p = D(σp) ∈ Γ(FM).

(L) Locality: For any σ : W ⊂ P ×M → FM and any open subset U of M , we have

DU (σ|U ) = (DMσ)|U ,

where σ|U stands for the restriction of X to W ∩ (P × U).

(N) Naturality: For any Φ ∈ H̃omn|m(M,N), σ ∈ Γ̃(FM) and σ′ ∈ Γ̃(FN), we have

σ′p′ ◦ Φq = FΦq ◦ σp ⇒ DN (σ′)p′ ◦ Φq = (GΦ)q ◦DM (σ)p .

We say that D sends Φ-related objects of type F to Φ-related objects of type G.
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Natural linear operators are differential operators.

2.4 Natural linear operators are differential operators.

We aim to obtain a Peetre-like theorem for linear (super) natural operators. Let us first
recall Peetre theorem for local linear operators over classical smooth manifolds.

Theorem 6 (Classical Peetre theorem). Let π : Eπ → M and π′ = Eπ′ → M be vector
bundles. If D : Γ(Eπ) → Γ(Eπ′) is a local R-linear operator, then D reads in local adapted
coordinates as

D(σ)i(x) =
∑
|α|6k

Di
α,j(x) ·

(
∂|α|σj

∂xα
(x)

)
,

where α is a multi-index, |α| =
∑
r αr and each Di

α,j is a local smooth function on M .

2.4.1 Peetre theorem on A-manifolds

Linear operators between functions

Theorem 7. Let M be an A-manifold. If D : C∞(M) → C∞(M) is a local R-linear
operator, then D reads in local graded coordinates as

D(f)(y) =
∑
|α|6k

Dα(y) ·
(
∂|α|f

∂yα
(y)

)
,

where α is a multi-index with αn+1, . . . , αn+m ∈ {0, 1}, |α| =
∑n+m
i=1 αi and each Dα is a

local smooth function.

Proof. Given a chart (Ua, ϕa : Ua → Oa) ofM , we have an isomorphism of real superalgebras

{f |Ua : f ∈ C∞(M)} ' Γ(Λ(pr1 : BOa × Rm → BOa)) .

If f ∈ C∞(M) reads in (Ua, ϕa : Ua → Oa) as

f(x, ξ) =

m∑
r=0

∑
16i1<···<ir6m

ξi1 · · · · · ξir · f̃i1...ir (x) ,

the corresponding form αf ∈ Γ(Λ(pr1 : BOa × Rm → BOa)) is given by

αf (x) =

m∑
r=0

∑
16i1<···<ir6m

ξi1 ∧ · · · ∧ ξir · fi1...ir (x) ,

where the ξij now stand for a basis of Rm.

33



Natural linear operators are differential operators.

Through this correspondence, a local R-linear operator D : C∞(M) → C∞(M) induces a
local R-linear operator D̂ : Γ(Λ(pr1 : BOa×Rm → BOa))→ Γ(Λ(pr1 : BOa×Rm → BOa))

defined by

D̂(σf ) = σD(f) .

Note that D̂ is well-defined thanks to the locality of D. Moreover, D̂ is local and R-linear
because both D and the correspondence f |Ua ↔ σf are.

In view of (the classical) Peetre theorem, D̂(σf ) is locally of the form

D̂(σf )(x) =

k′∑
|β|=0

m∑
r,r′=0

∑
16i1<···<ir6m
16j1<···<jr′6m

ξj1∧· · ·∧ξjr′ ·D̂i1...ir
β,j1...jr′

(x) ·
(
∂|β|fi1...ir
∂xβ

(x)

)
. (2.8)

In order to make f appear in the right-hand side of 2.8, we use the identity(
∂|β|fi1...ir
∂xβ

(x)

)∼
(x) = (−1)

1
2
r(r−1) ·

(
∂|β|

∂xβ
· ∂

∂ξi1
· · · · · ∂

∂ξir
· f
)

(x, ξ) .

For any α ∈ Nn+m with |(α1, . . . , αn)| 6 k′ and αn+1, . . . , αn+m ∈ {0, 1}, we set

Dα(x, ξ) =

m∑
r′=0

∑
16j1<···<jr′6m

(−1)
1
2
r(r−1) · ξj1 · · · · · ξjr′ ·

(
D̂i1...ir

(α1...αn),ji1 ...jir′

)∼
(x) ,

where i1, . . . , ir are the indices ij ∈ {1, . . . ,m} for which αn+ij 6= 0 (i.e. αn+ij = 1).

Now if for any α ∈ Nn+m with |(α1, . . . , αn)| ≥ k′, we set Dα = 0, then the result follows
from formula (2.8) through the correspondence D̂(σf )↔ σD(f):

D(f)(x, ξ) =

k′∑
|β|=0

m∑
r,r′=0

∑
16i1<···<ir6m
16j1<···<jr′6m

ξj1 · · · · · ξjr′ ·
(
D̂i1...ir
β,j1...jr′

)∼
(x) ·

((
∂|β|fi1...ir
∂xβ

)∼
(x)

)

=
∑

|α|6k′+m

Dα(x, ξ) ·
(

∂|α|f

∂(x, ξ)α
(x, ξ)

)
.
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Corollary 8. If D : C̃∞(M)→ C̃∞(M) is a regular local (i.e., fp|U = 0⇒ D(f)p|U = 0)
even (i.e. ε(D(f)p) = ε(fp) whenever fp is homogeneous) left A-linear operator, then D

reads in local graded coordinates as

D(f)(y) =
∑
|α|6k

Dα(y) ·
(
∂|α|f

∂yα
(y)

)

where α is a multi-index with αn+1, . . . , αn+m ∈ {0, 1}, |α| =
∑n+m
r=1 αr and each Di

α,j is a
local smooth function.

Proof. Let f : W ⊂ P × M → A be a smooth family of functions. In a local chart
(Va × Ua, ψa × ϕa) of P ×M , f can be written as

f(p, η;x, ξ) =
∑
I,J

ηJ · f̃J,I(p, x) · ξI

=
∑
I,J,K

ηJ · (p−Bp)K

K!
·
(
∂|K|fJ,I
∂pK

(Bp, ·)
)∼

(x) · ξI

for some local smooth functions fJ,I on BP × BM . For a fixed parameter in P with
coordinates (p, η), the map f(p,η) is, in general, not smooth, but it can be written locally as

f(p,η)

∣∣
Ua

=
∑
J,K

(A · fK,J)(
ηJ ,

(p−Bp)K

K!

)

where the local smooth functions fK,J ∈ C∞(Ua) are given by

fK,J(x, ξ) =
∑
I

(
∂|K|fJ,I
∂pK

(Bp, ·)
)∼

(x) · ξI

Using the regularity, the left A-linearity and the locality of D, we obtain

D(f)(p,η)

∣∣
Ua

=
∑
J,K

ηJ · (p−Bp)K

K!
· D(f

K,J
)
∣∣∣
Ua

,

where f
K,J

stands for a global smooth function such that f
K,J
|Ua = fK,J (multiply fK,J by

a plateau function and restricts Ua if necessary). Applying theorem 7, we then get

D(f)(p,η)(x, ξ) =
∑
|α|6k

∑
J,K

ηJ · (p−Bp)K

K!
·Dα(x, ξ) ·

(
∂|α|fK,J
∂(x, ξ)α

(x, ξ)

)
.

The result follows from the definition of the smooth function fK,J using the linearity of the
even operators Dα ·

(
∂|α|

∂(x,ξ)α

)
to reconstruct f in the right-hand side.
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Linear operators between sections of vector bundles

Corollary 9. Let π : Eπ → M and π′ : Eπ′ → M be vector bundles. If D is a regular
local (i.e., σp|u = 0 ⇒ D(σ)p|U = 0) even left A-linear operator from Γ̃(Eπ) to Γ̃(Eπ′),
then each DM reads in local adapted coordinates as

D(σ)i(y) =
∑
|α|6k

Di
α,j(y) ·

(
∂|α|σj

∂yα
(y)

)
,

where α is a multi-index with αn+1, . . . , αn+m ∈ {0, 1}, |α| =
∑n+m
r=1 αr and each Di

α,j is a
local smooth function.

Proof. Let {ej : Ua ⊂ M → Eπ} (resp. {fi : Ua ⊂ M → Eπ′) be a (finite) set of local
trivializing sections of Eπ (resp. Eπ′) above the domain of a chart (Ua, ϕa) of M .

For each (i, j), we have an even local left A-linear operator

Di
j : C̃∞(Ua)→ C̃∞(Ua) , f 7→ DM (f · ej)i ,

where D(f · ej)i stands for the component of D(f · ej) along fi.

The conclusion follows immediately from Corollary 8:

D(σ)i(y) = Di
j(σ

j) =
∑
|α|6k

Di
j,α(y) ·

(
∂|α|σj

∂yα
(y)

)
.

2.4.2 Peetre theorem for natural linear operators

Locality

Lemma 10. Let F and G be two natural bundle functors. If D is natural R-linear operator
from F to G, then for any open subset U ⊂M such that {p} × U ⊂W , we have

σp|U = 0⇒ DM (σ)p|U = 0 .

Proof. It is a consequence of conditions (R) and (L):

σp|U = 0⇒ (σ|U )
p

= 0⇒ ((DU (σ|U ))
p

= 0⇒ (DM (σ)|U )
p

= 0⇒ DM (σ)p|U = 0 .
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Natural linear operators are differential operators.

Local expression of natural linear operators

Proposition 11. Let F and G be natural vector bundle functors. If D is an even left
A-linear natural operator from F to G, then each DM reads in local adapted coordinates as

DM (σ)i(p, y) =
∑
|α|6k

Di
α,j(y) ·

(
∂|α|σj

∂yα
(p, y)

)
,

where α is a multi-index with αn+1, . . . , αn+m ∈ {0, 1}, |α| =
∑n+m
r=1 αr and each Di

α,j is a
local smooth function.

Remark. Note that the property (N) of natural operators does not play any role for the
above proposition to be true. Natural operators are just particular cases of local regular
operators. Moreover, it follows from the proof of Corollary 11 that an even left A-linear
natural operator is completely determined by its value on (unparametrized) smooth sections.
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Chapter 3

Projective Equivalence of

Torsion-free Connections

in Super Geometry

The concept of projective equivalence of connections goes back to the 1920’s, with the study
of the so-called “geometry of paths” (see [?, ?, ?] or [?, ?, ?] for a modern formulation).

By definition, two connections are called projectively equivalent if they have the same
geodesics, up to parametrization. In other words, the geodesics of two equivalent connec-
tions are the same, provided that we see them as sets of points, rather than as maps from an
open interval of R into the manifold. In [?], H. Weyl showed that projective equivalence
can be rephrased in an algebraic way: two connections are projectively equivalent if and
only if the symmetric tensor which measures the difference between them can be expressed
by means of a 1-form.

H. Weyl’s algebraic characterization of projective equivalence provides a convenient way to
transport projective equivalence to the framework of supergeometry: two superconnections
are said to be projectively equivalent if the (super)symmetric tensor which measures the
difference between them can be expressed by means of a (super)1-form.

Remembering the classical picture, it is natural to ask whether it is possible to find a geomet-
ric counterpart to the algebraic definition of projective equivalence of superconnections, i.e.,
a characterization in terms of supergeodesics. In this chapter, we first answer this question
in the affirmative (cf. [?]). Then, in the perspective of Chapter 4, we show that the vector
fields obtained in Chapter 1 by means of the projective embedding preserve the projective
class of the canonical flat connection on the flat superspace.
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About supergeodesics

As in the classical case, we define, in section 3.1, supergeodesics associated with a supercon-
nection ∇ on a supermanifold M as being the projections onto M of the integral curves of a
vector field G∇ on the tangent bundle TM : the geodesic vector field of ∇. In section 3.2 we
then define the notion of reparametrization of a geodesic and establish that two connections
∇ and ∇̂ on a supermanifold M have the same geodesics up to parametrization if and only
if there is an even 1-form α such that

∇̂XY = ∇XY +X · ι(Y )α+ (−1)ε(X)·ε(Y ) · Y · ι(X)α ∀X,Y ∈ Γ(TM),

thus showing that Weyl’s characterization also holds in supergeometry.

Our approach to supergeodesics differs from that of O. Goertsches [?]. In particular, our
equations for supergeodesics are the natural generalization of the classical ones. Actually, our
approach is nearly identical to that recently proposed by S. Garnier and T. Wurzbacher

in [?], where they consider supergeodesics associated with a Levi-Civita superconnection.

In fact, beyond the fact that they restrict to the Riemannian setting where we consider
arbitrary connections, the main difference between Garnier-Wurzbacher’s supergeodesics and
ours lies in the way we interpret geodesics. In [?], geodesics are seen as individual supercurves
on M (which obliges them to add sometimes an arbitrary additional supermanifold S, in
particular to specifiy intial conditions), whereas we focus on the geodesic flow as a whole,
seen as the projection on M of the flow of an even vector field on the tangent bundle TM .

Supercurves should be images of 1-dimensional manifolds, but as it is well-known, the theory
of supercurves with a single parameter turns out to be very shallow: supercurves in a
single even parameter are reduced to ordinary curves in the body of the manifold while
supercurves in a single odd parameter are simply odd straight lines. In order to overcome
these limitations, we choose to change the viewpoint. Usually curves do not come singly, they
appear in families. And in particular the integral curves of a vector field on a supermanifold
N should not be seen as a simplistic collection of curves, but as a map (the flow) defined
on (an open subset of) R ×N (1), incorporating the initial condition in the domain of the
map. And indeed, the flow of a vector field is jointly smooth in the time parameter t and the
initial condition n ∈ N . In the simplistic viewpoint one writes γn(t) for an integral curve
with initial condition n ∈ N , whereas in the viewpoint of a flow one rather writes ϕt(n) or
ϕ(t, n). Roughly speaking, we could say that our change of viewpoint enlarges in a natural
way (we do not add an arbitrary manifold S as in [?]) the domain of supercurves so that it
is now possible to get supercurves with desirable properties.

1In fact, rather A0×N than R×N since maps defined on A0×N live in the category of supermanifolds
while containing the same information as maps defined on R×N .
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Supergeodesics of a torsion free connection
on an A-manifold are projections of the flow

of a vector field on the tangent bundle.

3.1 Supergeodesics of a torsion free connection

on an A-manifold are projections of the flow

of a vector field on the tangent bundle.

Before dealing with the specific problem of geodesics on a supermanifold, we first recall some
general definitions and facts about connections on A-manifolds. Then we attack the problem
of defining super geodesics: we associate with any connection a so-called geodesic vector field
on the tangent bundle, whose flow equations are the straightforward super analogs of the
classical geodesic equations.

3.1.1 Connections on A-manifolds

Definition ([?, VII§6]). A connection (or covariant derivative) on an A-manifold M is a
map ∇ : Γ(TM)× Γ(TM)→ Γ(TM) such that

(i) ∇ is bi-additive (in Γ(TM) and Γ(TM)) and even;

(ii) for X ∈ Γ(TM), s ∈ Γ(TM) and f ∈ C∞(M) we have

∇fXs = f · ∇Xs ; (3.1)

(iii) for homogeneous X ∈ Γ(TM), s ∈ Γ(TM) and f ∈ C∞(M) we have

∇X(fs) = DX(f) · s+ (−1)ε(X)·ε(f)f · ∇Xs . (3.2)

Lemma 12. If ∇ and ∇̂ are connections in TM , the map S : Γ(TM) × Γ(TM) → Γ(TM)

defined by

S(X, s) = ∇Xs− ∇̂Xs (3.3)

is even and bilinear over C∞(M). In other words, S is a “tensor”, i.e., can be seen as a
section of the bundle TM∗ ⊗ End(TM) [?, IV§5].

Lemma 13. If ∇ is a connection on M , then the map T : Γ(TM) × Γ(TM) → Γ(TM)

defined on homogeneous X,Y ∈ Γ(TM) by

T (X,Y ) = ∇XY − (−1)ε(X)·ε(Y ) · ∇YX − [X,Y ] (3.4)

is even, graded anti-symmetric and bilinear over C∞(M). In other words, T is a “tensor”,
i.e., can be seen as a section of the bundle

∧2
TM∗ ⊗ TM , i.e., as a 2-form on M with

values in TM [?, IV§5].

41



Supergeodesics of a torsion free connection
on an A-manifold are projections of the flow

of a vector field on the tangent bundle.

Torsion-free connections

Definition. A connection ∇ in TM is said to be torsion-free if the tensor T is identically
zero.

Corollary 14. If ∇ and ∇̂ are torsion-free connections in TM , the tensor S = ∇ − ∇̂ :

Γ(TM)× Γ(TM)→ Γ(TM) is graded symmetric.

Let ∇ be a connection in TM (we also say a connection on M). On a local chart for M
with coordinates x = (x1, . . . , xn+m) we define the Christoffel symbols Γijk of ∇ by

Γijk(x) = ι(∇∂xj ∂xk) dxi
∣∣
x

(3.5)

with parity ε
(

Γijk

)
= εi + εj + εk.(2) It follows that for homogeneous vector fields X =∑

iX
i · ∂xi and Y =

∑
i Y

i · ∂xi , we have

∇XY =
∑
ij

Xj · ∂Y
i

∂xj
· ∂xi +

∑
i,j,k

(−1)εj(ε(Y )+εk) ·Xj · Y k · Γijk · ∂xi . (3.6)

When the vector field X is even, we have (−1)εj(ε(Y )+εk) = (−1)(ε(X)+εj)(ε(Y )+εk) and in
that case the above formula can be written without signs as

∇XY =
∑
ij

Xj · ∂Y
i

∂xj
· ∂xi +

∑
i,j,k

Y k ·Xj · Γijk · ∂xi . (3.7)

Corollary 15. If ∇ and ∇̂ are connections on M with Christoffel symbols Γijk and Γ̂ijk

respectively, the tensor S reads locally as

S =
∑
i,j,k

dxk ⊗ dxj ·
(

(Γijk − Γ̂ijk

)
)⊗ ∂xi (3.8)

while the tensor T is given by

T =
∑
i,j,k

dxk ∧ dxj · Γijk ⊗ ∂xi

= 1
2 ·
∑
i,j,k

dxk ∧ dxj ·
(
( Γijk − (−1)εjεk · Γikj

)
)⊗ ∂xi

In particular ∇ is torsion-free if and only if the Christoffel symbols are graded symmetric in
the lower indices, i.e.,

Γijk = (−1)εjεk · Γikj .
2Remember that, by definition, we have ι(∂xj )dxi = δij .
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Supergeodesics of a torsion free connection
on an A-manifold are projections of the flow

of a vector field on the tangent bundle.

Transformation law of Christoffel symbols

If y = (y1, . . . , yn+m) is another local system of coordinates, we can consider the Christoffel
symbols Γ̃ijk in terms of these coordinates:

Γ̃ijk(y) = ι(∇∂yj ∂yk) dyi
∣∣
y

(3.9)

Now let x0 ∈M be the point in M whose coordinates are x or y depending upon the choice
of local coordinate system. As tangent vectors transform as ∂xi |x0

=
∑
p(∂xiy

p)(x) · ∂yp |x0
,

it follows that the relation between Γ and Γ̃ is given by

∑
i

Γijk(x) · ∂xi |x0
=

(
( ∇∂xj

(
(
∑
r

(∂xky
r)(x) · ∂yr

)
)

)
)

∣∣∣∣∣
x0

=
∑
r

(∂xj∂xky
r)(x) · ∂yr |x0

+
∑
r

(−1)εj(εr+εk) · (∂xkyr)(x) ·
(
(∇∂xj ∂yr

)
)
∣∣
x0

=
∑
p

(∂xj∂xky
p)(x) · ∂yp |x0

+
∑
qr

(−1)εj(εr+εk) · (∂xkyr)(x) · (∂xjyq)(x) ·
(
(∇∂yq ∂yr

)
)
∣∣
x0

=
∑
p

(∂xj∂xky
p)(x) · ∂yp |x0

+
∑
qr

(−1)εj(εr+εk) · (∂xkyr)(x) · (∂xjyq)(x) · Γ̃qpr(y) · ∂yp |x0

which gives us the relations

∑
i

Γijk(x) · (∂xiyr)(x)

= (∂xj∂xky
r)(x) +

∑
s,t

(−1)εj(εt+εk) · (∂xkyt)(x) · (∂xjys)(x) · Γ̃rst(y) (3.10)

Equivalently, we can write

Γ̃rst(y) = (∂ys∂ytx
i)(y) · (∂xiyr)(x)

+
∑
i,j,k

(−1)s(k+t) · (∂ytxk)(y) · (∂ysxj)(y) · Γijk(x) · (∂xiyr)(x) (3.11)
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Supergeodesics of a torsion free connection
on an A-manifold are projections of the flow

of a vector field on the tangent bundle.

3.1.2 Supergeodesics of a torsion-free connection

We start very naively and copy the classical case: a geodesic is a map γ : A0 →M given in
local coordinates by γ(t) = (γ1(t), . . . , γn+m(t)) satisfying the equations

∂2γi

∂t2
(t) = −

∑
j,k

∂γk

∂t
(t) · ∂γ

j

∂t
(t) · Γijk(γ(t)) (3.12)

Since any system of second order differential equations on a manifold can be expressed as a
system of first order differential equations on the tangent bundle, we can equivalently look
at curves γ̃ : A0 → TM (0) given in local coordinates by

γ̃(t) = (γ1(t), . . . , γn+m(t), γ̄1(t), . . . , γ̄n+m(t)) (3.13)

and satisfying the local equations
∂γi

∂t (t) = γ̄i(x,v)(t)

∂γ̄i

∂t (t) = −
∑
j,k γ̄

k(t) · γ̄j(t) · Γijk(γ(t)) .

Initial conditions

In order to solve second order differential equations one needs initial conditions, which in
our case are a starting point x and an initial velocity v. A geodesic γ depends upon these
initial conditions (forcing us to write γ(x,v) instead of simply γ) through the equations

γi(x,v)(0) = xi and
∂γi(x,v)

∂t
(0) = vi . (3.14)

Passing from second order differential equations to first order differential equations (i.e.,
from γ to γ̃), we thus end up looking at families of curves

γ̃ : TM (0) ×A0 → TM (0) , (x, v, t) 7→ γ̃(x,v)(t) ,

satisfying the local equations
∂γi(x,v)
∂t (t) = γ̄i(x,v)(t)

∂γ̄i(x,v)
∂t (t) = −

∑
j,k γ̄

k
(x,v)(t) · γ̄

j
(x,v)(t) · Γ

i
jk(γ(t)) .

together with the initial conditions

γi(x,v)(0) = xi and γ̄i(x,v)(0) = vi .
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Supergeodesics of a torsion free connection
on an A-manifold are projections of the flow

of a vector field on the tangent bundle.

The geodesic vector field and its flow

The above equations for γ̃ are exactly the equations of the integral curves of a vector field
on TM (0). Indeed, using the Christoffel symbols we can define a vector field G∇ on TM (0)

in local coordinates (x, v) by

G|~v =
∑
i

vi · ∂xi |~v −
∑
i,j,k

vk · vj · Γijk(x) · ∂vi |~v (3.15)

These local expressions glue together to form a well-defined global vector field G∇ on TM (0).
As it is an even vector field, it has a flow Ψ defined in an open subset WG of A0 × TM (0)

containing {0} × TM (0) and with values in TM (0) [?, V.4.9]. In local coordinates we will
write Ψ(t, x, v) = (Ψ1(t, x, v),Ψ2(t, x, v)), where Ψ1 = (Ψ1

1, . . . ,Ψ
n+m
1 ) represents the base

point while Ψ2 = (Ψ1
2, . . . ,Ψ

n+m
2 ) represents the tangent vector. By definition of a flow,

these functions thus satisfy the equations
∂Ψi1
∂t (t, x, v) = Ψi

2(t, x, v)

∂Ψi2
∂t (t, x, v) = −

∑
j,k Ψk

2(t, x, v) ·Ψj
2(t, x, v) · Γij,k(Ψ1(t, x, v))

together with the initial conditions

Ψ1(0, x, v) = x and Ψ2(0, x, v) = v (3.16)

With the global vector field G∇ we thus have found an intrinsic coordinate free description
of the equations we wrote for the geodesic curves γ̃(x,v)(t) and we are now in position to
state a definition.

Definition. Let ∇ be a connection in TM , let π : TM (0) → M denote the canonical
projection, let G∇ be the even vector field 3.15 and let Ψ : WG → TM (0) be its flow. For a
fixed ~v ∼= (x, v) ∈ TM (0) we will call the map γ : A0 →M defined by

γ(t) = π ((Ψ(t, ~v))) ∼= Ψ1(t, x, v) (3.17)

the geodesic through x ∈ M with initial velocity ~v. Note that if ~v is not in the body of
TM (0), this curve is not necessarily smooth (see [?, III.1.23g, V.3.19]).
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Weyl’s algebraic characterization of projective
equivalence can be extended to A-manifolds.

3.2 Weyl’s algebraic characterization of projective

equivalence can be extended to A-manifolds.

3.2.1 Projective equivalence in terms of super geodesics

We now consider the situation in which we have two connections ∇, ∇̂ on M and we wonder
under what conditions these two connections have “the same” geodesics as trajectories on
M : if Ψ(t, ~v) and Ψ̂(t, ~v) are the geodesic flows for ∇ and ∇̂ respectively, the naive question
is under what conditions we have

{Ψ1(t, x, v) : t ∈ A0 } = { Ψ̂1(t, x, v) : t ∈ A0 } (3.18)

A more precise question is under what conditions we can find a reparametrization function,
r : A0 × TM (0) → A0, such that for any ~v ∈ TM (0), we would have

∀t ∈ A0 : Ψ1(r(t, x, v), x, v) = Ψ̂1(t, x, v) . (3.19)

Note that we added an explicit dependence on the initial condition ~v in the reparame-
trization function r, as there is no reason that geodesics through different points should be
reparametrized in the same way: a reparametrization is a smooth family of maps A0 → A0.

Definition. We say that ∇ and ∇̂ have the same geodesics up to reparametrization if there
exists a function r : A0×TM (0) → A0 such that r(0, ~v) = 0, (∂r/∂t)(0, ~v) = 1 and for which
equation (3.19) holds.3

3.2.2 Algebraic characterization of projective equivalence

First, we show that (3.19) holds if and only if the geodesic flow Ψ of G∇, the (difference)
tensor S = ∇ − ∇̂ and the reparametrization function r are related through a certain
differential equation.

Proposition 16. The connections ∇ and ∇̂ have the same geodesics up to reparametriza-
tion if and only if there exists a function r : A0 × TM (0) → A0 such that r(0, ~v) = 0,
(∂r/∂t)(0, ~v) = 1 and for which the following differential equation holds:

∂2r

∂t2
(t, x, v) · ∂Ψ1

∂t
(r(t, x, v), x, v)

=
(∂r
∂t

(t, x, v)
)2

· SΨ1(r(t,x,v),x,v)

( ∂Ψ1

∂t
(r(t, x, v), x, v) ,

∂Ψ1

∂t
(r(t, x, v), x, v)

)
(3.20)

3The additional conditions r(0, ~v) = 0 and (∂r/∂t)(0, ~v) = 1 ensure that the reparametrization transforms
each geodesic of ∇ into the geodesic of ∇̂ with the same initial conditions.
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Weyl’s algebraic characterization of projective
equivalence can be extended to A-manifolds.

Proof. Let us show that the condition is necessary. In view of (3.12), if Ψ1(r(t, x, v), x, v) is
a geodesic for ∇̂, then

0 =
∂2Ψi

1(r(t, x, v), x, v)

∂t2
+
∑
j,k

∂Ψk
1(r(t, x, v), x, v)

∂t
·∂Ψj

1(r(t, x, v), x, v)

∂t
·Γ̂ijk(Ψ1(r(t, x, v), x, v))

(3.21)

Let us replace in this equation Γ̂ijk by Γijk − Sijk and let us apply the chain rule to compute
the derivatives of the functions Ψi

1(r(t, x, v), x, v). Doing so, we obtain

0 =
∂2r

∂t2
(t, x, v) · ∂Ψ1

∂t
(r(t, x, v), x, v) +

(
∂r

∂t
(t, x, v)

)2(
∂2Ψi

1

∂t2
(r(t, x, v), x, v)

)

+

(
∂r

∂t
(t, x, v)

)2
∑

j,k

∂Ψk
1

∂t
(r(t, x, v), x, v) · ∂Ψj

1

∂t
(r(t, x, v), x, v) · Γijk(Ψ1(r(t, x, v), x, v))


−
(∂r
∂t

(t, x, v)
)2

∑
j,k

∂Ψk
1

∂t
(r(t, x, v), x, v) · ∂Ψj

1

∂t
(r(t, x, v), x, v) · Sijk(Ψ1(r(t, x, v), x, v))


Using the fact that Ψ1 is a geodesic for ∇, the second and third term on the right hand side
cancel and hence this equation reduces to (3.20).

In order to show the converse, it suffices to note that the above computations also show that
if (3.20) is satisfied, then the curve(

Ψ1(r(t, x, v), x, v),
∂r

∂t
(t, x, v) · ∂Ψ1

∂t
(r(t, x, v), x, v)

)

satisfies the equation of the flow (Ψ̂1(t, x, v), Ψ̂2(t, x, v)) of Ĝ, the geodesic vector field corre-
sponding to ∇̂. As it satisfies the same initial conditions as (Ψ̂1(t, x, v), Ψ̂2(t, x, v)) at t = 0,
these two curves have to coincide, and in particular Ψ1(r(t, x, v), x, v) = Ψ̂1(t, x, v).

3.2.3 Weyl’s characterization on A-manifolds

It remains to show that condition (3.20) amounts to imposing that S can be expressed by
means of an even (super) 1-form. As for the previous Proposition, the proof of the theorem
follows the lines of the classical case. It invokes a technical Lemma which roughly says that
if we have a bilinear function S(v, w) such that S(v, v) = h(v) · v for some function h, then
h must be linear in v. The proof of this technical Lemma is elementary but long, simply
because we have to be careful with the odd coordinates and moreover, everything depends
upon additional parameters (the local coordinates x and ξ on M). The proof of the lemma
can be found in [?].
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Weyl’s algebraic characterization of projective
equivalence can be extended to A-manifolds.

Lemma 17. Let E be a graded vector space of graded dimension p|q with even basis vectors
e1, . . . , ep and odd basis vectors f1, . . . , fq, let U be an open coordinate subset of a manifold
M with local even coordinates x and local odd coordinates ξ. Suppose that S : U×E×E → E

is a smooth function which is left-bilinear, graded symmetric in the product E × E and for
which there is a smooth function h : U × E0 → A such that

∀(x, ξ) ∈ U ∀v ∈ E0 : S(x, ξ, v, v) = h(x, ξ, v) · v (3.22)

Then there exists a unique smooth function α : U → E∗ such that h(x, ξ, v) = ι(v)α(x, ξ)

and

S(x, ξ, v, w) = 1
2 ·
(
v · ι(w)α(x, ξ) + (−1)ε(v)·ε(w) · w · ι(v)α(x, ξ)

)
(3.23)

Theorem 18. Two torsion-free connections ∇ and ∇̂ on M have the same geodesics up to
reparametrization if and only if there exists a smooth even 1-form α on M such that the
tensor S = ∇− ∇̂ is given by

Sx(v, w) = 1
2 · (v · ι(w)αx + (−1)ε(v)·ε(w) · w · ι(v)αx) (3.24)

for any x ∈M and any homogeneous v, w ∈ TxM .

Proof. We first assume that we have a reparametrization r that transforms the geodesics of
∇ into those of ∇̂. Taking t = 0 in (3.20) and using the initial conditions for Ψ and r, we
get the following (vector) equation in local coordinates:

v · ∂
2r

∂t2
(0, x, v) = Sx(v, v) (3.25)

Lemma 17, with h being here the function h(x, v) = ∂2r
∂t2 (0, x, v), gives us a (local) smooth

1-form α, which must be even by parity considerations. But (3.25) is an intrinsic equation
which does not depend upon the choice of local coordinates (because (3.20) is intrinsic).
As the 1-form α is unique, the local 1-forms α given by Lemma 17 glue together to form a
global smooth even 1-form α satisfying (3.29).

To show the converse, let us now assume that we have an even 1-form α on M such that
the tensor S is given by (3.29). Then (3.20) reduces to the (vector) equation

∂2r

∂t2
(t, x, v) · ∂Ψ1

∂t
(r(t, x, v), x, v)

=
(∂r
∂t

(t, x, v)
)2

· ι
(
∂Ψ1

∂t
(r(t, x, v), x, v)

)
αΨ1(r(t,x,v),x,v) ·

∂Ψ1

∂t
(r(t, x, v), x, v)

(3.26)
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For this to be true for all geodesics of ∇, the function r thus has to satisfy the second order
differential equation

∂2r

∂t2
(t, x, v) =

(∂r
∂t

(t, x, v)
)2

· ι
(
∂Ψ1

∂t
(r(t, x, v), x, v)

)
αΨ1(r(t,x,v),x,v)

As for the geodesic equations, we translate this into a system of first order differential
equations by introducing a second function s : A0 × TM (0) → A0 and we obtain

∂r
∂t (t, x, v) = s(t, x, v)

∂s
∂t (t, x, v) = s(t, x, v)2 · ι

(
∂Ψ1

∂t (r(t, x, v), x, v)
)
αΨ1(r(t,x,v),x,v)

while the initial conditions for r yield r(0, x, v) = 0 and s(0, x, v) = 1. To show that these
equations always have a (unique) solution, we just note that these equations determine the
flow of the even vector field R on (A0)2 × TM (0) given by

R|(r,s,x,v) = s · ∂
∂r

+ s2 · ι
(
∂Ψ1

∂t
(r, x, v)

)
αΨ1(r,x,v) ·

∂

∂s
(3.27)

And indeed, the equations for the flow Φ = (Φr,Φs,Φ1,Φ2) of R are given by

∂Φr
∂t (t, ro, so, x, v) = Φs(t, ro, so, x, v)

∂Φs
∂t (t, ro, so, x, v) = (Φs(t, ro, so, x, v))2

·ι
(
∂Ψ1

∂t (Φr(t, ro, so, x, v), x, v)
)
αΨ1(Φr(t,ro,so,x,v),x,v)

∂Φ1

∂t (t, ro, so, x, v) = 0

∂Φ2

∂t (t, ro, so, x, v) = 0

Now it thus suffices to define r(t, x, v) = Φr(t, 0, 1, x, v) and s(t, x, v) = Φs(t, 0, 1, x, v).

Local characterization of projective equivalence

Thanks to the algebraic characterization of projective equivalence, we can see that in co-
ordinates, the condition for two torsion-free superconnections ∇ and ∇′ to be projectively
equivalent can be written as Πk

ij = Π′
k
ij , where

Πk
ij = Γkij −

1

n−m+ 1
·
(
Γsis · δkj (−1)εs + Γsjs · δki · (−1)εiεj+εs

)
. (3.28)

The Πk
ij define the so-called fundamental descriptive invariant of the projective class of ∇.

Remark. In graded dimension n|m with n−m = −1, formula (3.28) does not make sense.
Actually, no such quantity as a fundamental descriptive invariant is known in this situation.
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3.2.4 Projectively equivalent smooth families

We use the algebraic characterization of projective equivalence in order to generalize this
equivalence to smooth families of torsion free connections on M , i.e., even smooth sections
of CM whose local components Γijk in the local adapted coordinates are graded symmetric
in the lower indices.

Definition. Two smooth families of torsion-free connections ∇ : W ⊂ P ×M → CM and
∇̂ : W ⊂ P ′ ×M → CM on M are called projectively equivalent if there exists a smooth
family α : {(p, p′, x) : (p, x) ∈W and (p′, x) ∈W ′} ⊂ (P ×P ′)×M → ∗TM of even 1-forms
on M such that the family S = ∇− ∇̂ is given by

ι(v, w)S(p, p′, x) = 1
2 · (v · ι(w)α(p, p′, x) + (−1)ε(v)·ε(w) · w · ι(v)α(p, p′, x)) (3.29)

for all homogeneous v, w ∈ TxM .
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3.3 The projective subalgebra of vector fields on E
n|m
0

preserves the projective class of the flat connection.

3.3.1 Preserving a projective class: vector fields

Definition. We say that a smooth vector field X preserves the projective structure of ∇
when there exists a smooth 1-form α on M such that the tensor LX∇ is given by

ι(Y,Z)LX∇ = ι(Y, Z)(α ∨ id) = 1
2

(
Y · ι(Z)α+ (−1)ε(Y ).ε(Z)Z · ι(Y )α

)
,

where ι(Y,Z)LX∇ is given by

ι(Y,Z)LX∇ = (−1)ε(X).(ε(Y )+ε(Z)) · [X,∇Y Z]− (−1)ε(X).(ε(Y )+ε(Z)) · ∇[X,Y ]Z

− (−1)ε(X).ε(Z) · ∇Y [X,Z] , (3.30)

Proposition 19. A smooth vector field X ∈ Γ(TE
n|m
0 ) preserves the projective structure of

the canonical flat connection ∇0 if and only if X = Xh for some h ∈ Bpaut(n+ 1|m,A).

Proof. By definition, the Christoffel symbols of ∇0 in the canonical coordinates of En|m0 are
zero. The condition for X = Xi · ∂xi to preserve the projective class of ∇0 thus reads

(∂xj∂xkX
i)·∂xi = 1

2

(
(−1)ε(α).(εj+εk)+εj · αj · ∂xk + (−1)ε(α).(εj+εk)+εj .εk+εk · αk · ∂xj

)
,

(3.31)

where α = αi · dxi. Obviously, all Xh with h ∈ Bpaut(n+ 1|m,A) satisfy such an equation:
for h ∈ Bg(−1) ∪Bg(0), take α = 0 while for h = ξ ∈ Bg(1), take α = 2 · (−1)i · ξi · dxi.

Conversely, equation (3.31) gives

∂xj∂xkX
i =


1
2 · (1 + (−1)εi) · αi, if i = j = k ;
1
2 · (−1)(ε(α)+εk).(εj+εk) · αk, if i = j 6= k ;
1
2 · (−1)ε(α)(εj+εk)+εj · αj , if i = k 6= j ;

0 , if i /∈ {j, k} .

It can be shown from these equalities that all partial derivatives of the coefficient functions
of α are zero. Therefore those coefficient functions are real constants and Xi reads as

Xi = 1
2 · αs · x

sxi + ai1,s · xs + ai0

for some constants ak1,i, ak0 ∈ R. Finally, the conclusion is obtained from formulas (1.3).
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A smooth family of vector fields

Let Z be the smooth family of all even fundamental vector fields associated with the action
of the projective group on the projective space, i.e.,

Z : paut(n+ 1|m,A)0 × En+m
0 → TEn+m

0 , (h, x) 7→ Xh
x .

Lemma 20. The smooth family of even vector fields Z preserves the projective structure of
the canonical flat connection ∇0, i.e.,

∇0 + LZ∇0 ∼ ∇0 .

Proof. From the proof of Proposition 19, we already know that for any h ∈ Bpaut(n +

1|m,A), we have

LXh∇0 = αh ∨ id ,

where the smooth 1-form αh = αh,i · dxi
∣∣
x
∈ Γ(∗TE

n|m
0 ) is defined by

αh,i =

{
2 · (−1)εi · ξi ∈ R , if h = ξ ∈ Bg(1) ;

0 , otherwise .

We prolong these formula to paut(n+ 1|m,A)0 by setting

αh,i =

{
2 · (−1)εi · ξi ∈ A , if h = ξ ∈ g(1) ;

0 , otherwise .

As a result, we obtain a smooth family of even 1-forms on En|m0 :

α : paut(n+ 1|m,A)0 × En|m0 → ∗TE
n|m
0 , (h, x) 7→ αh,i · dxi

∣∣
x
.

Finally, it is straightforward, using formula (2.7), to check in local coordinates that we have

LZ∇0(h, x) = α(h, x) ∨ id .
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3.3.2 Preserving a projective class: integration

Integrating with respect to the time parameter

First, given a smooth function f : I ⊂ A0 → A, we set for any t0 ∈ BI and t1 ∈ I such that
[t0,Bt1] ⊂ I,∫ t1

t0

f(t) · dt =

(∫ ·
t0

f0(t) · dt
)∼

(t1) ,

where f0 is the ordinary smooth function on R such that f(t) = f̃0(t).

Then, we extend this definition to any smooth function f defined on an open subset W of
A0 ×M by setting, in local coordinates,∫ t1

t0

f(t, x, ξ) · dt =
∑
I,J

ξI · (x−Bx)J

J !
·
(∫ ·

t0

∂fI
∂xJ

(t,Bx) · dt
)∼

(t1) ,

if f reads as f =
∑
I ξ

I · f̃I(t, x).

Finally, we extend the integration process to any smooth family of sections σ : W ⊂ (A0 ×
P ) ×M → Eπ of a vector bundle π : Eπ → M : given a set of local trivializing sections
{ej ∈ ΓU (Eπ)}, we set

∫ t1

t0

σ(t, p, x) · dt =
∑
j

(∫ t1

t0

σj(t, p, x)·
)
· ej(x) ,

if σ|U =
∑
j σ

j · ej .

Remark. Integration as defined above is related to differentiation as recalled in 2.2.2:(
∂t ·

(∫ ·
t0

σ(t, p, x) · dt
))

(t1) = σ(t1, p, x)(∫ t1

t0

(∂t · σ)(t, p, x) · dt
)

= σ(t1, p, x)− σ(t0, p, x) .

These formulas are inherited from the classical relation between integration and differentia-
tion because we defined things here from the classical notion through the local deomposition
of smooth functions.
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Integrating projective invariance

Proposition 21. If X : P × M → TM is a smooth family of even vector fields that
preserves the projective structure of ∇ ∈ Γ(CM), i.e., ∇+ LX∇ ∼ ∇, then so does its flow,
i.e., Φ∗X∇ ∼ ∇.

Proof. By definiton of the Lie derivative LX∇, the fact that X preserves the projective class
of ∇ gives

∂t · (Φ∗X∇) (0, p, x) = (LX∇)(p, x)

= (α ∨ id)(p, x) ,

for some smooth family α : P ×M → ∗TM of even 1-forms. For any t1 ∈ A0, using the fact
that the flow map of X satisfies ΦX,(t1+t,p) = ΦX,(t1,p) ◦ ΦX,(t,p), we then find

(∂t · (Φ∗X∇)) (t1, p, x) = ∂t ·
(

(t, t1, p, x) 7→ (Φ∗X∇)(t1+t,p) (x)
)

(0, t1, p, x)

= ∂t ·
(

(t, t1, p, x) 7→
(
CΦX,(−t1,p) ◦ (Φ∗X∇)(t,p) ◦ ΦX,(t1,p)(x)

))
(0, t1, p, x)

=
(
~CΦX,(−t1,p) ◦ (∂t · (Φ∗X∇))(0,p) ◦ ΦX,(t1,p)

)
(x)

= (Φ∗X (LX∇)) (t1, p, p, x)

= (Φ∗X(α ∨ id)) (t1, p, p, x) ,

where the third and fourth equalities are easily obtained from the definition of CΦ and its
underlying natural vector bundle functor ~C. Then, integration with respect to the even time
parameter t yields

(Φ∗X∇−∇) (t1, p, x) =

∫ t1

0

(∂t · (Φ∗X∇)) (t, p, x) · dt

=

∫ t1

0

(Φ∗X(α ∨ id)) (t, p, p, x) · dt

=

(∫ t1

0

(Φ∗Xα) (t, p, p, x) · dt
)
∨ id ,

showing that Φ∗X∇ is projectively equivalent to ∇.

Corollary 22. The flow ΦZ : A0 × paut(n + 1|m,A)0 × En+m
0 → En+m

0 preserves the
projective structure of the canonical flat connection ∇0.

54



Chapter 4

Natural Projectively

Invariant Quantization on

A-manifolds

In this last chapter we first describe the problem of Natural Projectively Invariant Quantiza-
tion (NPIQ) on supermanifolds in the language of A-manifolds. Then, we establish a super
analog of the classical relation between Projectively Equivariant Quantization (PEQ) and
NPIQ: if a NPIQ exists, its restriction to the flat superspace endowed with the canonical flat
connection gives a PEQ. The idea of the proof in the classical setting can be reused as soon
as one adopts the “language of smooth families” developed in the other chapters. Actually,
this language enables us to circumvent semantic problems arising from the fact that the flow
of a super vector field is, in general, not smooth for a fixed value of the time parameter.

Having recovered the relation between NPIQ and PEQ, we describe the superization pre-
sented in [?] of M. Bordemann’s method: with each torsion-free connection [∇] one asso-
ciates a unique linear connection, ∇̃, on a line bundle M̃ →M ; then one identifies symbols
on M with suitable tensors on M̃ ; finally, one applies the so-called standard ordering on
M̃ and project the result back to M , so that the whole procedure defines a projectively
invariant quantization map.

This procedure is not valid when the superdimension is either 1 or −1. As a conclusion, we
discuss the (open) problem of existence of a NPIQ in these peculiar cases.

Remark. In this chapter, we denote by dx1, . . . ,dxn+m the left dual basis of the canonical
basis of local supervector fields ∂1, . . . , ∂n+m on M , i.e., we have here ι(∂xj )dxi = δij for
all i, j. In [?], {dxi} stood for the right dual basis, which explains why some definition
may seem different at first sight. Actually, developing things in coordinates shows that the
formulas/computations here are exactly the same as in [?].
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4.1 Natural Projectively Invariant Quantization

generalizes Projectively Equivariant Quantization.

4.1.1 The bundle of densities

LetM be an A-manifold of dimension n|m and let {(Ua ⊂M,ϕa : Ua → E
n|m
0 )} be the atlas

of all charts for M . Let λ ∈ R. We define Fλ(ϕba) : ϕa(Ub ∩ Ua)→ Aut(A) by setting(1)

Fλ(ϕba)(x)(a) = |Ber(Aba(x))|−λ · a ,

where Aba(x) is given in terms of a basis {ei} of En|m and its left dual basis {ie} by

Aba(x) =
∑
k,l

ke · (∂xlϕkba(x))⊗ el .

In other words, we have ι(hk · ek)(Aba(x)) =
∑
k,l h

k · (∂xlϕkba(x)) · el and the matrix repre-
sentation of Aba(x) is thus the ordinary (not graded) transpose of that of Jac(ϕba)(x).

It follows from the chain rule and the properties of the Berezinian Ber (see [?, II.5]) that
the functions Ψba = Fλ(ϕba) ◦ ϕa : Ub ∩ Ua → Aut(A) satisfy the cocycle conditions (B.1):

Ψaa(x)(a) = |Ber(Aaa(ϕa(x)))|−λ · a = |Ber(idEn|m)|−λ · a = a

Ψcb(x) ◦Ψba(x) = |Ber(Acb(ϕb(x)))|−λ · |Ber(Aba(ϕa(x)))|−λ · a

= |Ber(Aba(ϕb(x))) · Ber(Acb(ϕa(x)))|−λ · a

= |Ber(Ab,a,c,b(x))|−λ · a ,

where Ab,a,c,b(x), the product of the matrix representations of Acb(ϕb(x)) and Aba(ϕa(x))

(as left A-linear operators, in the middle coordinates), represents Aca(ϕa(x)):

(Ab,a,c,b(x))ij = (Aba(ϕa(x)))ik · (Acb(ϕb(x)))kj

= (∂xiaϕ
k
ba)(ϕa(x)) · (∂xkbϕ

j
cb)(ϕb(x))

= (∂xiaϕ
j
ca)(ϕa(x)) .

The vector bundle FλM corresponding to these transition functions Ψba is the bundle of
λ-densities over M . Note that above a chart, any local section of FλM can be written as
φ = f · |Dx|λ, where f is a local smooth function while |Dx|λ stands for the local section
whose local expression in the chart is the constant function 1.

1 The function | · | : invA0 → invA0 is defined by |a| = sign(Ba) · a while ·−λ : {a ∈ A0 : Ba > 0} → A0

is defined from the ordinary smooth function ·−λ : R \ {0} → R \ {0} by means of a Taylor expansion in the
nilpotent part (see the definition of the functions f̃i1...ir in Subsection A.2.2).
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A functor

Definition. The bundle functor Fλ associates with an A-manifold M its vector bundle of
λ-densities while the image of a morphism Φ : W ⊂ P ×M → N is the smooth collection
FλΦ : {(p, φ) : (p, π(φ)) ∈W} ⊂ P ×FλM → FλN of fiberwise even A-linear maps defined
locally as

ι
(
a · |Dx|λ|x

)
(FλΦ)p = |Ber(AΦp(x))|−λ · a · |Dy|λ|Φp(x) ,

where AΦp(x) is given in terms of a basis {ei} of En|m and its left dual basis {ie} by

ι(hk · ek)(AΦp(x)) =
∑
k,l

hk · (∂xlΦk(p, x)) · el .

Geometric Lie derivative

Proposition 23. Let X : P ×M → TM be a smooth family of even vector fields on M . If
φ ∈ Γ(FλM) reads locally as φ = f · |Dx|λ, we have

(LXφ)(p, x) =
(
Xj(p, x)(∂jf)(x) + λ · (−1)εi · (∂xiXi)(p, x) · f(x)

)
· |Dx|λ|x . (4.1)

In particular, when M = E
n|m
0 and p ∈ BP , we recover the Lie derivative of Chapter 1, i.e.,

(LXφ)p =
(
DXp(f) + λ · div(Xp) · f

)
· |Dx|λ =

(
LλXpf

)
· |Dx|λ .

Proof. It follows from the definition of Lie derivatives (Chapter 2) and the chain rule that

(LXΦ)(p, x) =
((
∂t ·

(
(t, p, x) 7→ |Ber(AΦX,(−t,p)(ΦX,(t,p)(x)))|−λ · (f ◦ ΦX,(t,p))

))
(0, p, x)

)
· |Dx|λ|x

=

((
∂ΦiX
∂t

(0, p, x)

)
·
(
∂f

∂xi
(ΦX(0, p, x))

))
· |Dx|λ|x

−
(
λ ·
(
∂t ·

(
(t, p, x) 7→ Ber(AΦX,(−t,p)(ΦX,(t,p)(x)))

))
(0, p, x) · f(x)

)
· |Dx|λ|x

=
(
Xi(p, x) · (∂xif)(x) + λ · str

(
∂tAΦX,(t,p)(x)|t=0

)
· f(x)

)
· |Dx|λ|x ,

where the graded trace, arising from Jac(Ber)(idE) = str (cf. [?, III.3.14]), is given by

str
(
∂tAΦX,(t,p)(x)|t=0

)
= str

∑
k,l

ke · (∂t · ∂xlΦkX(0, p, x))⊗ el


=

∑
k,l

(−1)εl.(εk+εl+ε(X
k(p,x)))δkl · (∂xlXk(p, x)) ,

where ε(Xk(p, x)) = εk since X(p, x) is even. Hence the proposition.
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4.1.2 The bundle of weighted graded symmetric tensors

LetM be an A-manifold of dimension n|m and let {(Ua ⊂M,ϕa : Ua → E
n|m
0 )} be the atlas

of all charts for M . Let δ ∈ R and r ∈ N. We define ∨rδ(ϕba) : ϕa(Ub ∩Ua)→ Aut(∨rEn|m),
in terms of a basis (e1, ..., em+n) of En|m, by setting

ι(Sk1,...,kr · ek1 ∨ · · · ∨ ekr )((∨rδ(ϕba))(x)) =

|Ber(Aba(x))|−δ · Sk1,...,kr · (∂xk1ϕl1ba(x)) · el1 ∨ · · · ∨ (∂xkrϕ
lr
ba(x)) · elr ,

where Aba(x) is given by

Aba(x) =
∑
k,l

ke · (∂xlϕkba(x))⊗ el .

In other words, we have

ι(Sk1,...,kr · ek1 ∨ · · · ∨ ekr )((∨r(ϕba))(x)) = S̃l1,...,lr · el1 ∨ · · · ∨ elr ,

where

S̃l1,...,lr = |Ber(Aba(x))|−δ·Sk1,...,kr ·(−1)
∑r
s=2(εks+εls )·(

∑s−1
t=1 εt)·(∂xk1ϕl1ba(x))· · · · ·(∂xkrϕlrba(x)) .

It follows from the chain rule that the functions ∨rδ(ϕba) ◦ ϕa : Ub ∩ Ua → Aut(∨rEn|m)

satisfy the cocycle conditions (B.1). The corresponding vector bundle ∨rδM is called the
bundle of graded symmetric tensors of degree r and weight δ over M .

Remark. For δ = 0, the bundle of graded symmetric tensors of degree r over M is nothing
but the r-th graded symmetric tensor power of the tangent bundle of M . In particular,
∨1

0M = TM . For a general δ, we have an isomorphism

∨rδM ∼= FδM ⊗ ∨rTM

and thus also an isomorphism of C∞(M)-modules,

Iδ : Γ(FδM)⊗C∞(M) ∨rΓ(TM)
∼=−→ Γ(∨rδM) ,

induced by the canonical isomorphism

Γ(FδM)⊗C∞(M) ∨rΓ(TM) ∼= Γ(FδM ⊗M ∨rTM) .
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A functor

Definition. The bundle functor ∨rδ associates with an A-manifold M its vector bundle
of graded symmetric tensors of degree r and weight δ while the image of a morphism Φ :

W ⊂ P ×M → N is the smooth collection of fiberwise left A-linear maps ∨rδΦ : {(p, S) :

(p, π(S)) ∈W} ⊂ P × ∨rδM → ∨rδN defined locally as

ι
(
Si1,...,ir · |Dx|δ · ∂xi1 |x ∨ · · · ∨ ∂xir |x

)
(∨rδΦ)p

= |Ber(AΦp(x))|−δ · Si1,...,ir · |Dx|δ · (−1)
∑r
s=2(is+js) ·(

∑s−1
t=1 t)

· (∂xi1 Φj1(p, x)) · · · · · (∂xirΦjr (p, x)) · ∂yj1
∣∣
Φ(p,x)

∨ · · · ∨ ∂yjr
∣∣
Φ(p,x)

. (4.2)

Geometric Lie derivative

Let X : P ×M → TM be a smooth family of even vector fields on M . If S reads locally as
Si1,...,ir · |Dx|δ · ∂xi1 ∨ · · · ∨ ∂xir ∈ Γ(∨rδM), we have

(LXS)(p, x) = S̄i1,...,ir (p, x) · |Dx|δ|x ⊗ ∂xi1 |x ∨ · · · ∨ ∂xir |x

with

S̄i1,...,ir (p, x) = X l(p, x) · (∂xlSi1,...,ir )(x)

+δ · Si1,...,ir (x) · (−1)i · (∂xiXi)(p, x)

−
r∑
j=1

(−1)
∑

(εl+εij )(εi1+...+εij−1
) · Si1,..ij−1,l,ij+1,.,ir (x) · (∂xlXij )(p, x)

In particular, if M = E
n|m
0 and p ∈ BP , then if we see (LXS)p through the isomorphism

Γ(∨rδE
n|m
0 ) ∼= Fδ ⊗ ∨rΓ(TE

n|m
0 ) = Skδ ,

then we have

(LXS)p = Lδ,rXpS ,

where LδXpS stands for the Lie derivative of weighted tensor fields in the direction of smooth
vector fields defined in Chapter 1 (formula (1.6)).
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4.1.3 The bundle of differential operators

Let M be an A-manifold of dimension n|m and let {(Ua ⊂ M,ϕa : Ua → E
n|m
0 )} be the

atlas of all charts for M . Let λ, µ ∈ R and r ∈ N. We set Drλ,µ(En|m) = ⊕rs=0 ∨s En|m and
we define Drλ,µ(ϕba) : ϕa(Ua∩Ub)→ Drλ,µ(E) by analogy with the transformation law of the
coefficient functions of differential operators from λ-densities to µ-densities under a change
of chart from (Ua, ϕa) to (Ub, ϕb): in terms of a basis (e1, ..., em+n) of E, we thus set

ι

(
r∑
s=0

Di1,...,is · ei1 ∨ · · · ∨ eis

)
(Drλ,µ(ϕba))(x) =

r∑
s=0

D̄i1,...,is(ϕba(x)) · ei1 ∨ · · · ∨ eis ,

where D̄i1,...,ir are the coefficient functions in the chart (Ub, ϕb) of the differential operator
D̄ acting on local smooth functions on Ua ∩ Ub, given by

D̄(f) = |Ber(Aba)|−µ ◦D(|Ber(Aba)|λ · f) ,

with D standing for the differential operator D̄ acting on local smooth functions on Ua ∩Ub
with (constant) coefficients functions Di1,...,ir in the chart (Ua, ϕa).

Remark. Since only real constants are smooth, our definition holds only for real coefficients
Di1,...,ir . However, we can extend the definition to coefficients in A by left A-linearity.

By construction, the functions (Drλ,µ(ϕba)) ◦ϕa : Ub ∩Ua → Aut(Dr(E)) satisfy the cocycle
conditions (B.1). The corresponding vector bundle Drλ,µM is called the bundle of linear
differential operators of order r from λ-densities to µ-densities.

A functor

Definition. The bundle functor Dr associates with an A-manifold M its bundle of linear
differential operators of order r from λ-densities to µ-densities while the image of a morphism
Φ : W ⊂ P × M → N is the smooth collection Drλ,µΦ : {(p,D) : (p, π(D)) ∈ W} ⊂
P × ∨rM → ∨rN defined locally by

ι

(
r∑
s=0

Di1,...,ir · ∂xi1 |x ∨ · · · ∨ ∂xir |x

)
((Drλ,µΦ)p) =

r∑
s=0

D̄i1,...,ir (Φp(x))·∂yi1 |Φp(x)∨· · ·∨∂yir |Φp(x) ,

where D̄i1,...,ir are the coefficient functions of the differential operator D̄ on local smooth
functions, given by

D̄(f) = |Ber(AΦp)|−µ ◦D(|Ber(AΦp)|λ · f) ,

where D =
∑r
s=0D

i1,...,ir · ∂xi1 ◦ · · · ◦ ∂xir .

61



Natural Projectively Invariant Quantization
generalizes Projectively Equivariant Quantization.

Geometric Lie derivative

Let X : P ×M → TM be a smooth family of even vector fields on M . There is a corre-
spondence

Iλ,µ : Γ(Drλ,µM)
∼=−→ Drλ,µ(Γ(FλM),Γ(FλM)) ,

given locally by

Iλ,µ

(
r∑
s=0

Di1,...,ir · ∂xi1 ∨ · · · ∨ ∂xir

)
=

r∑
s=0

Di1,...,ir · |Dx|δ ⊗ ∂xi1 ◦ · · · ◦ ∂xir ,

where ∂xi1 ∨ · · · ∨ ∂xir is the local section of Drλ,µM with local expression ei1 ∨ · · · ∨ eir in
the coordinates (x1, . . . , xn+m). Through that correspondence, we have

LXD = LX ◦D −D ◦ LX

In particular, when M = E
n|m
0 and p ∈ BP , we recover through the correspondence

Γ(Drλ,µE
n|m
0 ) ∼= Dλ,µ the (algebraic) Lie derivative of differential operators defined in Chap-

ter 1 (formula 1.8), i.e.,

(LXD)p = LXp ◦D −D ◦ LXp .

Symbol map

Let λ, µ ∈ R. We define the symbol map

σ :
⋃
r∈N

Γ̃(Drλ,µM)→
⊕
r∈N

Γ̃(∨rδM)

by setting, in local coordinates,

σ(D)(p, x) = Di1,...,ir (p, x) · ∂xi1 |x ∨ · · · ∨ ∂xir |x

if D(p, x) = Di1,...,ir (p, x) · ∂xi1 |x ∨ · · · ∨ ∂xir |x + lower degree terms.

Remark. The map σ is well-defined because the transformation law of the higher order
terms of differential operators under a change of chart from (Ua, ϕa) to (Ub, ϕb) coincide
with ∨rδ(ϕba).

Remark. ForM = E
n|m
0 , the restriction to Γ(Drλ,µM) of this symbol map coincide, through

the correspondences Iδ and Iλ,µ, with the principal symbol operator σr : Dkλ,µ → Skδ defined
in Chapter 1 (formula (1.9)).
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4.1.4 Natural Projectively Invariant Quantization

Quantizations

An extended quantization on M is an even regular bijection

Q : ⊕k∈NΓ̃(∨kδM)→
⋃
k∈N

Γ̃(Dkλ,µM)

such that:

(Lin.) The map Q is left A-linear and even:
Q(S + S′)(p, p′, x) = Q(S)(p, x) +Q(S′)(p′, x) ,

Q(A · S)(a, p, x) = a · (Q(S)(p, x)) ,

ε(Q(S)p) = ε(Sp) .

In particular, Q is R-linear.

(Quant.) The map Q is symbol-preserving:

σ(QM (S)) = S .

Definition. A quantization on M is a map ⊕k∈NΓ(∨kδM) →
⋃
k∈N Γ(Dkλ,µM) that is the

restriction to smooth sections of an extended quantization.

NPIQ

An extended natural quantization on A-M̃ann|m is a collection Q = {Qk : k ∈ N} of natural
operators Qk : (C × ∨kδ )→ Dkλ,µ, i.e., a collection of maps

QkM : Γ̃(CM)× Γ̃(∨kδM)→ Γ̃(Dkλ,µM) ,

such that for any ∇ ∈ Γ̃(CM), the maps QkM (∇, ·) (k ∈ N) define a quantization on M .
Finally, an extended natural quantization QM is called projectively invariant if one has

QM (∇, ·) = QM (∇′, ·)

whenever ∇ and ∇′ are projectively equivalent.

Definition. A natural projectively invariant quantization (NPIQ) on A-Mann|m is a collec-
tion of maps QkM : Γ(CM)×Γ(∨kδM)→ Γ(Dkλ,µM) that can be extended to smooth families
in order to form an extended natural projectively invariant quantization on A-M̃ann|m .
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4.1.5 From NPIQ to PEQ

Let Z be the smooth family of all even fundamental vector fields associated with the action
of the projective group on the projective space, i.e.,

Z : paut(n+ 1|m,A)0 × En+m
0 → TEn+m

0 , (h, x) 7→ Xh
x .

Lemma 24. Let Q̃ be an extended quantization on M = E
n|m
0 . If Q̃ is equivariant with

respect to the Lie derivative in the direction of Z, then its restriction Q to smooth sections
is projectively equivariant in the sense of Chapter 1.

Proof. We need to show that

Lalg
Xh

(Q(S)) = Q(Lalg
Xh
S) .

for all h ∈ Bpaut(n + 1|m,A). However, by R-linearity, it is enough to show this equality
for a basis {ei} of the A-vector space paut(n+ 1|m,A).

For even elements ei, the result is immediate because we have already noticed that the
geometric and algebraic Lie derivatives of differential operators and symbols (i.e., weighted
graded symmetric tensor fields) coincide when M = E

n|m
0 and the parameter is in the body.

Indeed, since ei ∈ Bpaut(n+ 1|m,A)0, we have

Lalg
Xei (Q(S))(x) = LZ(Q(S))(ei, x)

= Q̃(LZS)(ei, x)

= Q(Lalg
XeiS)(x) ,

where the last equality is obtained using the regularity property of Q̃.

Unfortunately, odd elements ei do not belong to paut(n+ 1|m,A)0, the parameter space of
Z. Nevertheless, paut(n+ 1|m,A)0 contains the linear combinations of the odd elements ei
with odd coefficients and those coefficients are nothing but the odd coordinates in paut(n+

1|m,A)0. In order to show equivariance of Q with respect to ei, the idea is differentiate the
Z-equivariance of Q in the direction of the odd coordinate hi.

To this aim, we first notice that for differential operators (resp. symbols), we have

(LZD) (h, x) =
∑
i

hi · Lalg
XeiD

(
resp. (LZS) (h, x) =

∑
i

hi · Lalg
XeiS

)
,

if h =
∑
i h

i · ei. This is easily seen from the local expression of the Lie derivatives and of
the vector fields Xh (see Chapter 1).
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Then, using the hypothesis, we get

∑
i

hi ·
((

Lalg
Xei (Q(S))

)
(x)
)

= (LZ(Q(S))) (h, x)

= Q̃(LZS)(h, x)

= Q̃

(
d∑
i=0

A · Lalg
XeiS

)
(h1, . . . , hd, x)

=
∑
i

hi ·
(
Q(Lalg

XeiS)(x)
)
,

where d = dim(paut(n + 1|m,A)). Note that the third equality follows from the regularity
property of Q̃ while the fourth equality can be obtained thanks to the left A-linearity of Q̃.

Finally, since both sides of the equation are smooth families of sections of the bundle of
differential operators, we can differentiate with respect to the coordinate hi and get the
equivariance of Q with respect to the the odd vector fields Xei .

Proposition 25. If Q̃ is an extended NPIQ on A-Mann|m, then

Q0 = Q̃
E
n|m
0

(∇0, ·)
∣∣∣
⊕k∈NΓ(∨kδE

n|m
0 )

is equivariant with respect to the Lie derivative in the direction of Z.

Proof. For any (h, x) ∈ paut(n+ 1|m,A)0 × En|m0 and any S ∈ ⊕k∈NΓ(∨kδE
n|m
0 ), we have

LZ(Q0(S))(h, x) = ∂t ·
(

Φ∗Z

(
Q̃
E
n|m
0

(∇0, S)
))

(t = 0, h, x))

= ∂t ·
(
Q̃
E
n|m
0

((Φ∗Z∇0) , (Φ∗ZS))
)

(t = 0, h, x)

= ∂t ·
(
Q̃
E
n|m
0

(∇0, (Φ
∗
ZS))

)
(t = 0, h, x)

= Q̃
E
n|m
0

(∇0, ∂t · (Φ∗ZS))(t = 0, h, x)

= Q0(LZS)(h, x) .

The first equality is nothing but the definition of the Lie derivative. The second equality
follows from the naturality property of Q̃. The third equality follows from corollary 22 and
the projective invariance of Q̃. The fourth equality is a consequence of Peetre theorem for
local regular even A-linear operators actions on smooth families of sections of vector bundles
(see Section 2.4). Finally, the last equality follows from the regularity property of Q̃ and
the definition of the Lie derivative.

Corollary 26. If Q is a NPIQ on A-Mann|m, then Q = Q
E
n|m
0

(∇0, ·) is a PEQ on En|m0 .
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4.2 M. Bordemann’s construction of a NPIQ

can be adapted on A-manifolds.

4.2.1 Thomas bundle and Thomas manifold

Let M be an A-manifold of dimension n|m and let {(Ua ⊂M,ϕa : Ua → E0)} be the atlas
of all charts for M . We introduce T (ϕba) : Ua ∩ Ub → Aff(A) by setting

T (ϕba)(x)(a) = a+ log |Ber(Aba(x))| , (4.3)

where Aba(x) is given in terms of a basis {ei} of En|m and its left dual basis {ie} by
ι(hk · ek)(Aba(x)) =

∑
k,l h

k · (∂xlϕkba(x)) · el.

Remark. The function log : {a ∈ A0 : Ba > 0} → A0 the unique smooth function (see [?,
III.5.25]) such that for any a ∈ A0 with Ba > 0, we have

B(log a) = log(Ba) .

It follows from the chain rule that the functions T (ϕba) ◦ ϕa : Ub ∩Ua → Aff(A) satisfy the
cocycle conditions (B.1), thus defining the Thomas bundle TM of M . Note that above a
chart, any local section of TM can be written as φ = f + log(|Dx|), where log(|Dx|) stands
for the local section whose local expression in the chart is the constant function 0.

Remark. The computations showing that the cocycle conditions are satisfied are the same
as for the bundles of densities (see Subsection 4.1.1). Moreover, up to the log operation, the
transition functions of the (super) Thomas bundle correspond to the transformation law of
sections of the Berezinian sheaf (see [?] for a formal definition).

Definition. The bundle functor T associates with an A-manifold M its Thomas bundle
while the image of a morphism Φ : W ⊂ P ×M → N is the smooth collection T Φ : {(p, z) :

(p, π(z)) ∈W} ⊂ P × TM → T N defined in fibered coordinates as

(T Φ)p (a+ log(|Dx|)|x) = a+ log |Ber(AΦp(x))|+ log(|Dx|)|Φp(x) .

Definition. The Thomas manifold M̃ of M is the even subspace of TM made of those
points whose image through any local trivialization in the Aff(A)-atlas constructed above
lie in A0. In other words, M̃ is an A manifold with local coordinates (x0, x1, . . . , xn+m),
where the coordinates x1, . . . , xn+m transform as the coordinates of M while the extra even
coordinate x0 transforms according to formula (4.3).
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Densities on M are equivariant functions on M̃ .

By analogy with the classical situation, we set E = ∂x0 to represent the partial derivative
with respect to the extra even coordinate of M̃ and we call it the Euler vector field of M̃ .
The fact that E is well-defined is easily seen from (4.3) and the transformation law of the
components of a vector field X under a change of coordinates.

Densities on M identify with some superfunctions on M̃ . More precisely, we can associate
with a λ-density expressed locally as Φ = f · |Dx|λ the superfunction φ̃ given by

φ̃(x0, x1, . . . , xn+m) = f(x1, . . . , xn+m) · exp(λ · x0). (4.4)

It follows directly from the transformation law of densities that φ̃ is well-defined. Moreover,
it is λ-equivariant in the sense that

LE φ̃ = λ · φ̃.

Conversely, from a λ-equivariant superfunction f on M̃ , one defines a λ-density φf on M

by setting

φf (x1, ..., xn) = f(x0, x1, ..., xn) · exp(−λ · x0) · |Dx|λ (4.5)

for an arbitrary x0. Because of the equivariance property of f , the derivative of φf with
respect to x0 is zero and the density is well-defined. This way, we establish a one-to-one
correspondence between λ-densities on M and λ-equivariant superfunctions on M̃ .

4.2.2 Projectively invariant lift of torsion-free connections

Let ∇ be a torsion-free connection on M . We are going to define a lifted torsion-free
connection ∇̃ on M̃ in terms of horizontal lifts of supervector fields on M .

Horizontal lift of vector fields

Definition. In the coordinates of M̃ , the horizontal lift to M̃ of a super vector field X =

Xi · ∂xi on M is defined by

Xh(∇) = −(−1)εs ·Xi · Γsis · ∂x0 +Xi · ∂xi . (4.6)

The fact that this super vector fieldXh(∇) is well-defined can be checked in local coordinates.
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Remark. The fact that the local components in formula (4.6) do indeed transform according
to the transformation law of super vector fields on M̃ is a consequence of the following facts.
On the one hand, knowing [?, III.3.14] that Jac(Ber)(id) = str, we can show that(2)

Xi · ∂xi log(|Ber(Aba(x))|) = Xi · str(je · (∂xiAba(x))ik · (A−1
ba (x))kj ⊗ ei) ,

where ∂xiAba(x) is given in terms of a basis {ei} of En|m by

∑
k,l

ke · (−1)εi.εk · (∂xi · ∂xlϕkba(ϕa(x))⊗ el .

On the other hand, writing X̄i (resp. Γ̄ijk) the local components of X (resp. the Christoffel
symbols of ∇) in another coordinate system, the transformation law of super vector fields
on M and of Christoffel symbols (formula (3.11)) gives

− (−1)εs · X̄i · Γ̄sis = −(−1)εr ·Xt · Γrtr − (−1)εs ·Xi · ∂xiϕvba · ∂xv∂xsϕkba · ∂xkϕsba .

From these formulas, the computations consists in applying the chain rule extensively.

Graded traces of the curvature tensor

Remember that from the curvature tensor R of ∇, i.e.,

R(X,Y )Z = ∇X∇Y Z − (−1)ε(X)ε(Y ) · ∇Y∇XZ −∇[X,Y ]Z,

the super-Ricci tensor Ric and the tensor strR are defined as graded traces, namely

Ric(Y,Z) = str(X 7→ R(X,Y )Z),

strR(X,Y ) = str(Z 7→ R(X,Y )Z) .

Equivalently, in coordinates, Ric and strR are given by

Ric(Y,Z) = (−1)εi(εi+ε(Y )+ε(Z)) · ι(R(∂xi , Y )Z)dxi

strR(X,Y ) = (−1)εi · ι(R(X,Y )∂xi)dx
i .

Remark. Note that R(X,Y )Z is left C∞(M)-linear in X and right C∞(M)-linear in Z.
Therefore Ric is obtained by means of a left graded trace while strR is obtained by means
of a right graded trace (see [?, II.5]).

2Note that in [?], it is shown that ∂xi (Ber(A)) = (BerA) · str((∂xiA) ·A−1).
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Projectively invariant lift of torsion-free connections

We denote by r the following multiple of a supersymmetric part of the Ricci tensor of ∇:
for homogeneous X,Y ∈ Γ(TM), we set

r(X,Y ) =
1

2(n−m− 1)
(Ric(X,Y ) + (−1)ε(X)ε(Y ) · Ric(Y,X)) .

Now let ∇ be a torsion-free connection on M . With notations of (4.4), we set

∇̃Xh(∇)Y h(∇) = (∇XY )
h(∇) − 1

2
· ˜strR(X,Y ) · E + (n−m+ 1) · ˜r(X,Y ) · E

∇̃Xh(∇)E = ∇̃EXh(∇) =
−1

n−m+ 1
·Xh(∇), ∇̃EE =

−1

n−m+ 1
· E .

Proposition 27. The quantities Πk
ij introduced in (3.28) can be used to express the Christof-

fel symbols of the lifted connection ∇̃. These Christoffel symbols are given by

Γ̃kij = Πk
ij , Γ̃c

0a = Γ̃c
a0 =

−δca
n−m+ 1

,

Γ̃0
ij =

n−m+ 1

n−m− 1
·
(
∂xqΠ

q
ij −Πp

qi ·Π
q
pj

)
· (−1)εq(εq+εi+εj),

where i, j, k ranges from 1 to n+m while a, c ranges from 0 to n+m.(3)

Proof. The result is obtained after long but straightforward local computations.

Corollary 28. The map ∇ 7→ ∇̃ is projectively invariant.

Definition. The lifted connection ∇̃ on M̃ is called the projectively invariant lift of ∇.

Remark. We need to assume that the superdimension n −m is neither 1 nor −1 for the
above formulas to make sense. The case n −m = 1 is somehow the super prolongation of
the fact that M. Bordemann’s construction fails for a 1-dimensional smooth manifold. The
case n −m = −1 has no classical counterpart since negative dimensions do not appear in
the context of ordinary smooth manifolds. Note that when n−m = −1, the quantities Πk

ij

themselves cannot be defined.

Remark. The lifted connection ∇̃ is associated in a natural way with the connection ∇.
Moreover, ∇̃ is such that LE∇̃ = 0, where LE∇̃(X,Y ) = [E , ∇̃XY ] − ∇̃[E,X]Y − ∇̃X [E , Y ].
This invariance is due to the invariance of E , of the horizontal lifts and of the functions

˜strR(X,Y ) and ˜r(X,Y ).
3These formulas first appeared in [?].
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4.2.3 Construction of the NPIQ

Our goal in this section is to lift in a natural and projectively invariant way a symbol S on
M to a tensor S̃ on M̃ . To this aim, we define in a first step a horizontal lift of S via the
horizontal lift of supervector fields (4.6). In a second step, we define a map which transforms
equivariant tensors on M̃ into symbols on M . We prove that the restriction of this map to
the divergence-free tensors (with respect to ∇̃) is a bijection. The natural and projectively
invariant lift is then the inverse map of this “descent” application.

Horizontal lift of symbols

Since a symbol S of degree k on M is locally a sum of terms of the form φ⊗ ∂i1 ∨ · · · ∨ ∂ik ,
it suffices to define the horizontal lift on symbols of this form and to extend it additively.

Definition. In coordinates, the horizontal lift of a symbol S = φ⊗ ∂i1 ∨ · · · ∨ ∂ik of weight
δ is a symbol of weight 0 on M̃ :

Sh(∇) = φ̃⊗ ∂h(∇)
i1

∨ · · · ∨ ∂h(∇)
ik

.

The horizontal lift of a symbol S is δ-equivariant, i.e. LES
h(∇) = δ · Sh(∇). In the sequel,

we denote by Γ(∨kM̃)δ the space of δ-equivariant tensor fields of degree k on M̃ .

Remark. The horizontal lift of a δ-density on M (i.e., a tensor of degree 0) to a superfunc-
tion on M̃ coincides with the correspondence given in (4.4).

Descent map

Using the fact that tensor fields of degree k on M̃ can be locally decomposed in the basis
∂
h(∇)
1 , . . . , ∂

h(∇)
n+m, E , it is enough to define the descent map on a tensor of the form

S =

k∑
l=0

∑
i1,...,ik−l

ϕi1,...,ik−l,0,...,0 ⊗ ∂h(∇)
i1

∨ · · · ∨ ∂h(∇)
ik−l

∨ E l. (4.7)

For any S ∈ Γ(∨kM̃)δ expressed as in (4.7), we set

Ψ(S) =
∑

i1,...,ik

ϕi1,...,ik0 ⊗ ∂i1 ∨ · · · ∨ ∂ik ,

where ϕi1,...,ik0 (x1, . . . , xn+m) = ϕi1,...,ik(x0, x1, . . . , xn+m) · exp(x0) for an arbitrary x0 (cf.
(4.5)). It is easy to check that Ψ(S) is a well-defined symbol of weight δ.
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Moreover, the map Ψ is surjective: if Ak is a symbol of degree k and weight δ on M , then
any tensor field of the form

A
h(∇)
k +A

h(∇)
k−1 ∨ E + . . .+A

h(∇)
0 ∨ Ek , (4.8)

where each Ak−j (j = 1, . . . , k) is a symbol of degree k − j and weight δ, is such that
Ψ(S) = Ak.

Covariant derivative of symbols

A symbol reads locally as a sum of terms of the form φ · ∂i1 ∨ · · · ∨ ∂ik , where φ is a
local density. We already have a covariant derivative of vector fields. By means of the Lie
derivative of equivariant functions on M̃ in the direction of horizontal lift of vector fields,
we can define a covariant derivative of densities on M .

Definition. The covariant derivative of a δ-density φ ∈ Γ(FδM) in the direction of a
vector field X ∈ Γ(TM) is the δ-density associated with the δ-equivariant function LXh(∇) φ̃

in the sense of Subsection 4.2.1.(4)

In coordinates, using formula (4.1), we obtain

∇Xφ =
(
DX(f)− (−1)εs · δ ·Xi · Γsis · f

)
· |Dx|δ ,

if φ = f · |Dx|δ.

Definition. Given a 1-form α = αi · dxi and a symbol S = φ⊗ ∂i1 ∨ · · · ∨ ∂ik , we set

ι(α)(S) =

k∑
j=1

(−1)ε(α).(ε(φ)+ε(i1)+...+ε(ij−1)) · φ⊗ ∂i1 ∨ · · ·
(j)

(−1)εij · αij · · · ∨ ∂ik ,

where (−1)εij · αij replaces ∂ij . Moreover, we extend this definition to covariant tensor of
degree l by setting ι(α1 ∨ · · · ∨ αl) = ι(α1) ◦ . . . ◦ ι(αl)(S).(5)

Definition. The covariant derivative with respect to ∇ of a symbol S = φ⊗ ∂i1 ∨ · · · ∨ ∂ik
in the direction of a supervector field X is defined by

∇X(S) = ∇Xφ⊗ ∂i1 ∨ · · · ∨ ∂ik

+

k∑
j=1

(−1)ε(X).(ε(φ)+ε(i1)+...+ε(ij−1)) · φ⊗ ∂i1 ∨ · · ·
(j)

∇X∂ij · · · ∨ ∂ik .

4The function LXh(∇) φ̃ is δ-equivariant because LE commutes with all LXh(∇) .
5With respect to [?], there is an additional (−1)

εij because here dxi stands for the left dual basis of ∂xi
while in [?] we denoted by dxi the right dual basis.
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Divergence of symbols

Definition. The operator of divergence with respect to ∇ is the map

Div∇ :
⊕
k∈N0

Γ(∨kδM)→
⊕
k∈N

Γ(∨kδM) : S 7→
n+m∑
j=1

ι(dxj)(∇∂xjS).

For M = E
n|m
0 , δ = 0, k = 1, we have Γ(∨kδM) = Vect(E

p|q
0 ). Then, if ∇ = ∇0, we have

div∇0
(X) =

∑
j

ι(dxj)((∂xjX
i) · ∂xi)

=
∑
j

(−1)εj .(εj+ε(X)+εi)(∂xjX
i) · (−1)εj · δji

=
∑
j

(−1)εj .(ε(X)+εj)(∂xjX
j) ,

if X = Xi · ∂xi . In other words, the divergence operator on symbols defined above is
generalization of the divergence operator on vector fields defined in Chapter 1 (formula 1.5).

Projectively invariant lift of symbols

If δ is not critical, the restriction of Ψ to the divergence-free tensors with respect to ∇̃ is a
bijection. Indeed, the condition of zero divergence allows to fix the symbols Ak−j in (4.8)
because of the following proposition (whose proof is exactly the same as in [?]).

Proposition 29. If j ∈ N, l ∈ N and if A ∈ Γ(∨jδM), then we have

Div∇̃(Ah(∇) ∨ E l) = (Div∇A)h(∇) ∨ E l + 2(n−m+ 1)(ι(r)A)h(∇) ∨ E l+1

−l · γ2j+l ·Ah(∇) ∨ E l−1 ,

where the coefficients γ2j+l are those defined in (1.2.3).

More precisely, the condition of zero divergence gives the following equations (for 0 < l < k):{
Ak−1 = 1

γ2k−1
·Div∇Ak,

Ak−(l+1) = 1
(l+1)(γ2k−(l+1))

·
(
Div∇Ak−l + 2(n−m+ 1) · ι(r)Ak−(l−1)

)
.

Finally, the projectively invariant lift of a symbol S on M , denoted by S̃, is obtained by
applying to S the inverse of this bijection. Note that projective invariance follows from the
fact that the zero divergence condition depends only on ∇̃.
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Construction of the NPIQ

Definition. If T is a graded symmetric covariant tensor of degree l with values in λ-
densities, ∇sT is the supersymmetric covariant tensor

(∇sT )(X1, . . . , Xl+1) =
∑

σ∈Sl+1

(−1)εl+1+ε(T )ε(Xσ(1)) · (∇Xσ(1)(T (Xσ(2), . . . , Xσ(l+1)))

−
l+1∑
j=2

(−1)ε(Xσ(1))(ε(Xσ(2))+...+ε(Xσ(j−1))) · T (Xσ(2), . . . ,∇Xσ(1)Xσ(j), . . . , Xσ(l+1))),

where X1, . . . , Xl+1 are super vector fields and where εl+1 is the sign of the permutation σ′

induced by σ on the ordered subset of all odd elements among X1, . . . , Xl+1.

Definition. If φ ⊗ X1 ∨ · · · ∨ Xk is a graded symmetric contravariant tensor of degree k
and if ψ · α1 ∨ · · · ∨ αk is a graded symmetric covariant tensor of degree k, then

〈φ⊗X1 ∨ · · · ∨Xk, ψ ⊗ α1 ∨ · · · ∨ αk〉 =

φ · ψ ⊗ (−1)ε(ψ)(ε(X1)+...+ε(Xk)) · ι(X1) ◦ · · · ◦ ι(Xk)(α1 ∨ · · · ∨ αk) ,

where the interior product ι is defined in the same way as in Definition 4.2.3. One extends
this operation by bilinearity to arbitrary symmetric tensors of degree k.

The explicit formula

Theorem 30. If n − m 6= ±1 and δ is not a critical value, then the collection of maps
QkM : Γ(CM)× Γ(∨kδM)→ Γ(Dkλ,µM) given by

QkM (∇, S)(φ) = Ψ
(
〈S̃, ∇̃ks φ̃〉

)
, (4.9)

defines a projectively invariant natural quantization for supermanifolds of dimension (n|m).

Proof. The proof goes as in [?]. Note that the right-hand of formula (4.9) is µ-equivariant
because of the invariance of ∇̃, the δ-equivariance of S̃ and the λ-equivariance of f̃ . The fact
that the maps QkM can be extended to smooth families in order to form an extended NPIQ
comes from the fact that the M. Bordemann’s construction can be performed the same way
for smooth families of connections, symbols and densities. In practice, one just have to add
parameters in the local formulas, taking care to fix the parameters only after having applied
the partial derivatives (note that all our local formulas are nothing but polynomials in the
partial derivatives of the local components of the objects and that no partial derivatives in
the direction of the parameter space will appear when passing to smooth families).
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Remark. When n −m 6= ±1, M = Rn|m and ∇ = ∇0, formula (4.9) recovers the unique
pgl(n + 1|m)-equivariant quantization found in [?]. It is interesting to notice the problem
there was solved without any hypothesis on the superdimension.

4.2.4 The case n−m = 1

The hypothesis n−m 6= 1 is the analogue in the super context of the fact that M. Borde-

mann’s method [?] does not apply for 1-dimensional smooth manifolds.

The classical setting

Actually, the problem of natural and projectively invariant quantization on 1-dimensional
smooth manifolds turns out to be very peculiar. In this case, it is easily shown that the
difference between any two torsion-free linear connections can be expressed as α ∨ id for
some 1-form α. Consequently, all torsion-free linear connections are projectively equivalent,
and the quest for a natural projectively invariant quantization amounts to the quest for a
natural bijection from symbols to differential operators. As it is well-known (it is for instance
a consequence of [?, Theorem 3]), such a natural bijection does not exist. Notice that for
symbols of order two, the theory of natural operators [?] imposes for a natural projectively
invariant quantization to be of the form

Q(∇, S)(f) = 〈S,∇2f〉+ a · 〈Div∇S,∇f〉+ b · 〈Div2
∇S, f〉+ c · 〈ι(Ric)S, f〉 (4.10)

where a, b, c ∈ R. The condition of projective invariance yields a system of equations for
a, b, c which admits no solution in dimension n = 1 (cf. [?]).

The super setting

If we make the assumption that a natural projectively invariant quantization must write
under the form (4.10), with all objects being replaced by their super analogues, then the
system of equations provided by the condition of projective invariance has no solutions when
n−m = 1. Therefore, unless there are more natural operators for supermanifolds than the
superizations of the classical ones, a natural projectively invariant quantization does not
exist in this case.
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4.2.5 The case n−m = −1

In [?], P. Mathonet and F. Radoux were able to build a pgl(n+ 1|m)-equivariant quanti-
zation without restriction on the superdimension. However, the case n −m = −1 required
an ad-hoc construction because of the peculiarities of the Lie superalgebra pgl(n+ 1|n+ 1).

In our case, the problem lies in the very definition of the quantities Πi
jk used in the con-

struction of the connection ∇̃ on M̃ associated with a projective class of connections on M .
The manifold M̃ is thus unhelpful here.

When n−m = −1, the Christoffel symbols of a connections have a special property. Indeed,
the local quantities

∑
s(−1)εsΓsis are projectively invariant because the factor n − m + 1

appears from the graded trace when passing from a connection ∇ to a projectively equivalent
one ∇+ (α ∨ id). It follows that the horizontal lift of symbols (of any order) is projectively
invariant (remember that in general, we have to introduce a condition of zero divergence to
get projective invariance). Unfortunately, although we are able to lift symbols and densities
to M̃ in a projectively invariant manner, the lack of lifted connection on M̃ prevents us from
applying the standard ordering on M̃ as in M. Bordemann’s method.

Also because of the projective invariance of the local quantities
∑
s(−1)εsΓsis, the divergence

of symbols of order one is projectively invariant. Therefore, the formula

Q1
M (∇, S)(f) = 〈S,∇f〉+ t · 〈Div∇S, f〉 (4.11)

defines a 1-parameter family of natural projectively invariant quantizations for symbols of
order one. This result agrees with the phenomenon observed in [?]. Also, for symbols of
order two, the formula

Q2
M (∇, S)(f) = 〈S,∇2f〉+ 〈Div∇S,∇f〉

turns out to be projectively invariant.

We conjecture that similar formulas can be obtained for higher order symbols and that a
natural projectively invariant quantization exists when n−m = −1.
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The graded dimension 0|1

As for the case, n−m = 1, there is a degenerate situation with n−m = −1: A-manifolds
of graded dimension 0|1. In this situation, a smooth function reads locally as

f(ξ) = a+ b · ξ ,

where a, b ∈ R. In particular, transition functions between local charts are just multiplication
by (nonzero) real numbers.

About the problem of quantization, note that there are no differential operators (resp.
symbols) of order greater than one: locally, a differential operator reads as

D(f)(ξ) = D0(ξ) · f(ξ) +D1(ξ) · (∂ξf)(ξ) ,

where D0 and D1 are local smooth functions. In this (very reduced) case, formula (4.11)
thus give a solution for all possible orders.

Remark. Since Christoffel symbols of torsion-free connections have to be graded symmetric
in the lower indices, there is a unique (canonical, flat) torsion-free connection in dimension
0|1, given locally by

∇XY = (X1 · ∂ξY 1) · ∂ξ ,

if X = X1 · ∂ξ and Y = Y 1 · ∂ξ.
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Appendix A

A Quick Introduction to

A-Manifolds

In the language introduced by G. Tuynman [?], the definition of supermanifolds follows the
lines of the usual definition of smooth manifolds: one starts with local models together with
a notion of smoothness for maps between them; then, one considers sets which are locally
homeomorphic to the local models and one transports the notion of smoothness by means
of these local homeomorphisms (called the local charts).

In this appendix, we first recall the main ingredient of the formalism: free graded modules
over a Z2-graded algebra A. Then we describe local models and smooth maps between them.
Finally, we give the definition of A-manifolds and smooth maps between them.

Remark. This appendix is essentially a quick overview of [?, Chapter II: Linear algebra of
free graded A-modules and Chapter III: Smooth functions and A-manifolds]. The presen-
tation here aims to make the thesis reasonnably self-contained, accessible to someone who
did not (yet) read Tuynman’s book. The reader interested in a more thorough study (with
all proofs) is invited to read the original source [?].
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An A-vector space E is a free graded A-module
with an equivalence class of bases.

A.1 An A-vector space E is a free graded A-module

with an equivalence class of bases.

A.1.1 The algebra A

By A, we will always mean a Z2-graded commutative infinite-dimensional real algebra with
unit 1A. Moreover,

(i) the canonical map R → A, r 7→ r.1A defines an embedding of R as a real subalgebra
of the even part A0;

(ii) we have A = R.1A ⊕N , where the set N of nilpotent elements is defined by

N : {a ∈ A | ∃k ∈ N : ak = 0} .

The subset N is an ideal in A. It can be decomposed as the direct sum N = (N ∩A0)⊕A1.

Definition. The canonical projection

B : A → A/N ∼= R

is called the body map of A.

The body map B : A → R is R-linear and the embedding of R as a subalgebra of A is a
canonical section of B, i.e., B(r.1A) = r for all r ∈ R. By abuse of notation, one often writes
a = r + n when B(a) = r and n = a− r · 1A ∈ N .

Example 31. IfX is an infinite-dimensional real vector space, the exterior algebra A =
∧
X

has the properties required above. The Z2-grading is given by

A =
∧
X =

(⊕
k∈2N

∧k
X

)
⊕

( ⊕
k∈2N+1

∧k
X

)
.

Moreover, we have also the decomposition

A =

(∧0
X

)
⊕

⊕
k>1

∧k
X

 ,

where

∧0
X ∼= R and N =

⊕
k>1

∧k
X .
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A.1.2 Free graded A-modules

Since A is not commutative (A is graded commutative), the notions of left and right modules
do not coincide. By an A-module E (without the adjectives left or right) we will always
mean a graded A-bimodule for which the left and right actions are related by the formula

a · x = (−1)ε(a).ε(x) · x · a .

Remember that for a graded A-module E, the parity of an operator a· : E → E is the parity
of a ∈ A, i.e., we have ε(a · x) = ε(a) + ε(x).

Definition. A free graded A-module of graded dimension p|q (p, q ∈ N) is an A-module

E = E0 ⊕ E1

for which there exists a basis {e1, . . . , ep, ep+1, . . . , ep+q} (over A) such that

e1, . . . , ep ∈ E0 , ep+1, . . . , ep+q ∈ E1 .

We say that {ei} is an ordered homogeneous basis of the A-module E.

Remark. If E is a free graded A-module of graded dimension p|q, then any ordered homo-
geneous basis of E has p even elements followed by q odd elements.

If {ei} is a basis of E, any element x ∈ E can be written in a unique way as x =
∑
i x

i · ei.
If {ei} is an ordered homogeneous basis, then the subspace E0 of all even elements consists
of those points in E for which we have ε(xi) = ε(ei) for all i. In particular, E0 should not
be confused with the A-linear subspace generated by e1, . . . , ep.(1)

Left and right A-linear maps

Definition. A map φ : E → F between A-modules is left (resp. right) A-linear if for any
a ∈ A and any x ∈ E, we have

φ(a · x) = a · φ(x) (resp. φ(x · a) = φ(x) · a)

Remark. If φ : E → F is an even left (resp. right) A-linear map between two free graded
A-modules, then A is also right (resp. left) A-linear. For instance, if φ is left A-linear and
even, we have φ(x · a) = (−1)ε(a).ε(x) · φ(a · x) = (−1)ε(a).ε(x) · a · φ(x) = φ(x) · a.

1The subspace E0 is not an A-submodule of E because A1 · E0 ⊂ E1.
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The body functor

For a free graded A-module E, the set of nilpotent vectors is defined as

NE = {x ∈ E | ∃a ∈ A\{0} : a · x = 0} .

It is easy to show thatNE consists of those elements in E that have nilpotent coefficients with
respect to an arbitrary basis of E (since N is an ideal in A, the property will automatically
be true for all bases of E).

Definition. The canonical projection B : E → BE = E/NE is called the body map of E.

This body map is R-linear and for any a ∈ A and any x ∈ E, we have B(a ·x) = B(a).B(x).
Moreover, the body map of the trivial module E = A coincide with the body map of the
algebra A and this body map is thus a morphism of real superalgebras.

The image BE is a Z2-graded real vector space of graded dimension p|q. The Z2-grading is
given by

BE = BE0 ⊕BE1 .

Moreover, if {ei} is an ordered homogeneous basis of E (over A), then {B(ei)} is an ordered
homogeneous basis of BE (over R).

Proposition 32 ([?]). Given a left (resp. right) A-linear map φ : E → F between two free
graded A-modules, there is a unique R-linear map Bφ : BE → BF making commutative the
following diagram:

E

B
��

φ // F

B
��

BE
Bφ

// BF

Moreover, if φ is homogeneous of parity α, then so is Bφ. Finally, if χ : F → G is another
A-linear map, then

B(χ ◦ φ) = Bχ ◦Bφ .

In view of Proposition 32, we thus have a (parity-preserving) functor B from the category
of free graded A-modules and left (resp. right) A-linear maps to the category of real super
vector spaces with R-linear maps.
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A.1.3 A-vector spaces

If {ei} is a basis of the free graded A-module E, then BE can be identified to the set of
points that have real coefficients by means of the R-linear bijection

SpanR({ei})→ BE,
∑
i

ri · ei 7→
∑
i

ri ·B(ei) . (A.1)

However, the set of points that have real coefficients is not stable under all changes of basis.

Definition.

• Two bases {ei} and {fj} of a free graded A-module of graded dimension p|q are said
to be equivalent if they are related to each other by a matrix with real coefficients ,
i.e., if there exist numbers aij ∈ R such that f j =

∑
i a
i
j · ei for all j.

• An A-vector space is a free graded A-module together with an equivalence class of
bases containing an ordered homogeneous basis.(2)

The real vector subspace SpanR({ei}) is independent of the choice of the basis {ei} in the
equivalence class, and so is the isomorphism (A.1). The inverse map of this isomorphism
thus provides a canonical embedding of BE in E and, by abuse of notation, one often writes

x = B(x) + n ,

where n =
∑
i(x

i −B(xi)) · ei ∈ NE .

Smooth A-linear maps

Definition. An A-linear map (left or right) φ : E → F is smooth if it sends the points
with real coefficients in (a basis of) E on points with real coefficients in (a basis of) F , i.e.,

φ(BE) ⊂ BF ,

where BE (resp. BF ) is seen as a subspace of E (resp. F ) through the canonical embedding.

A left (resp. a right) A-linear map E → F is completely determined by its values on a basis
of E. Therefore, we have a one-to-one correspondance between smooth left (resp. right)
A-linear maps E → F and R-linear maps BE → BF .

2 In the sequel, by a basis of E, we will always mean an ordered homogeneous basis in the equivalence
class of bases attached with E.
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An equivalence of categories

Proposition 33 ([?]). The body functor B defines an equivalence of categories between the
category of A-vector spaces with smooth left (resp. right) A-linear maps and the category of
Z2-graded real vector spaces with R-linear maps.

Proof. We already know that B is fully faithful. Moreover, B is essentially surjective: it is
easy to see that for any real super vector space V , the set GV = A ⊗R V has a canonical
structure of an A-vector space whose body is isomorphic to V .

As a consequence of Proposition 33, one can say that there is no real difference between
A-vector spaces with their smooth linear maps and real super vector spaces with their linear
maps. However, it is important to remember that in order to get a one-to-one correspondence
at the level of morphisms, one must choose between left and right A-linear maps: for every
odd linear map between R-vector spaces, there exist two smooth odd maps between A-vector
spaces: a right and a left A-linear one.
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smooth functions and their derivatives.

A.2 On the even part of an A-vector space, one can define

smooth functions and their derivatives.

A.2.1 The De Witt topology

Definition. The De Witt topology on an A-vector space E is the coarsest topology for
which the body map B : E → BE is continuous: a subset U ⊂ E is open in E if and only if
U = B−1(V ) for some open subset V in (the finite dimensional real vector space) BE. All
subsets of E, and in particular E0, are then equipped with the relative topology.

It follows from the definition that open subsets U ⊂ E0 are saturated with nilpotent elements
in the sense that U + (NE ∩ E0) = U . Moreover, through the canonical embedding of BE
as a subspace of E, the body BU of an open subset U ⊂ E0 consists of those points in U
with real coordinates (in all bases of E).

Remark. The De Witt topology on E is not Hausdorff. Indeed, two distinct points x, y ∈ E
such that B(x) = B(y) cannot be separated by disjoint open subsets.

A.2.2 Smooth functions and their derivatives

For A-valued functions, defining smoothness in terms of limits is problematic because the
topology on A is not Hausdorff (limits need not be unique). G. Tuynman [?] uses an
alternative definition which, in the classical context, is equivalent to the standard one.
Then, he gives the following description, which we take as definition.

Definition. Let U be an open subset of E0. A map f : U ⊂ E0 → A is smooth if and only
if given a basis of E, there exist ordinary smooth functions fi1,...,ir ∈ C∞(BU ⊂ Rp,R) such
that f reads (in the left coordinates) as

f(x1, . . . , xp, ξ1, . . . , ξq) =

q∑
r=0

∑
16i1<···<ir6q

ξi1 · · · · · ξir · f̃i1...ir (x1, . . . , xp) , (A.2)

where

f̃i1...ir (x
1, . . . , xp) =

∑
α∈Np

(x−B(x))α

α!
· (∂αfi1...ir )(Bx1, . . . ,Bxp) .

This definition of smoothness can be extended to functions valued in an A-vector space F
as follows: a map f : U ⊂ E0 → F is smooth if and only if given a basis {e′j} of F , we have
f(x, ξ) =

∑
j fj(x, ξ) · e′j , where all functions fj : U ⊂ E0 → A are smooth.
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On the even part of an A-vector space, one can define
smooth functions and their derivatives.

The space of smooth functions

The space C∞(U,A) of smooth functions on an open subset U ⊂ E0 is made of continuous
functions. Moreover, it has the following important properties (cf. [?, III;1.24]):

• Being a smooth function is a local property, stable under composition.

• The set C∞(U,A) is a graded commutative R-algebra with unit under pointwise ad-
dition and multiplication of functions. The Z2-grading is given by

C∞(U,A)α = {f ∈ C∞(U,A) : im(f) ⊂ Aα} (α = 0, 1) .

• Given a basis of E, the collection of real functions fi1,...,ir appearing in (A.2) is uniquely
determined by the function f and we have an identification (as real superalgebras)

C∞(U,A) ' C∞(Rp,R)⊗
∧

Rq .

Moreover, if F is an A-vector space, then the space C∞(U,F ) of F -valued smooth functions
on U ⊂ E0 is a free graded C∞(U,A)-module with the same graded dimension as F , the
Z2-grading of C∞(U,F ) being given by

C∞(U,F )α = {f ∈ C∞(U,F ) : im(f) ⊂ Fα} (α = 0, 1) .

Fixing of variables

Being a smooth function is stable under fixing of variables to real values, but given a smooth

f : P × U → A

and an element p ∈ P , the induced function

fp = f(p, ·) : U → A

is, in general, not smooth. Indeed, the decomposition (A.2) for f does not, in general, induce
a similar decomposition for f(p, ·) because the coordinates of p still appear while p is no
longer considered as a variable.

Example 34. The map id : A0 → A, x 7→ x is smooth (we have id(x) = Bx+nx = ĩdR(x))

but a constant map ca : A0 → A, x 7→ a = Ba + na is smooth if and only if a = Ba ∈ R.
More generally, a constant map U → F is smooth if and only if the constant value is a point
with real coordinates, i.e., an element of BF ⊂ F .
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On the even part of an A-vector space, one can define
smooth functions and their derivatives.

Partial derivatives

From the decomposition (A.2) of smooth functions, we can transport the partial derivatives
from ordinary smooth functions to A-valued smooth functions.

Definition. If a function f ∈ C∞(U,A) reads as (A.2), its partial derivatives are the
smooth functions

∂xkf(x1, . . . , xp, ξ1, . . . , ξq) =

q∑
r=0

∑
16i1<···<ir6q

ξi1 · · · · · ξir · ∂kfi1...ir (∼x1, . . . , xp) ,

and

∂ξlf(x1, . . . , xp, ξ1, . . . , ξq) =

q∑
r=0

∑
16i1<···<ir6q

r∑
j=1

(−1)j−1·ξi1 · · · · ξij−1 ·δijl ·ξ
ij+1 · · · · ·ξir

· f̃i1...ir (x1, . . . , xp) . (A.3)

The maps ∂xk (resp. ∂ξl) are even (resp. odd) R-linear derivations of the algebra C∞(U,A).
Moreover, these derivations commute in the graded sense, i.e., we have

[∂xk , ∂xl ] = [∂xk , ∂ξl ] = [∂ξk , ∂ξl ] = 0 ,

where the brackets stand for the graded commutator of derivations.

Remark. The definition ∂xk and ∂ξl can be extended to F -valued smooth functions by
setting (∂xkf)j = ∂xk(f j) and (∂ξlf)j = ∂ξl(f

j).

The chain rule

When we do not need to distinguish between even and odd coordinates on E0, we often
write (y1, . . . , yp+q) instead of (x1, . . . , xp, ξ1, . . . , ξq). Accordingly, the partial derivatives
are thus written as ∂yi with i = 1, . . . , p+ q.

This being said, we can now state an important property of the partial derivatives: the chain
rule. This rule says that if U ′ is an open subset, if f ∈ C∞(U,F ) is such that f(U) ⊂ U ′

and if g ∈ C∞(U ′, G), then for any x ∈ U , we have

∂yi(g ◦ f)(x) = (∂yif
j)(x) · (∂zjg)(f(x))

where the zj are (left) coordinate functions (with respect to a fixed basis) on F .
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An A-manifold M is a set covered by local charts
valued in the even part E0 of an A-vector space.

A.3 An A-manifold M is a set covered by local charts

valued in the even part E0 of an A-vector space.

From a local model E0, one defines A-manifolds in terms of charts and smooth transition
functions as in the classical case.

Definition. Let M be a topological space.

• A chart of M is a pair (U,ϕ), where U ⊂ M and ϕ : U → O is a homeomorphism
between U and an open subset O ⊂ E0 in the even part of an A-vector space E.

• An atlas of M is a collection of charts {(Ua, ϕa) : Ua → Oa ⊂ E0} such that
⋃
a Ua =

M and ϕb ◦ ϕ−1
a ∈ C∞(ϕa(Ua ∩ Ub), ϕb(Ua ∩ Ub))0 whenever Ua ∩ Ub 6= ∅.

If M is a topological space endowed with an atlas {(Ua, ϕa) : Ua → Oa ⊂ E0}, we say
that M is modeled on the A-vector space E and by a chart of M , we will always mean an
E0-valued chart compatible with all charts in the atlas of M .

If M is modeled on E, the body of M is made of those points in M with real coordinates in
a chart of M , i.e.,

BM = {x ∈M : ϕa(x) ∈ BOa for some chart (Ua, ϕa : Ua → Oa) of M} .

Moreover, we define the body map of M , B : M → BM , by setting

B|Ua = ϕ−1
a ◦B ◦ ϕa ,

where B in the right-hand side is the body map of E.

Remark. The body map ofM is well-defined and BM is actually made of those points that
have real coordinates in all charts of M . This is due to the fact that transition functions
between charts are smooth maps between A-vector spaces and thus they commute with the
body maps of those A-vector spaces.

Definition. An A-manifold is a topological space M endowed with an atlas such that
BM is an ordinary smooth manifold (in particular, BM ⊂ M must be a second countable
Hausdorff topological space with the relative topology). By definition, the graded dimension
of an A-manifold M is the graded dimension of its model A-vector space.

If M is an A-manifold of dimension p|q, the smooth manifold BM is of dimension p. The
odd dimension disappears because the charts ofM lie in the even part of the model A-vector
space and thus the odd coordinates become zero when taking the body map.
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An A-manifold M is a set covered by local charts
valued in the even part E0 of an A-vector space.

Smooth maps

Definition. A map f : M → N between two A-manifolds is smooth (we write f ∈
C∞(M,N)) if for any chart (U,ϕ) of M and any chart (V, ψ) of N , the local expression
of f in these charts, i.e., ψ ◦ f ◦ ϕ−1, is smooth on ϕ(U ∩ f−1(V )).

If f ∈ C∞(M,N), then f is continuous and the mapBf : BM → BN defined byBf = f |BM
is smooth (between ordinary smooth manifolds). This map Bf is called the body of f .

Remark. When N = F is an A-vector space(3), the space C∞(M,F ) is a free graded
module over the real superalgebra C∞(M,A).

3Any A-vector space E can be seen as the even part of a larger A-vector space E# (see [?, III.A.26]). In
particular, any A-vector space is an A-manifold.
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Appendix B

A Quick Introduction to Fiber

Bundles over A-Manifolds

In this appendix, we first recall what is a fiber bundle (this requires the notion of smooth
action of an A-Lie group on an A-manifold) and how it can be encoded by a collection of
maps associated with an atlas of M . Then we look at an important class of fiber bundles,
namely vector bundles. Finally, we introduce the notion of affine bundle.

Remark. This appendix is a quick and incomplete overview of [?, Chapter IV: Bundles].(1)
The presentation here aims to make the thesis reasonnably self-contained, accessible to
someone who did not (yet) read Tuynman’s book. The reader interested in a more thorough
study (with all proofs) is invited to read the original source [?].

1Although it does not appear in [?], we present here the definition of affine bundles because it is closely
related to the definition of vector bundles.
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A fiber bundle is an A-manifold fibered
by means of a locally trivial smooth surjection.

B.1 A fiber bundle is an A-manifold fibered

by means of a locally trivial smooth surjection.

B.1.1 Smooth actions of A-Lie groups

Definition.

• An A-Lie group is an A-manifold G which is also a group, with the property that the
group operations are smooth.

• A smooth left action of an A-Lie group G on an A-manifold M is a smooth map

Φ : G×M →M

that is an action of the group G on the set M .

• A smooth left action Φ : G×M →M is pseudo-effective if for any A-manifold N and
any smooth map ψ : N → G, we have

(
∀n ∈ N : Φψ(n) = idM

)
⇒ (∀n ∈ N : ψ(n) = eG) .

where eG is the identity element of G.

For a fixed element g ∈ G, the map

Φg = Φ(g, ·) : M →M

is a homeomorphism. However, Φg is, in general, not smooth. This is because being smooth
is, in general, not stable under fixing variables to nonreal values. This being said, if g ∈ BG

(i.e. g is a point with real coordinates), then Φg is smooth.

Example 35. Let F be an A-vector space. The group G = Aut(F ) of even A-linear
invertible maps F → F is an A-Lie group. This A-Lie group acts smoothly on F (seen as
an A-manifold) by means of the evaluation of automorphisms, i.e., the action is

Φ : Aut(F )× F → F , x 7→ ΦT (x) = T (x) .

This action is pseudo-effective: φΨ(n) = idF precisely means that ψ(n) = idF = eG.

91



A fiber bundle is an A-manifold fibered
by means of a locally trivial smooth surjection.

B.1.2 Fiber bundles over A-manifolds

Definition. Let B, M and F be A-manifolds. Let G be an A-Lie group with a smooth
and pseudo-effective left action on F . Finally, let π : B →M be a smooth surjection.

• A local trivializing F -chart of π is a triple (U,ϕ, ψ), where (U,ϕ) is a chart of M and

ψ : π−1(U)→ U × F

is a diffeomorphism such that πU ◦ ψ = π, where πU denotes the canonical projection
on U . In other words, there is a commutative diagram

π−1(U)
ψ //

π

##

U × F

πU
||

U

• A G-atlas of trivializing F -charts of π is a collection of G-compatible local trivializing
F -charts {(Ua, ϕa, ψa)} of π. This means that {(Ua, ϕa)} is an atlas of M and that

ψb ◦ ψ−1
a (x, f) = (x, ψba(x)(f))

for some transition functions ψba ∈ C∞(Ua ∩ Ub) whenever Ua ∩ Ub 6= ∅. .

• A fiber bundle overM with typical fiber F and structure group G is a smooth surjection

π : B →M

together with a G-atlas of trivializing F -charts.

• A fiber bundle map between π : B →M and π′ : B′ →M ′ is a smooth surjection map
Φ : B → B′ above a smooth map φ : M →M ′, i.e., there is a commutative diagram

B
Φ //

π

��

B′

π′

��
M

φ // M ′

Each fiber πx = π−1({x}) is homeomorphic to F . Indeed, any point of M lies in a local
trivializing F -chart and if (U,ϕ, ψ) is a local trivializing F -chart of π, then for any x ∈ U ,
the map ψ−1(x, ·) : Fπ → πx is a homeomorphism.

Remark. If x ∈ BM , this homeomorphism is a diffeomorphism.
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A fiber bundle is an A-manifold fibered
by means of a locally trivial smooth surjection.

The cocyle conditions

If {(Ua, ϕa, ψa)} is a G-atlas of trivializing F -charts of π : B →M , the pseudo-effectiveness
of the action of G ensures that the maps Ψba : Ub ∩Ua → G satisfy the cocycle conditions:{

ψaa(x) = eG for all x ∈ Ua ,
ψcb(x) ·G ψba(x) = ψca(x) for all x ∈ Ua ∩ Ub ∩ Uc ,

(B.1)

where ·G stands for the group operation in G.

Conversely, it is shown in [?, Construction 1.24] that, given the atlas {(Ua, ϕa)} of all charts
of M together with a collection of smooth maps Ψba : Ub ∩ Ua → G satisfying the cocycle
condition (B.1), one can build an A-manifold B together with a projection π : B →M and
an G-atlas {(Ua, ϕa, ψa)} of trivializing F -charts for which the maps Ψba are the transition
functions between charts.

Remark. In practice, one can thus define a fiber bundle by giving, for an atlas {(Ua, ϕa)}
of M , a collection of maps Ψba satisfying the cocycle conditions (B.1).
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A vector bundle is a bundle whose structure group
consists of automorphisms of an A-vector space.

B.2 A vector bundle is a bundle whose structure group

consists of automorphisms of an A-vector space.

B.2.1 A-vector space as A-manifolds

Definition. Let F be an A-vector space of graded dimension p|q.

• By definition, ΠF is an A-vector space such that ΠF coincide with F as a left A-
module, but with the parity reversed, i.e., we have

(ΠF )0 = F1 and (ΠF )1 = F0 .

The map îdF : F → ΠF, x 7→ x is an odd left A-linear bijection by means of which
ΠF inherits an equivalence class of basis: if {fi} is a basis of F , then {f̄i = îd(fi)} is
a basis of ΠF .

• The A-vector space F# is the direct sum of A-vector spaces

F# = F ⊕ΠF .

Any A-vector space F is an A-manifold. Indeed, F can be identified to the even part of the
A-vector space F#. More precisely, for any basis {ei} of E, the map

F → (F#)0 ,
∑
i

xi · fi 7→
∑
i

(xi)ε(fi) · fi +
∑
i

(xi)ε(fi)+1 · f̄i

is a (global) chart of F .

B.2.2 Vector bundles over A-manifolds

Definition. A vector bundle over an A-manifold M is a fiber bundle

π : Eπ →M

whose typical fiber Fπ is an A-vector space and whose structure group is Aut(Fπ).

For any x ∈M , the fiber πx inherits (by means of the local trivializations) from the typical
fiber Fπ a canonical structure of free graded A-module (see [?, Chapter IV, Discussion 3.2]).
In particular, each fiber πx has a canonical origin 0x.
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A vector bundle is a bundle whose structure group
consists of automorphisms of an A-vector space.

Homogeneous parts of a vector bundle

Definition. If π : Eπ →M is a vector bundle, its even part E(0)
π (resp. its odd part E(1)

π )
is the subspace of Eπ made of those points that lie in the even (resp. the odd) part of their
fiber, i.e., for α = 0, 1, we have

E(α)
π = {e ∈ Eπ : e ∈

(
ππ(e)

)
α
} .

If we restrict the projection π to these subspaces, we obtain two fiber bundles π(0) : E
(0)
π →

M and π(1) : E
(1)
π → M with typical fibers (Fπ)0 and (Fπ)1, respectively. Those new

fiber bundles are not vector bundles because (Fπ)0 and (Fπ)1 are not A-modules ((Fπ)0

and (Fπ)1 are only A0-modules). However, their fibered product over M is a vector bundle
reconstructing the vector bundle π : Eπ →M , i.e., we have E(0)

π ×M E
(1)
π
∼= Eπ.

If the base M is an A-manifold of graded dimension n|m and if and the Fπ is an A-vector
space of graded dimension p|q, then the total space Eπ is an A-manifold of graded dimension
is not (n+p)|(m+ q) but rather (n+p+ q)|(m+ q+p). This is because the dimension of Fπ
as an A-manifold is the graded dimension of the A-vector space F#

π such that Fπ ∼= (F#
π )0,

namely (p+ q)|(q + p).(2) For the same reason, the A-manifold E(0)
π is of graded dimension

(n+ p|m+ q) while E(1)
π is of graded dimension (n+ q|m+ p).

Remark. At the level of sections, we have Γ(E
(α)
π ) = Γ(Eπ)α.

Morphisms between vector bundles

Definition ([?, Chapter IV, Definition 3.5]). Let π : Eπ →M and π′ : Eπ′ → N be vector
bundles with typical fibers Fπ and F ′π respectively. A fiber bundle map Φ : Eπ → Eπ′

inducing a map φ : M → N is called a (left linear) vector bundle morphism if the restriction
Φx = Φ|πx to any fiber is left A-linear, i.e.,

Φx ∈ HomL(πx, π
′
φ(x))

The map Φ is said to be of parity α if all linear maps Φx are of parity α. Similar definitions
hold for right linear vector bundle morphisms. A vector bundle isomorphism is an even
vector bundle morphism which is at the same time an isomorphism of fiber bundles. The
vector bundle π : Eπ → M is said to be (globally) trivializable if it is isomorphic as vector
bundle to the trivial vector bundle pr1 : M × Fπ →M .

2Remember [?, III.1.26] that F#
π = Fπ ⊕ (ΠFπ), where Π stands for the parity reversal operation.
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An affine bundle is a bundle whose structure group consists of affine isomorphisms of an A-vector space.

B.3 An affine bundle is a bundle whose structure group

consists of affine isomorphisms of an A-vector space.

B.3.1 Affine bundles over A-manifolds

Definition. An affine bundle over M is a fiber bundle π : Zπ → M whose typical fiber
Fπ is an A-vector space and whose structure group is Aff(Fπ), the group of A-affine maps
Fπ → Fπ whose linear part is an even invertible A-linear map and whose translation part is
even.

Example 36. Since Aut(Fπ) ⊂ Aff(Fπ), vector bundles are affine bundles.

Any affine bundle π : Zπ →M has an underlying vector bundle. Indeed, if {(Ua, ϕa, ψa)} is
an Aff(Fπ)-atlas of trivializing Fπ-charts or π, the collection {~ψba} of all A-linear parts of
the transition functions ψba determine a vector bundle ~π : E~π →M .

Moreover, each fiber πx inherits (by means of the local trivializations) from Fπ (seen as an
A-affine space modeled on itself) a canonical structure of affine space modeled on the free
graded A-module ~πx, i.e., if Ψ : π−1(U) → U × Fπ is a fiberwise affine trivialization of π,
we have

z + e = Ψ−1(x, πFπ ◦Ψ(z) + πFπ ◦ ~Ψ(e))

for all z ∈ πx and e ∈ ~πx. However, the fibers πx do not come with a canonical origin
because affine transition functions do not preserve the origin of Fπ.

The even part of an affine bundle

Definition. If π : Zπ → M is an affine bundle, its even part Z(0)
π is the subspace of Zπ

made of those points whose image through any local trivialization in the Aff(Fπ)-atlas of π
lie in the even part of the typical fiber Fπ, i.e., we have

Z(0))
π = {z ∈ Zπ : z ∈

(
ππ(z)

)
0
} .

If we restrict the projection π to this subspace, we obtain a fiber bundle π(0) : Z
(0)
π → M .

This fiber bundle inherits translations by elements in the even part of the underlying vector
bundle of π.

Remark. A similar definition for an odd part Z(1))
π would, in general, not make sense here

because transition functions are valued in Aff(Fπ) and this space does not preserve the odd
part of the typical fiber.
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An affine bundle is a bundle whose structure group consists of affine isomorphisms of an A-vector space.

Morphisms between affine bundles

Definition. Let π : Zπ → M and π′ : Zπ′ → N be affine bundles with typical fibers Fπ
and F ′π respectively. A fiber bundle map Φ : Zπ → Zπ inducing a map φ : M → N is called
a left affine bundle morphism if the restriction Φx = Φ|πx to any fiber is an A-affine map
whose linear part is left A-linear

Φx ∈ affL(πx, π
′
φ(x)) .

The map Φ is said to be even if all affine maps Φx have even A-linear part and even
translation part. An affine bundle isomorphism is an even affine bundle morphism which is
at the same time an isomorphism of fiber bundles. The affine bundle π : Fπ → M is said
to be (globally) trivializable if it is isomorphic as affine bundle to the trivial affine bundle
pr1 : M × Fπ →M .
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