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ABSTRACT

This paper presents a simplified procedure alloviiorga rapid
prediction of the strength of a lock mitered gaibmsitted to a
ship impact. In this article, the force opposedhi® penetration
of the vessel is derived by supposing that the soperfectly
rigid, so the total initial kinetic energy has te@ kentirely
transformed through an internal dissipation. Forgiaen

penetration of the striking vessel, an analyticedcpdure is
followed in order to estimate the amount of enedggsipated
by local and global deformations of the impactedcitire. An
equivalent quasi-static force is then derived. Anparison is
made with a finite elements simulation in order tést the
analytical procedure.

1 INTRODUCTION

Locks are undoubtedly essential and common strestan
inland waterways. Although some recent efforts Hasen made
to improve the navigation near such installatiaghs, gates are
often impacted by ships travelling too fast. Mosttlee time,
these collisions lead to some minor damages suehlass of
watertightness. However, as the fluvial traffigiewing, it is to
fear that the frequency of these accidents is gturfgllow the
same trend. Moreover, as ships are also gettiggtdacollisions
are likely to have much more severe consequences.

For these reasons, it seems reasonable to thirkshig
impact on lock gates will be an important mattecofcerns for
engineers in a near future. It is therefore necgdsaprovide
them with some efficient tools to check if a newaor existing
lock gate is able to withstand a collision. Of cmyr finite
elements simulations may be performed, but theynhateime-
effective at the pre-design stage of a structuteenwseveral

collision scenarios must be analyzed. Thereforahis paper,
we present a simplified methodology that can bel esejuickly
estimate the resistance of a lock mitered gate.

The philosophy is the same than the one detailethrigst
others) by Ueda [1] and Lutzen [2] for ship-shiflismns or by
Simonsen [3] for ship grounding on rocks. The idet assess
the crashworthiness with help of simplified anagti
developments. Such an approach has already bediedapp
plane gates by Le Sourne [4] and Buldgen [5] arisl @ur aim
to extend it to classical lock mitered gates.

2 HYPOTHESES AND OVERVIEW OF THE PROBLEM
The developments performed in this paper are based

several hypotheses concerning:

- The structure of the impacted gate;

- The behavior of the material constituting the gate;

- The shape of the striking vessel.

The theory presented in this article is strictlyited by the

restrictions detailed hereafter. However, the agdioms are

made so as to cover the main practical cases.

2.1Hypotheses on the gate structure

Figure 1
geometrical and structural properties of the gatessidered in
this paper. A leaf is assumed to be made of angjaginforced
by some frames (vertical stiffeners) and girdersrifontal
stiffeners).

Contacts with the lock walls and the second lead ar
respectively provided by the lateral and centralcks. These
one are assumed to be perfectly rigid and locatdtieasame
vertical level than the girders, as it can be seerfFigure 2.
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This figure also shows that the stiffened strucforened by the
plating, the frames and the girders is supportedaloyvertical
studs (a central and a lateral one).
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Figure 1. Top view of the left leaf of a mitered gate.
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Figure 2. Plan view of the left leaf of a mitered gate.

2.2Hypotheses on the material behavior

In order to derive a closed form solution of thepant
resistance, the material is supposed to first éixfdblinear
elastic behavior defined by its Young’s modulisOnce the
maximal elastic deformatiomn, is reached, the material then
exhibits a plastic behavior characterized by a t@mtsflow
stressoy = Ego, Which implies that the strain hardening is not
taken into account. In the developed analytical ehodhe
stress-strain rate sensitivity is also neglectatthShypotheses
are however conservative.

It is worth noting that rupture is not taken inttcaunt in
the present paper. The first reason to do so tdehaile tearing
occurring in the plating would lead to a loss otevtightness,
which has to be avoided to maintain the integrityth@ lock.

Therefore, the post-rupture behavior of the gateoisa prior
matter of investigation. Another reason for not liohgawith
failure comes from the difficulty to simulate pralyetensile
tearing using finite elements. As a consequence,ntiaterial
considered in this paper is not able to simulajtune.

2.3Hypotheses on the striking vessel

The mass and initial velocity of the striking shigre
respectively denoted dyl; andV. In the present methodology,
the vessel is assumed to be perfectly rigid, sa tha
deformation is likely to affect the impacting bolw. particular,
this conservative hypothesis implies that the ahitkinetic
energy MoV?/2 has to be entirely dissipated during the
deformation of the gate.

Geometrically, the striking vessel is characterizsdfive
different parameters shown on Figure 3:
- the bow is assumed to be a parabola with radidq;
- the stem and side angles are respectively dengtedandg;
- the height between the lower and uppermost dedks is

Finally, regarding the collision scenario, the eddgs first
assumed to always move in a direction parallelht® lock
walls, as depicted on Figure 1. This hypothesisnse® be
reasonable, as very large ships always occupy Itrepace of
the lock chamber. The impact is then supposed &ytmnetric,
which means that the vessel is colliding the gathejunction
between the two leafs (Figure 1). As a consequenffe,
centered impacts are not covered here.
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Figure 3. Geometrical description of the striking bow.

3 ANALYTICAL METHODOLOGY

The analytical derivation of the collision resistaris based
on the fundamental assumption that the collisioergn is
entirely dissipated by the gate at two differentls:

- At the beginning of the impact, i.e. for small veduof the
penetrationo of the striking vessel, the resistance is mainly
provided by some local damage affecting the gateain
localized area. During this so-calléocal deforming mode,
deformations are confined into a region surroundthg
impact point, while the remaining parts of the gate
unaffected.
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- However, when the penetration becomes larger, atisphents
may not be kept in a closed space anymore. Theeagute is
then affected by an overall bending motion, which
characterizes global deforming mode.
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Figure 4. Transition between local (1) and global (2)
deforming modes.

For the local and global deforming modes, it is purpose
to estimate the associated local and global resies
respectively denoted % andPg. Both of them are analytically
derived for each value of the current penetratibnThe
transition between the local and global behavior then
assumed to happen for a particular valuef the indentation
(Figure 4). When this indentation is reached, itdmes easier
for the ship to progress by imposing an overall dieg
movement (phase 2 on Figure 4) of the gate thaprbgucing
local damages (phase 1 on Figure 4).

The most critical part for estimating the collisimsistance
P is to provide realistic laws characterizing th@letion of P,
andPg with 6. Some details concerning the analytical derivation
of such laws are presented in the following sestion

4 LOCAL DEFORMING MODE

The resistance in the local deforming mode is atall by
assuming that the gate is an assemblyNofarge structural
entities called “super-elements”. Each super-eleémienis
characterized by a relation between the penetratiai the
striking vessel and its individual resistarfge In addition, the
two following important assumptions are made:

- As long as there is no geometrical contact betwten
striking bow and a super-element, this one remaiastive,
and so we have; = 0.

- Each super-element is totally decoupled from thmeist This
means that deformations taking place in one sulenent do
not have any geometrical or structural effect andthers.

As a consequence, the total crushing fdtc@pposed in the
local mode for a given value of is simply obtained by
summing up the contribution®; provided by each individual
super-elemerit In other wordsP, is written as:

N
R(9)=) R () @)

i=1

The relation betweet®; and § is analytically derived by
applying the upper-bound theorem. To do so, thst §irep is to
define realistically the displacements affectinguper-element
under an impact. Then, by calculating the companefitthe
Green-Lagrange deformation tensor, the internalrggné;,
dissipated for a given indentation, is obtained.e Tirtual
velocities theorem (see Jones [6] for additiondbrimation
about the virtual velocities principle) finally ids to the sought
resistance:

(@)

Central stud

Figure 5. Representation of the four different types of
super-elements (only a portion of the gate is shown).

In order to model entirely the structure of theegatt least

four different types of super-elements are requffeédure 5):

- Super-element 1 (SE1) is used to model the behavior of
plating components submitted to an out-of-planeaichpT his
super-element is vertically delimited by two framesad
horizontally bounded by two girders.

- Super-element 2 (SE2) is used to model collided frames. A
SEZ2 is delimited by two girders. For example, oguiFé 5, the
SEZ2 is bounded at poin® and C. For such elements, it is
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worth noting that the collision may not appear or of the
supports. In other words, a SE2
somewhere betwee andC, but not inB or C (otherwise it
has to be treated as a SE4).

- Super-element 3 (SE3) is used to simulate the crushing of
intersections between frames and girders when ey
impacted.

Super-element 4 (SE4) represents girders or frames that are

impacted immediately on one of their support. Aes tollision

happens at the middle of the gate (near the cesttud), it is
clear that all girders have to be modeled with & $&s an
example, on Figure 5, the SE4 shows a girder thatiivated
when the bow reaches poiA). A SE4 may also be used to
simulate frames when they are impacted on oneedf Hupport
points B or C).

4.1Super-element 1

SE1 is modeled as a plate simply supported on ramds
and two girders. During an impact, no displacenig@issumed
to appear along an edge, as long as no geometaogct with
the striking bow has been established. Such anegiemas
already been extensively studied by Zhang [7] oldBen [8]
for example. Therefore, we will not present all tietailed
mathematical developments leading to the evaluatibrthe
resisting force. On the contrary, we will rathecds on giving a
clear explanation of the hypotheses that were tiseget the
final formulae.

Figure 6. Displacements field for SE1.

In order to derive the individual local resistapeevided by
the present element, it is first necessary to defia

is always impacted

kinematically admissible displacement field. Tosig let’s first

introduce (see Figure 6):

- A local coordinate framéx,y,2), oriented in a such way that
andy are located in the initial plane of the plate. Exészis
then defined perpendicularly (»,y).

- A global coordinate framéX,Y,Z), where the plan€Y,2) is
parallel to the lock walls and the axiX is defined
perpendicularly.

If we denote the mitered angle byit is obvious from Figure 6

that the axes(xy,2) are simply obtained through an-

counterclockwise rotation of(X)Y,Z). Remember that the
striking ship is following the orientation of theck walls, so
that the vessel is travelling along tBeaxis ¢ // Z) as depicted

on Figure 6.

As mentioned here above, the super-element isadetivas
soon as a geometrical contact is established Wéfship. In the
present case, this condition is achieved when tiveib tangent
to the initial plane of the plate. On Figure 6, fivst contact
point is denoted bis. However, as the ship is moving forwards,
lo does not follow the penetration directidnWe assume here
that the impact only results in a displacementdd fig(x,y)
perpendicular to the plane of the gate. In othemaaw(x,y) is
parallel to thez axis. As a consequence, for a given valué, of
the current position df is pointl on Figure 6, and we have:

Jcosa
Iol =a

,————— ol OX
a, +osina

3

Each point(x,y) initially located in the plane of the plate is
submitted to the same type of motionl@€onsequently, as the
ship is only following theZ axis, the material is forced to
plastically flow over the striking bow, which magsult in a
frictional dissipation. However, the quantity ofeegy involved
in this phenomenon is neglected and we admit hnexethere is
only an internal dissipation through the strainprgduced by
the deflectionw(x,y). If we divide the plate into four different
areas:

Alz(x,y)D[O al—dsina]X[O bl]

Ay (xy)0[0 a -dsinalx[b, b +b,]
Ag:(x,y)Ola, -dsina a, +a,]x[0 by]
Ay:(xY)Ofay-dsina a; +a,]x[o, by +b,]

(4)

it is possible to define the displacements field@y through a
linear interpolation on each surface. For exampbssidering
A4, we have:

X ya_

———— = Jcosa
a, —osina b,

w(x,y) = (5)
and the same can be done for the three remaingigns?,, As,
A4 to get a complete definition @f(x,y). Then, assuming a plan
strain state, the Green-Lagrange formulae may bd ts get
the strain rate tensor. Following the same proadhan the
one described in [7] or [8], it is possible to derithe internal

energy rates i, dE,, dEs, dE4 for the regionsA;, Ay, As, A
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Applying the virtual velocities principle, we firgl get the
individual resistancd®; opposed by this super-element during
the impact:

Pdd =dE,; +dE, +dE; +dE, (6)

where &,, dE,, dE;, dE, are given in Annex A.

4.2Super-element 2

SE2 is modeled as a vertical plate simply suppastethree
edges. The fourth edge is free and impacted byedksel bow
(see Figure 7). The super-element is activatedoas ss the
bow reaches poin#, defined on Figure 7, i.e. when the
penetration is equal té,. It is worth noting that the frame is
located in the plan& = 0 making an angle with the axisZ
followed by the striking ship (Figure 7). As a cegaence, the
current indentation characterizing a SE2 is a fonct(o)
which may be obtained by calculating the intersectetween
the parabolic curvé” of the bow with the plan& = 0 of the
frame. As an approximation, one can consider that:

a(0) = (6 -3, )/cosa @)

which seems to be reasonable becauds quite small (20°
typically).

Figure 7. Geometrical description and displacements field
of a SE2.

For increasing values af(o), the deformation pattern of a
SE2 is depicted on Figures 7 and 8. The plate ished
through a folding process that implies four trigilaguegions
denoted byACE, ACD, BAE andCED. These ones are in fact
rotating around plastic hinges designatedA®y CE, CD, AB,
EB andBD, which implies both bending and membrane effects.

Such folding processes have already been studiethagg
[7], Hong [9] or Simonsen [10], but not for inclohelements.
The only difference is coming from the need to ddersthe
local indentation as being(d) and not simplys. In this paper,
we will therefore not go through a detailed caltiola of the

individual resistanceP; provided by a SE2 (some additional
information is given in Annex B).

Ao

f“
N
b;
=

A

Yz

Figure 8. Detailed description of the folding process.

The analytical derivation oP; is still based on the virtual
velocities principle. Here, bending and membranergn rates
have to be calculated. The bending dissipations@imed to
remain confined in the plastic hinges listed abdver each
line, the rotation angle is denoted Byand it may be shown
(Annex B) that the bending energy rate is given by:

oE, = Uotgza(bl*'bz)

_ da 4
2H\1-(1-a(d)/2H)? 99

8

whereo, is the flow stress ang is the frame thickness. The
membrane contribution is coming from the necedsitgespect
the compatibility along the deforming lidé€D (Figure 8). The
motion is indeed impossible without any stretchifighe fibers
along they axis. As a consequence, a part of the internabgne
is also released through this mechanism and itbsashown
(Annex B) that the membrane energy rate writes:
dEm :gotpﬁ(@+@J%d5 (9)
3 b b, Jao
Finally, applying the virtual velocities principleads to the
sought resistance:

Pda=dE, +dE,, (10)

wheredE, anddE,, are given by (8) and (9). In equation (9), it
is worth noting thaH is a parameter found by minimizing the
mean crushing resistance over one fold (Annex B).

4.3Super-element 3

SE3 is considered as an assembly of different qustiof
frames and girders resulting in T-, L- or X-shagdeiments. A
cruciform profile is represented on Figure 9. As 8E2, it is
still to be noted that the local indentation isoadsfunctiona(o)
of the total penetratiof.
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During the collision, these components are crushgd
folding. The right part of Figure 9 shows how aoléted wing

is deforming; different mechanisms are involved:

- The two trianglesBCE and CED rotate around the three
plastic hingeseB, EC and ED. The bending energy rate
associated to this motion is denoteddiy.

- As pointC is assumed to be moving in a direction parallel to
the x axis only (no displacement along, all the fibers
oriented alongy have to be stretched, otherwise the
compatibility along the lindBCD will not be respected. The
membrane energy rate associated to these elongatson
denoted byE,,

- Finally, when the lineAoBy moves in its current positioAB,
this implies a compression of the fibers orientkhg thez
axis. The energy dissipated during this compressamted
dE..

The mechanism exposed here above needs two differen

parameters to be entirely defined. The first onthésheight of
one foldH, while the second one is the height of one wing. |
we assumed this latter to be proportionaHpoit can be said
that the extension of a wing lél. As it was already mentioned
for SE2, these parameters may be fixed by minirgitie mean
crushing resistance calculated over one fold. Hais already
been done by Amdahl [11] who evaluated the indialdu
crushing resistande by the following formula:

P da=dE, +dE,, +dE,

ot
e P =—2PH 1/k2+iarcsi S . Y
V3 4 4k +1

with k = 0.5733. So far, the optimal value bf remains
unknown but will be fixed later on in the next sentdevoted
to SE4.

(11)

Figure 9. Folding mechanism of a SES.

4.4Super-element 4

As the collision is supposed to take place at tiddha of
the gate, it is obvious that a girder is firstlypacted on one of
its supports. Figure 10 shows both a top and a igly of the
deformation pattern characterizing a girder whosgpert

which is displaced by a quantig(s). The first contact point
with the striking bow is denoted .

It is clear that the region of extensikid located neady is
in fact a SE3. The remaining part of the girder &sagxtension
b - kH and corresponds to the SE4 under consideratiois. Th
one is made of two triangl€&CF andCDF (Figure 10) rotating
around three plastic hingesB, FC and FD, which implies a
bending energy dissipation denoteddfy,.

In order to provide a perfect compatibility betwesrSE3
and a SE4, the two triangl&CF andCDF have to present the
same heighH than the one characterizing a SE3. Moreover,
points B, C andD are required to keep in the plar= b - kH
(Figure 10) as this condition was also expresse@ f8E3. For
increasing values dd(o), this implies an axial stretching of all
the fibers oriented along theaxis. The associated membrane
energy rate is denoted b,

Figure 10. Folding mechanism for a SE4.

The individual resistanc®; of a SE4 comes from both
membrane and bending effects characterizedeyyanddE,. P;
may be derived by following a procedure similartbhe one
exposed in section 4.2. In fact, by consideringufggs, it is
clear that a SE4 is an half SE2 having an extertsienb - kH.
Formulae (8) and (9) are therefore still valid, buthas to be
replaced byb - kH and all the contributions coming froba
have to be ignored. Doing so, we obtain:

oots(b-kH
dE, = tpb ) oa
2H1-(1-a(3)/2H)? 99 12)
dE, =gt 20 _30) 02,5

P 3 h—kH 00
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Equation (10) finally gives the resistaneg It is important to
bear in mind that the value &f appearing in equation (11) is
not identical to the one derived for a SE2. For 88 SE4, the
optimal value ofH is obtained by minimizing simultaneously
the total mean resistance of SE3 and SE4 over @de This
has been done in Annex C.

5 GLOBAL DEFORMING MODE

The resistanc®, in the global deforming mode is derived
under the hypothesis that the gate is submittedntaverall
bending motion due to the central impact. This dsighly
illustrated on Figures 11 and 12, where the me&oraation of
the gate is plotted for a given indentatibof the striking bow.

Because of this global displacement, it is cleat:th

- In the plang(X,2), thegirders are bent, as they are forced to
move out of the initial plane of the gate. In tHane (Y,2),
the central stud is remaining straight under th&tion o
(Figure 12.1), which also produces a torsion ofginders.

- Because of the bending imposed to the girders énpilane
(X,2), theframes are forced to rotate under a torque denoted
by My on Figure 11. Moreover, they are also bent, asthee
moving in a direction parallel 8.

- As each girder is bent in the plaf€2), the central stud is
therefore submitted to a rotation (Figure 12.3) causing
torsion.

Figure 11. Top view of the global deformation of the gate
in the (X,2) plane.

It is rather impossible to integrate all the presgo
observations in an analytical treatment of the glateforming
mode. Therefore, in this paper, we introduce théoviong
simplifications:

- The torsion induced on the girders by the rotatiotis not
considered. In fact, the perturbations due to thation of the
central stud are mainly confined in a closed arear rthe
centre of the gate and do not affect the overalidbeg
behavior of the girders.

- The energy dissipated by deformation of the immhétames
is not taken into account. In other words, the farare only
forcing the girders to collaborate with each other.

The gate is assumed to rotate freely at the comtaicts with

the lock wall (denotes b& on Figure 11).

Bow 0

Yp

Figure 12. (1) Lateral view of the deformation of the gate
in the (Y,Z2) plane. (2) Individual displacements of the
girders. (3) Top view of the rotation affecting the central
stud in the plane (X,2).

As a consequence, a leaf may be modeled as anlagsaim
M horizontal beams (corresponding to the girdersheoted to
the central stud and simply supported at the loek.Whe so
obtained equivalent model is shown on Figure 13retit can
be seen that each beam is made of the gross @osrs, of
a girder to which is associated a portignof the plating. The
collaborating portionS, may be found by applying the
recommendations proposed by Eurocode 3 [12] fompia

Lock wall
Beam
Striking
ship
kel
2
1%]
=
Q
5]
A
=
=
@
£
5
O Sy
L S‘p
Rl 3

Figure 13. Equivalent mechanical model to estimate the
impact resistance in the global deforming mode.

As a consequence, the total resistance in the kloba

deforming modeP, is obtained by summing up the for&g
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opposed by the impacted central stud and the tonitnsP; of
theM deforming beams, i.e.:

(13)

5.1Resistance of the beams
In order to deriveP;, let’s denote byy; the positions of the
beams along the vertic&laxis and by\; their displacements at
the level of the central stud (Figure 12.2):
1<j<sM

Yj
By =at (14)

P
where Yp is the vertical
Considering all the previous hypotheses, a beam b&ay
idealized according to the simplified model depicte Figure

position of the striking bow.

whereE is the Young's modulus and is the area of the beam
cross-section, as represented on Figure 13. Agplyia virtual
velocities principle to the previous system findéigds to:

Lsina—AJ- aA]-

P, =N

' +0% -21a, sina 99 (9
with 0A; / 66 = Y; | Yp according to (14). Nevertheless, the
solution provided by (16) is only valid as longras buckling
occurs. The beam may buckle when the compressiee 14
exceeds a critical valubl,; given by the Johnson-Ostenfeld
formula.

OnceN; > Ny, the post-buckling phase is activated. This
time, the resistance is mainly dominated by benéiffiects that
are concentrated at the middle of the beam (M®iot Figure
14.3). In accordance with [12], if we suppose tthe cross

14.1, wherel is its total length, i.e. the distance between the Section depicted on Figure 13 belongs to classhén ft is

central and the lateral studs. Under the enfordsglatement

A, the beam is assumed to respond through thres: step

- During the pre-buckling phase (Figure 14.1), tharbeis
elastically and plastically shortened under a gtraxial force.
This behavior dominates until buckling occurs, apidted on
Figure 14.2.

- During the post-buckling phase (Figure 14.3), aslibam is
still submitted to an increasing displacemeyt a plastic
hinge is finally formed at the middle of the sturet

Figure 14. Equivalent mechanical model of an individual
beam.

From Figure 14.1, it is clear that the axial shoirtg AL; of
the beam in the pre-buckling phase and the assdcratrmal
forceN, are given by:

AL, = L—\/(Lcosa)z +(Lsina—Ai )2

(15)
Nj = EA, (ALJ/L)

possible to reach the maximal plastic mometitat pointB.
This allows for a relative rotation charactenzqdatm angles,
that can be evaluated as a function Af through some
geometrical considerations. Applying the virtuallogdties
principle to the system depicted in Figure 14.3ieto:

AEY
Hoa, aJ

P =M,

i (17)

Finally, P, has to be chosen in accordance with the normal
forceN; acting on the beam. N; is small enough, the resistance
is given by equation (16) characterizing the prelding mode.

On the contrary, i\, exceeds the critical limit, the resistance
has then to be calculated by (17) for the post-lngkphase.
OnceP; is known, the next step is to evaluate the coutidin

P, of the central stud.

5.2Resistance of the central stud

It was already mentioned on Figure 12.3 that timtraéstud
was submitted to an imposed rotatipnthat may now be
guantified with help of the developments made i fevious
section. Considering Figure 14.3, it is clear it rotation at
the central stud (poin€C) is equal tog. However, asj; is
different for each beam, we hagie; # f; and the portion of the
central stud located between the be@rmasdj + 1 is submitted
to the following differential rotation:

Vi =Bjun-B; 1lsjsM-1

which means that the central stud is submitted cisidn.
Therefore, if we denote byl; the torsion capacity of the stud,
the application of the virtual velocities principéads to:

aﬁ]ﬂ aA]+1 algj aAj
P —_—
TZ(OA 00

(18)

0A; 00

@PS__Z(aﬁm, afJY]
e =1

J

(19)
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In the previous formulaM; is parameter that has to be
properly evaluated by the user. A good approxinmatimy be
to calculateMy by idealizing the central stud as a box-girder or
as beam with an I-shaped cross section. Moreowés,viorth
noting that the lateral stud is also submittedot@ion because
{j+1 # ¢ (Figure 14). However, the rotatiofigare too small in
comparison withf; to produce large plastic dissipation at the
lateral support. This phenomenon is therefore mégdein the
present approach.

Finally, the resistancEy in the global deforming mode may
be found by applying equation (13), where the diffeP; are
given by (16) or (17) according to the valueNpfand wherd>,
is to be found by applying (19).

6 APPLICATION EXAMPLE

The simplified analytical approach exposed herer anay
now be applied to a given lock gate. The aim of #@ction is
to compare the curvB(s) obtained by the present simplified
method with the one provided by simulating a caliswith the
finite element software LS-DYNA. The gate considEfer this
example is the one depicted on Figure 15 (wherg oné leaf
is represented). It is made of five girders andeg¢hframes,
having the dimensions listed in Table 1. As stdietbre, the
contact blocks are located at the same level theugitders. For
this example, the plating thickness is equal t@2.0.

The struck gate is made of mild steel, exhibitingtfan
elastic behavior characterized by a Young's mod&ws 210
GPa and a vyield stresg of 235 MPa. Once this stress is
reached, the material is flowing plastically withoany
limitation, as rupture is disregarded.

The numerical model of the gate is made of 176682
Belytschko-Tsay shell elements (see Hallquist [f8] more
information), with a regular mesh of 0.05 x 0.05Ma beams
elements are used.

In order to have a more or less realistic reprediemt of the
support conditions, the sills and the lock walls also modeled
(see Figure 15). Once again, Belytschko-Tsay sketdsused,
but they are this time associated to a perfectidrimaterial,
which means that no deformations are likely to appen the
supports. As the contact is simulated by using aalpe
algorithm, the support mesh size is chosen to indasito the
one used for the gate.

The top of the bow impacts the gate at a distaficksom
measured from the bottom of the lock. The shapbeftriking
vessel is characterized by the following parame(feigure 3):p
=6.5m,q=8 m,h,=5.6 m¢ =y = 85° Its displacement is
4000 tons and its initial velocity is 2 m/s. Itasly made of
20652 Belytschko-Tsay shells and is defined as a- no
deforming body. In order to provide good contachditons
with the gate, the mesh is quite refined near theact point
(0.05 x 0.05 m).

Figure 16 shows the results obtained after a nwaleri
simulation of the collision, where the striking shiwas
considered as perfectly rigid. The resistance gibgnthe

present approach is also represented on Figur@sli.can be
seen, the agreement between the two curves ifashbisy.

Lateral
contact

Lateral
stud

Central
contact
block

Central
stud

Girder
Frame

1.24]

\
3.83

Figure 15. Main geometrical dimensions of the gate [m].
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o 01 02 03 04 05 06 07 08 09

Penetratiord (m)
—Analytical — Numerical

Figure 16. Comparison of the resistance curves P(6)
obtained by LS-DYNA (numerical) and by the present
approach (analytical).

7 CONCLUSION

In this paper, we present a simplified analyticalgedure to
evaluate the ability of a steel mitered gate tohstdand a
symmetric impact. We provide some explanationshernvtay to
estimate the resistance in both the local and ¢lobades.
Finally, in order to apply our developments to atire gate, we
make a comparison with the resistance obtainedugtrdinite
elements simulations. For this example, the presienplified
method provides quite satisfactory results in g/ \&ort time,
which may be relevant for pre-designing lock gafesa matter
of comparison, it takes more or less 10 hours tb the
resistance curve by using LS-DYNA on a computeripgupd
with an i7-3770 Intel Core Processor, while the spra
simplified procedure leads to a reasonable appratkim in 10
seconds only.
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As a final comment, it worth keeping in mind thapture of
the constitutive material is not considered in tlaigicle.
Regarding watertightness, the post-failure behawbrlock
gates is not the prior matter of concerns, buthibuédd be
relevant to investigate it when considering robessn for
example.

Table 1. Dimensions of the frames and of the girders
according to Figure 15.

Properties Symbol Girders Frames
Web height hy, 1.5m 1.5m
Web thickness t 0.016 m 0.012m
Flange widtl hy 0.3nm 0.3nm
Flange thickness t 0.012 0.012
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ANNEX A

ADDITIONAL FORMULAE FOR SUPER-ELEMENT 1

In this appendix, we give the mathematical formulae
required to evaluate the resistance opposed bylat&HEhe
progression of the striking vessel. The membramgggnrates
listed in formula (6) have the following expresson

20,t, cos’ a [ a,  ab

dE, = ——— |
' 33 by (al—dsina)z] (A

_204t,cosa| a + ab,

= ~-P | Do A2
2 3/3 b, -Jsina)? (A2)

200t , cos’ a a,

dE; =———F o
: 33 by "oy +Ssina)? a2+53|na j (A3)

_204t,cos @ B, Ak )

4

= Al
) 33 b, (a,+dsina)? (A4)

Introducing formulae (Al) to (A4) in equation (Gpdlly
leads to the following resistance:

aa, +0%sina
Y — | (B2
—Jsma) (a2 +53|na)

20,t, 1
= +
3/3 bib, (a

whereS = (a; + a,) (b; + by) cos2a.
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ANNEX B

FOLDING PROCESS FOR SUPER-ELEMENT 2

This appendix provides some additional informationthe
way to derive the individual resistanBecharacterizing a SE2.
The procedure is similar to the one followed by &hd6],
except that we have here to consider a more complex
indentationa(d). From Figure 8, it is clear that:

2H cosf+a(d)=2H = @= arccoEl— @]

2H (B1)

The incremental form of the preceding equation ey
be found by differentiation:
1 oa

dé = -
2H|1-(1-a(3)/2H)? 99

(B2)

By assuming that the folding heightl is small in
comparison with the lengths andb,, the bending energy rate
may be approximated by:

oot2
dE, = f; P (b, +b,)fads) (B3)
where 416 is the total rotation rate for the six plastic des
AC, CE, CD, AB, EB andBD shown on Figures 7 and 8. The
rotation ratedd given by (B2) may be introduced in (B3) to get
equation (8).
Let's now consider the membrane energy rate. Asctip
on Figure 8, it is clear that the indentation tefiAC is a(d).
If we suppose that the indentatismz,6) of any fiber located at
the deptle (with 0<z< 2H) is linear, we have:
z
w(z,0) = al 1-— B4
(z,9) (J)Eé 2H ] (B4)
and assuming thdd is negligible in comparison with (b = b,
or b,), the deformation of a fiber is given by:

2

2 b? 49
For all the fiber located in the ar@az) € [0 ; 2H] X [0 ;
b,], the total membrane energy rate may be found by:
b dy 2H aw
dE,, :aotp£b75£ w(z, 8) == dodz

(B6)

which is valid forb = b, or b, Differentiatingw(z0) in (B4)

and then introducing the result in (B6) leads ® fidbrmula (9)
giving dE;,. In all the previous equations] is left as a
parameter that may be found by minimizing the maashing
force over one fold. This one is given by:

2H
- 1
Pi=_ _([Pi(a) [da (B7)
Introducing (B3), (B6) and (10) in (B7), it is pdde to
obtain the following result:

— ot +b,)( 1t 3

P; :M _p+i (B8)
2H 2 b,

and the optimal value dfi is found by minimizing (B8). In

accordance with Zhang [6], this optimum is:

/371

All the mathematical formulae given here above \akd as
long as the fold is not completely closed. Howef@r,values
of a(d) increasing2H, we make the hypothesis that the folding
process previously described is simply repeatechasy time
as necessary. Consequently, the individual crusfonge is
still obtained by (10), bu&(d) has to be replaced (o) —
2jH, wherej is the number of folds already completely closed.

(B9)
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Annex C

FOLDING PROCESS FOR SUPER-ELEMENTS 3 AND 4

The aim of this appendix is to derive the optimalue of
the folding height characterizing a SE4 coupled to a SE3. To
do so, it is necessary to minimize the mean fo(cakulated
over one fold) provided by both SE3 and SE4. Trst fine is
directly given by (11) and, for convenience, islifred in the
following manner:

Pi =Kot H (C1)

whereK is an appropriate function & The second one may
be found by considering (B8), whdrehas to be replaced ly

- kH and all the contributions di, are removed. Doing so, we
obtain:

M, p-kH H?
P + ] (C2)

i zaotp[ 8 H  b-kd

Adding (C1) and (C2) leads to the mean crushingdaf a
SE4 coupled with a SE3:

_ 2
b-kH H ] ©3)

_ ( 7,
Pi =0ty KH +———t+—-
8 H b-kH

which has to be minimized with respectHoUnfortunately, it
is not possible the find an analytical solutionsfging exactly
this requirement. Under the assumptions Hhaand thakH is
negligible in comparison with, the minimization may only be
conducted on the two first terms of (C3). Doing toe
following optimal value oH is found:

[t
H=,Z_F (C4)
8 K

which may be used in equations (11) and (12).
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