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ABSTRACT 
This paper presents a simplified procedure allowing for a rapid 
prediction of the strength of a lock mitered gate submitted to a 
ship impact. In this article, the force opposed to the penetration 
of the vessel is derived by supposing that the bow is perfectly 
rigid, so the total initial kinetic energy has to be entirely 
transformed through an internal dissipation. For a given 
penetration of the striking vessel, an analytical procedure is 
followed in order to estimate the amount of energy dissipated 
by local and global deformations of the impacted structure. An 
equivalent quasi-static force is then derived. A comparison is 
made with a finite elements simulation in order to test the 
analytical procedure. 

1 INTRODUCTION 
 Locks are undoubtedly essential and common structures on 
inland waterways. Although some recent efforts have been made 
to improve the navigation near such installations, the gates are 
often impacted by ships travelling too fast. Most of the time, 
these collisions lead to some minor damages such as a loss of 
watertightness. However, as the fluvial traffic is growing, it is to 
fear that the frequency of these accidents is going to follow the 
same trend. Moreover, as ships are also getting larger, collisions 
are likely to have much more severe consequences. 

For these reasons, it seems reasonable to think that ship 
impact on lock gates will be an important matter of concerns for 
engineers in a near future. It is therefore necessary to provide 
them with some efficient tools to check if a new or an existing 
lock gate is able to withstand a collision. Of course, finite 
elements simulations may be performed, but they are not time-
effective at the pre-design stage of a structure, when several 

collision scenarios must be analyzed. Therefore, in this paper, 
we present a simplified methodology that can be used to quickly 
estimate the resistance of a lock mitered gate.  

The philosophy is the same than the one detailed (amongst 
others) by Ueda [1] and Lützen [2] for ship-ship collisions or by 
Simonsen [3] for ship grounding on rocks. The idea is to assess 
the crashworthiness with help of simplified analytical 
developments. Such an approach has already been applied to 
plane gates by Le Sourne [4] and Buldgen [5] and it is our aim 
to extend it to classical lock mitered gates. 

2 HYPOTHESES AND OVERVIEW OF THE PROBLEM 
The developments performed in this paper are based on 

several hypotheses concerning: 
- The structure of the impacted gate; 
- The behavior of the material constituting the gate; 
- The shape of the striking vessel. 
The theory presented in this article is strictly limited by the 
restrictions detailed hereafter. However, the assumptions are 
made so as to cover the main practical cases.  
 
2.1 Hypotheses on the gate structure 

Figure 1 represents a top view showing the main 
geometrical and structural properties of the gates considered in 
this paper. A leaf is assumed to be made of a plating reinforced 
by some frames (vertical stiffeners) and girders (horizontal 
stiffeners). 

Contacts with the lock walls and the second leaf are 
respectively provided by the lateral and central blocks. These 
one are assumed to be perfectly rigid and located at the same 
vertical level than the girders, as it can be seen on Figure 2. 
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This figure also shows that the stiffened structure formed by the 
plating, the frames and the girders is supported by two vertical 
studs (a central and a lateral one). 
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Figure 1. Top view of the left leaf of a mitered gate. 
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Figure 2.  Plan view of the left leaf of a mitered gate. 
 
2.2 Hypotheses on the material behavior 

In order to derive a closed form solution of the impact 
resistance, the material is supposed to first exhibit a linear 
elastic behavior defined by its Young’s modulus E. Once the 
maximal elastic deformation ε0 is reached, the material then 
exhibits a plastic behavior characterized by a constant flow 
stress σ0 = Eε0, which implies that the strain hardening is not 
taken into account. In the developed analytical model, the 
stress-strain rate sensitivity is also neglected. Such hypotheses 
are however conservative. 

It is worth noting that rupture is not taken into account in 
the present paper. The first reason to do so is that tensile tearing 
occurring in the plating would lead to a loss of watertightness, 
which has to be avoided to maintain the integrity of the lock. 

Therefore, the post-rupture behavior of the gate is not a prior 
matter of investigation. Another reason for not dealing with 
failure comes from the difficulty to simulate properly tensile 
tearing using finite elements. As a consequence, the material 
considered in this paper is not able to simulate rupture. 

 
2.3 Hypotheses on the striking vessel 

The mass and initial velocity of the striking ship are 
respectively denoted by M0 and V. In the present methodology, 
the vessel is assumed to be perfectly rigid, so that no 
deformation is likely to affect the impacting bow. In particular, 
this conservative hypothesis implies that the initial kinetic 
energy M0V

2/2 has to be entirely dissipated during the 
deformation of the gate. 

Geometrically, the striking vessel is characterized by five 
different parameters shown on Figure 3:  
- the bow is assumed to be a parabola with radii p and q; 
- the stem and side angles are respectively denoted by ψ and ϕ; 
- the height between the lower and uppermost decks is hb. 

Finally, regarding the collision scenario, the vessel is first 
assumed to always move in a direction parallel to the lock 
walls, as depicted on Figure 1. This hypothesis seems to be 
reasonable, as very large ships always occupy the all space of 
the lock chamber. The impact is then supposed to be symmetric, 
which means that the vessel is colliding the gate at the junction 
between the two leafs (Figure 1). As a consequence, off-
centered impacts are not covered here.  
 

 
Figure 3. Geometrical description of the striking bow. 

3 ANALYTICAL METHODOLOGY 
The analytical derivation of the collision resistance is based 

on the fundamental assumption that the collision energy is 
entirely dissipated by the gate at two different levels: 
- At the beginning of the impact, i.e. for small values of the 

penetration δ of the striking vessel, the resistance is mainly 
provided by some local damage affecting the gate in a 
localized area. During this so-called local deforming mode, 
deformations are confined into a region surrounding the 
impact point, while the remaining parts of the gate are 
unaffected. 
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- However, when the penetration becomes larger, displacements 
may not be kept in a closed space anymore. The entire gate is 
then affected by an overall bending motion, which 
characterizes a global deforming mode. 
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Figure 4. Transition between local (1) and global (2) 
deforming modes. 

 
For the local and global deforming modes, it is our purpose 

to estimate the associated local and global resistances, 
respectively denoted by Pl and Pg. Both of them are analytically 
derived for each value of the current penetration δ. The 
transition between the local and global behavior is then 
assumed to happen for a particular value δt of the indentation 
(Figure 4). When this indentation is reached, it becomes easier 
for the ship to progress by imposing an overall bending 
movement (phase 2 on Figure 4) of the gate than by producing 
local damages (phase 1 on Figure 4).  

The most critical part for estimating the collision resistance 
P is to provide realistic laws characterizing the evolution of Pl 
and Pg with δ. Some details concerning the analytical derivation 
of such laws are presented in the following sections. 

4 LOCAL DEFORMING MODE 
The resistance in the local deforming mode is evaluated by 

assuming that the gate is an assembly of N large structural 
entities called “super-elements”. Each super-element i is 
characterized by a relation between the penetration δ of the 
striking vessel and its individual resistance Pi. In addition, the 
two following important assumptions are made: 
- As long as there is no geometrical contact between the 

striking bow and a super-element, this one remains inactive, 
and so we have Pi = 0. 

- Each super-element is totally decoupled from the others. This 
means that deformations taking place in one super-element do 
not have any geometrical or structural effect on the others. 

As a consequence, the total crushing force Pl  opposed in the 
local mode for a given value of δ is simply obtained by 
summing up the contributions Pi provided by each individual 
super-element i. In other words, Pl is written as: 

∑
=

=
N

i
il PP

1

)()( δδ  (1) 

The relation between Pi and δ is analytically derived by 
applying the upper-bound theorem. To do so, the first step is to 
define realistically the displacements affecting a super-element 
under an impact. Then, by calculating the components of the 
Green-Lagrange deformation tensor, the internal energy Ei, 
dissipated for a given indentation, is obtained. The virtual 
velocities theorem (see Jones [6] for additional information 
about the virtual velocities principle) finally leads to the sought 
resistance: 

ii EP && =⋅ δ  (2) 

 
Figure 5. Representation of the four different types of 
super-elements (only a portion of the gate is shown). 
 

In order to model entirely the structure of the gate, at least 
four different types of super-elements are required (Figure 5): 
- Super-element 1 (SE1) is used to model the behavior of 

plating components submitted to an out-of-plane impact. This 
super-element is vertically delimited by two frames and 
horizontally bounded by two girders. 

- Super-element 2 (SE2) is used to model collided frames. A 
SE2 is delimited by two girders. For example, on Figure 5, the 
SE2 is bounded at points B and C. For such elements, it is 
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worth noting that the collision may not appear on one of the 
supports. In other words, a SE2 is always impacted 
somewhere between B and C, but not in B or C (otherwise it 
has to be treated as a SE4). 

- Super-element 3 (SE3) is used to simulate the crushing of 
intersections between frames and girders when they are 
impacted. 

Super-element 4 (SE4) represents girders or frames that are 
impacted immediately on one of their support. As the collision 
happens at the middle of the gate (near the central stud), it is 
clear that all girders have to be modeled with a SE4 (as an 
example, on Figure 5, the SE4 shows a girder that is activated 
when the bow reaches point A). A SE4 may also be used to 
simulate frames when they are impacted on one of their support 
points (B or C). 
 
4.1 Super-element 1 

SE1 is modeled as a plate simply supported on two frames 
and two girders. During an impact, no displacement is assumed 
to appear along an edge, as long as no geometrical contact with 
the striking bow has been established. Such an element has 
already been extensively studied by Zhang [7] or Buldgen [8] 
for example. Therefore, we will not present all the detailed 
mathematical developments leading to the evaluation of the 
resisting force. On the contrary, we will rather focus on giving a 
clear explanation of the hypotheses that were used to get the 
final formulae. 
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Figure 6. Displacements field for SE1. 
 

In order to derive the individual local resistance provided by 
the present element, it is first necessary to define a 

kinematically admissible displacement field. To do so, let’s first 
introduce (see Figure 6): 
- A local coordinate frame (x,y,z), oriented in a such way that x 

and y are located in the initial plane of the plate. The axis z is 
then defined perpendicularly to (x,y). 

- A global coordinate frame (X,Y,Z), where the plane (Y,Z) is 
parallel to the lock walls and the axis X is defined 
perpendicularly. 

If we denote the mitered angle by α, it is obvious from Figure 6 
that the axes (x,y,z) are simply obtained through an α-
counterclockwise rotation of (X,Y,Z). Remember that the 
striking ship is following the orientation of the lock walls, so 
that the vessel is travelling along the Z axis (δ // Z) as depicted 
on Figure 6. 

As mentioned here above, the super-element is activated as 
soon as a geometrical contact is established with the ship. In the 
present case, this condition is achieved when the bow is tangent 
to the initial plane of the plate. On Figure 6, the first contact 
point is denoted by I0. However, as the ship is moving forwards, 
I0 does not follow the penetration direction Z. We assume here 
that the impact only results in a displacements field w(x,y) 
perpendicular to the plane of the gate. In other words, w(x,y) is 
parallel to the z axis. As a consequence, for a given value of δ, 
the current position of I0 is point I on Figure 6, and we have: 

xII
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Each point (x,y) initially located in the plane of the plate is 
submitted to the same type of motion as I0. Consequently, as the 
ship is only following the Z axis, the material is forced to 
plastically flow over the striking bow, which may result in a 
frictional dissipation. However, the quantity of energy involved 
in this phenomenon is neglected and we admit here that there is 
only an internal dissipation through the straining produced by 
the deflection w(x,y). If we divide the plate into four different 
areas:  
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it is possible to define the displacements field simply through a 
linear interpolation on each surface. For example, considering 
A1, we have: 
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and the same can be done for the three remaining regions A2, A3, 
A4 to get a complete definition of w(x,y). Then, assuming a plan 
strain state, the Green-Lagrange formulae may be used to get 
the strain rate tensor. Following the same procedure than the 
one described in [7] or [8], it is possible to derive the internal 
energy rates dE1, dE2, dE3, dE4 for the regions A1, A2, A3, A4. 
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Applying the virtual velocities principle, we finally get the 
individual resistance Pi opposed by this super-element during 
the impact: 

4321 dEdEdEdEdPi +++=δ  (6) 

where dE1, dE2, dE3, dE4 are given in Annex A. 
 
4.2 Super-element 2 

SE2 is modeled as a vertical plate simply supported on three 
edges. The fourth edge is free and impacted by the vessel bow 
(see Figure 7). The super-element is activated as soon as the 
bow reaches point A0 defined on Figure 7, i.e. when the 
penetration is equal to δ0.  It is worth noting that the frame is 
located in the plane x = 0 making an angle α with the axis Z 
followed by the striking ship (Figure 7). As a consequence, the 
current indentation characterizing a SE2 is a function a(δ) 
which may be obtained by calculating the intersection between 
the parabolic curve Γ of the bow with the plane x = 0 of the 
frame. As an approximation, one can consider that: 

( ) αδδδ cos)( 0−≈a  (7) 

which seems to be reasonable because α is quite small (20° 
typically). 
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Figure 7. Geometrical description and displacements field 
of a SE2. 
 

For increasing values of a(δ), the deformation pattern of a 
SE2 is depicted on Figures 7 and 8. The plate is crushed 
through a folding process that implies four triangular regions 
denoted by ACE, ACD, BAE and CED. These ones are in fact 
rotating around plastic hinges designated by AC, CE, CD, AB, 
EB and BD, which implies both bending and membrane effects. 

Such folding processes have already been studied by Zhang 
[7], Hong [9] or Simonsen [10], but not for inclined elements. 
The only difference is coming from the need to consider the 
local indentation as being a(δ) and not simply δ. In this paper, 
we will therefore not go through a detailed calculation of the 

individual resistance Pi provided by a SE2 (some additional 
information is given in Annex B). 

 
Figure 8. Detailed description of the folding process. 
 

The analytical derivation of Pi is still based on the virtual 
velocities principle. Here, bending and membrane energy rates 
have to be calculated. The bending dissipation is assumed to 
remain confined in the plastic hinges listed above. For each 
line, the rotation angle is denoted by θ and it may be shown 
(Annex B) that the bending energy rate is given by: 
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where σ0 is the flow stress and tp is the frame thickness. The 
membrane contribution is coming from the necessity to respect 
the compatibility along the deforming line AED (Figure 8). The 
motion is indeed impossible without any stretching of the fibers 
along the y axis. As a consequence, a part of the internal energy 
is also released through this mechanism and it can be shown 
(Annex B) that the membrane energy rate writes: 
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Finally, applying the virtual velocities principle leads to the 
sought resistance: 

mbi dEdEdaP +=  (10) 

where dEb and dEm are given by (8) and (9). In equation (9), it 
is worth noting that H is a parameter found by minimizing the 
mean crushing resistance over one fold (Annex B). 
 
4.3 Super-element 3 

SE3 is considered as an assembly of different portions of 
frames and girders resulting in T-, L- or X-shaped elements. A 
cruciform profile is represented on Figure 9. As for SE2, it is 
still to be noted that the local indentation is also a function a(δ) 
of the total penetration δ. 
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During the collision, these components are crushed by 
folding. The right part of Figure 9 shows how an isolated wing 
is deforming; different mechanisms are involved: 
- The two triangles BCE and CED rotate around the three 

plastic hinges EB, EC and ED. The bending energy rate 
associated to this motion is denoted by dEb. 

- As point C is assumed to be moving in a direction parallel to 
the x axis only (no displacement along y), all the fibers 
oriented along y have to be stretched, otherwise the 
compatibility along the line BCD will not be respected. The 
membrane energy rate associated to these elongations is 
denoted by dEm. 

- Finally, when the line A0B0 moves in its current position AB, 
this implies a compression of the fibers oriented along the z 
axis. The energy dissipated during this compression is noted 
dEc. 

The mechanism exposed here above needs two different 
parameters to be entirely defined. The first one is the height of 
one fold H, while the second one is the height of one wing. If 
we assumed this latter to be proportional to H, it can be said 
that the extension of a wing is kH. As it was already mentioned 
for SE2, these parameters may be fixed by minimizing the mean 
crushing resistance calculated over one fold. This has already 
been done by Amdahl [11] who evaluated the individual 
crushing resistance Pi by the following formula: 
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with k = 0.5733. So far, the optimal value of H remains 
unknown but will be fixed later on in the next section devoted 
to SE4. 
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Figure 9. Folding mechanism of a SE3. 
 
4.4 Super-element 4 

As the collision is supposed to take place at the middle of 
the gate, it is obvious that a girder is firstly impacted on one of 
its supports. Figure 10 shows both a top and a 3D view of the 
deformation pattern characterizing a girder whose support 

which is displaced by a quantity a(δ). The first contact point 
with the striking bow is denoted by A0.  

It is clear that the region of extension kH located near A0 is 
in fact a SE3. The remaining part of the girder has an extension 
b - kH and corresponds to the SE4 under consideration. This 
one is made of two triangles BCF and CDF (Figure 10) rotating 
around three plastic hinges FB, FC and FD, which implies a 
bending energy dissipation denoted by dEb. 

In order to provide a perfect compatibility between a SE3 
and a SE4, the two triangles BCF and CDF have to present the 
same height H than the one characterizing a SE3. Moreover, 
points B, C and D are required to keep in the plan x = b - kH 
(Figure 10) as this condition was also expressed for a SE3. For 
increasing values of a(δ), this implies an axial stretching of all 
the fibers oriented along the x axis. The associated membrane 
energy rate is denoted by dEm.  

 
Figure 10. Folding mechanism for a SE4. 
 

The individual resistance Pi of a SE4 comes from both 
membrane and bending effects characterized by dEm and dEb. Pi 
may be derived by following a procedure similar to the one 
exposed in section 4.2. In fact, by considering Figure 8, it is 
clear that a SE4 is an half SE2 having an extension b1 = b - kH. 
Formulae (8) and (9) are therefore still valid, but b1 has to be 
replaced by b - kH and all the contributions coming from b2 
have to be ignored. Doing so, we obtain:  
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Equation (10) finally gives the resistance Pi. It is important to 
bear in mind that the value of H appearing in equation (11) is 
not identical to the one derived for a SE2. For SE3 and SE4, the 
optimal value of H is obtained by minimizing simultaneously 
the total mean resistance of SE3 and SE4 over one fold. This 
has been done in Annex C. 

5 GLOBAL DEFORMING MODE 
The resistance Pg in the global deforming mode is derived 

under the hypothesis that the gate is submitted to an overall 
bending motion due to the central impact. This is roughly 
illustrated on Figures 11 and 12, where the mean deformation of 
the gate is plotted for a given indentation δ of the striking bow. 
Because of this global displacement, it is clear that: 
- In the plane (X,Z), the girders are bent, as they are forced to 

move out of the initial plane of the gate. In the plane (Y,Z),  
the central stud is remaining straight under the rotation ω 
(Figure 12.1), which also produces a torsion of the girders.  

- Because of the bending imposed to the girders in the plane 
(X,Z), the frames are forced to rotate under a torque denoted 
by MY on Figure 11. Moreover, they are also bent, as there are 
moving in a direction parallel to Z. 

- As each girder is bent in the plane (X,Z), the central stud is 
therefore submitted to a rotation γ (Figure 12.3) causing 
torsion. 

δ

 
Figure 11. Top view of the global deformation of the gate 
in the (X,Z) plane. 
 

It is rather impossible to integrate all the previous 
observations in an analytical treatment of the global deforming 
mode. Therefore, in this paper, we introduce the following 
simplifications: 
- The torsion induced on the girders by the rotation ω is not 

considered. In fact, the perturbations due to the rotation of the 
central stud are mainly confined in a closed area near the 
centre of the gate and do not affect the overall bending 
behavior of the girders. 

- The energy dissipated by deformation of the impacted frames 
is not taken into account. In other words, the frames are only 
forcing the girders to collaborate with each other.  

The gate is assumed to rotate freely at the contact points with 
the lock wall (denotes by A on Figure 11). 
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Figure 12. (1) Lateral view of the deformation of the gate 
in the (Y,Z) plane. (2) Individual displacements of the 
girders. (3) Top view of the rotation affecting the central 
stud in the plane (X,Z). 
 

As a consequence, a leaf may be modeled as an assembly of 
M horizontal beams (corresponding to the girders) connected to 
the central stud and simply supported at the lock wall. The so 
obtained equivalent model is shown on Figure 13, where it can 
be seen that each beam is made of the gross cross-section S0 of 
a girder to which is associated a portion Sp of the plating. The 
collaborating portion Sp may be found by applying the 
recommendations proposed by Eurocode 3 [12] for example. 

Lock wall

Striking 

ship

Beam

S0

Sp

 
Figure 13. Equivalent mechanical model to estimate the 
impact resistance in the global deforming mode. 
 

As a consequence, the total resistance in the global 
deforming mode Pg is obtained by summing up the force Ps 



 8 Copyright © 2013 by ASME 

opposed by the impacted central stud and the contributions Pj of 
the M deforming beams, i.e.: 

∑
=

+=
M

j
jsg PPP

1

 (13) 

5.1 Resistance of the beams 
In order to derive Pj, let’s denote by Yj the positions of the 

beams along the vertical Y axis and by ∆j their displacements at 
the level of the central stud (Figure 12.2): 

Mj
Y

Y

P

j
j ≤≤=∆ 1δ  (14) 

where YP is the vertical position of the striking bow. 
Considering all the previous hypotheses, a beam may be 
idealized according to the simplified model depicted in Figure 
14.1, where L is its total length, i.e. the distance between the 
central and the lateral studs. Under the enforced displacement 
∆j, the beam is assumed to respond through three steps: 
- During the pre-buckling phase (Figure 14.1), the beam is 

elastically and plastically shortened under a strong axial force. 
This behavior dominates until buckling occurs, as depicted on 
Figure 14.2.   

- During the post-buckling phase (Figure 14.3), as the beam is 
still submitted to an increasing displacement ∆j, a plastic 
hinge is finally formed at the middle of the structure. 

 
Figure 14.  Equivalent mechanical model of an individual 
beam. 
 

From Figure 14.1, it is clear that the axial shortening ∆Lj of 
the beam in the pre-buckling phase and the associated normal 
force Nj are given by: 

( ) ( )
( )LLEAN

LLLL

jjj
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∆−+−=∆ 22 sincos αα
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where E is the Young’s modulus and Aj is the area of the beam 
cross-section, as represented on Figure 13. Applying the virtual 
velocities principle to the previous system finally leads to: 
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with ∂∆j / ∂δ = Yj / YP according to (14). Nevertheless, the 
solution provided by (16) is only valid as long as no buckling 
occurs. The beam may buckle when the compressive force Nj 
exceeds a critical value Ncr,j given by the Johnson-Ostenfeld 
formula.  

Once Nj ≥ Ncr,j, the post-buckling phase is activated. This 
time, the resistance is mainly dominated by bending effects that 
are concentrated at the middle of the beam (point B on Figure 
14.3). In accordance with [12], if we suppose that the cross 
section depicted on Figure 13 belongs to class 1, then it is 
possible to reach the maximal plastic moment Mj at point B. 
This allows for a relative rotation characterized by an angle βj 
that can be evaluated as a function of ∆j through some 
geometrical considerations. Applying the virtual velocities 
principle to the system depicted in Figure 14.3 leads to: 

δ
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∂
= j

j

j
jj MP  (17) 

Finally, Pj has to be chosen in accordance with the normal 
force Nj acting on the beam. If Nj is small enough, the resistance 
is given by equation (16) characterizing the pre-buckling mode. 
On the contrary, if Nj exceeds the critical limit, the resistance 
has then to be calculated by (17) for the post-buckling phase. 
Once Pj is known, the next step is to evaluate the contribution 
Ps of the central stud. 
 
5.2 Resistance of the central stud 

It was already mentioned on Figure 12.3 that the central stud 
was submitted to an imposed rotation γ that may now be 
quantified with help of the developments made in the previous 
section. Considering Figure 14.3, it is clear that the rotation at 
the central stud (point C) is equal to βj. However, as ∆j is 
different for each beam, we have βj+1 ≠ βj and the portion of the 
central stud located between the beams j and j + 1 is submitted 
to the following differential rotation: 

111 −≤≤−= + Mjjjj ββγ  (18) 

which means that the central stud is submitted to torsion. 
Therefore, if we denote by MT the torsion capacity of the stud, 
the application of the virtual velocities principle leads to: 
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In the previous formula, MT is parameter that has to be 
properly evaluated by the user. A good approximation may be 
to calculate MT by idealizing the central stud as a box-girder or 
as beam with an I-shaped cross section. Moreover, it is worth 
noting that the lateral stud is also submitted to torsion because 
ζj+1 ≠ ζ j (Figure 14). However, the rotations ζ j are too small in 
comparison with βj to produce large plastic dissipation at the 
lateral support. This phenomenon is therefore neglected in the 
present approach. 

Finally, the resistance Pg in the global deforming mode may 
be found by applying equation (13), where the different Pj are 
given by (16) or (17) according to the value of Nj, and where Ps 
is to be found by applying (19). 

6 APPLICATION EXAMPLE 
The simplified analytical approach exposed here over may 

now be applied to a given lock gate. The aim of this section is 
to compare the curve P(δ) obtained by the present simplified 
method with the one provided by simulating a collision with the 
finite element software LS-DYNA. The gate considered for this 
example is the one depicted on Figure 15 (where only one leaf 
is represented). It is made of five girders and three frames, 
having the dimensions listed in Table 1. As stated before, the 
contact blocks are located at the same level than the girders. For 
this example, the plating thickness is equal to 0.022 m.  

The struck gate is made of mild steel, exhibiting first an 
elastic behavior characterized by a Young’s modulus E of 210 
GPa and a yield stress σ0 of 235 MPa. Once this stress is 
reached, the material is flowing plastically without any 
limitation, as rupture is disregarded. 

The numerical model of the gate is made of 176682 
Belytschko-Tsay shell elements (see Hallquist [13] for more 
information), with a regular mesh of 0.05 x 0.05 m. No beams 
elements are used. 

In order to have a more or less realistic representation of the 
support conditions, the sills and the lock walls are also modeled 
(see Figure 15). Once again, Belytschko-Tsay shells are used, 
but they are this time associated to a perfectly rigid material, 
which means that no deformations are likely to appear on the 
supports. As the contact is simulated by using a penalty 
algorithm, the support mesh size is chosen to be similar to the 
one used for the gate. 

The top of the bow impacts the gate at a distance of 7.5 m 
measured from the bottom of the lock. The shape of the striking 
vessel is characterized by the following parameters (Figure 3): p 
= 6.5 m, q = 8 m, hb = 5.6 m, ϕ = ψ = 85°. Its displacement is 
4000 tons and its initial velocity is 2 m/s. It is only made of 
20652 Belytschko-Tsay shells and is defined as a non-
deforming body. In order to provide good contact conditions 
with the gate, the mesh is quite refined near the impact point 
(0.05 x 0.05 m).  

Figure 16 shows the results obtained after a numerical 
simulation of the collision, where the striking ship was 
considered as perfectly rigid. The resistance given by the 

present approach is also represented on Figure 16. As it can be 
seen, the agreement between the two curves is satisfactory. 

1
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w

 
Figure 15. Main geometrical dimensions of the gate [m]. 
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Figure 16. Comparison of the resistance curves P(δ) 
obtained by LS-DYNA (numerical) and by the present 
approach (analytical). 

7 CONCLUSION 
In this paper, we present a simplified analytical procedure to 

evaluate the ability of a steel mitered gate to withstand a 
symmetric impact. We provide some explanations on the way to 
estimate the resistance in both the local and global modes. 
Finally, in order to apply our developments to an entire gate, we 
make a comparison with the resistance obtained through finite 
elements simulations. For this example, the present simplified 
method provides quite satisfactory results in a very short time, 
which may be relevant for pre-designing lock gates. As a matter 
of comparison, it takes more or less 10 hours to get the 
resistance curve by using LS-DYNA on a computer equipped 
with an i7-3770 Intel Core Processor, while the present 
simplified procedure leads to a reasonable approximation in 10 
seconds only.  
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As a final comment, it worth keeping in mind that rupture of 
the constitutive material is not considered in this article. 
Regarding watertightness, the post-failure behavior of lock 
gates is not the prior matter of concerns, but it should be 
relevant to investigate it when considering robustness for 
example.  
 

Table 1.  Dimensions of the frames and of the girders 
according to Figure 15. 

Properties Symbol Girders Frames 
Web height hw 1.5 m 1.5 m 
Web thickness tw 0.016 m 0.012 m 
Flange width hf 0.3 m 0.3 m 
Flange thickness tf 0.012 0.012 
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ANNEX A 

ADDITIONAL FORMULAE FOR SUPER-ELEMENT 1 
 

 
In this appendix, we give the mathematical formulae 

required to evaluate the resistance opposed by a SE1 to the 
progression of the striking vessel. The membrane energy rates 
listed in formula (6) have the following expressions: 
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Introducing formulae (A1) to (A4) in equation (6) finally 
leads to the following resistance: 
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where S = (a1 + a2) (b1 + b2) cos² α. 
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ANNEX B 

FOLDING PROCESS FOR SUPER-ELEMENT 2 
 

This appendix provides some additional information on the 
way to derive the individual resistance Pi characterizing a SE2. 
The procedure is similar to the one followed by Zhang [6], 
except that we have here to consider a more complex 
indentation a(δ). From Figure 8, it is clear that: 
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The incremental form of the preceding equation may then 
be found by differentiation: 
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By assuming that the folding height H is small in 
comparison with the lengths b1 and b2, the bending energy rate 
may be approximated by: 
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where 4dθ is the total rotation rate for the six plastic hinges 
AC, CE, CD, AB, EB and BD shown on Figures 7 and 8. The 
rotation rate dθ given by (B2) may be introduced in (B3) to get 
equation (8).  

Let’s now consider the membrane energy rate. As depicted 
on Figure 8, it is clear that the indentation of fiber AC is a(δ). 
If we suppose that the indentation w(z,δ) of any fiber located at 
the depth z (with 0 ≤ z ≤ 2H) is linear, we have: 
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and assuming that H is negligible in comparison with b (b = b1 
or b2), the deformation of a fiber is given by: 
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For all the fiber located in the area (x,z) ∊ [0 ; 2H] ⨉ [0 ; 
b1], the total membrane energy rate may be found by: 
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which is valid for b = b1 or b2. Differentiating w(z,δ) in (B4) 
and then introducing the result in (B6) leads to the formula (9) 
giving dEm. In all the previous equations, H is left as a 
parameter that may be found by minimizing the mean crushing 
force over one fold. This one is given by: 

∫ ⋅=
H

ii daaP
H

P
2

0

)(
2

1
 (B7) 

Introducing (B3), (B6) and (10) in (B7), it is possible to 
obtain the following result: 
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and the optimal value of H is found by minimizing (B8). In 
accordance with Zhang [6], this optimum is: 

3
2116

3
bbtH p

π=  (B9) 

All the mathematical formulae given here above are valid as 
long as the fold is not completely closed. However, for values 
of a(δ) increasing 2H, we make the hypothesis that the folding 
process previously described is simply repeated as many time 
as necessary. Consequently, the individual crushing force is 
still obtained by (10), but a(δ) has to be replaced by a(δ) – 
2jH, where j is the number of folds already completely closed. 
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Annex C 

FOLDING PROCESS FOR SUPER-ELEMENTS 3 AND 4 
 

 
The aim of this appendix is to derive the optimal value of 

the folding height H characterizing a SE4 coupled to a SE3. To 
do so, it is necessary to minimize the mean forces (calculated 
over one fold) provided by both SE3 and SE4. The first one is 
directly given by (11) and, for convenience, is simplified in the 
following manner: 

HtKP pi 0σ=  (C1) 

where K is an appropriate function of k. The second one may 
be found by considering (B8), where b1 has to be replaced by b 
- kH and all the contributions of b2 are removed. Doing so, we 
obtain: 
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Adding (C1) and (C2) leads to the mean crushing force of a 
SE4 coupled with a SE3: 
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which has to be minimized with respect to H. Unfortunately, it 
is not possible the find an analytical solution satisfying exactly 
this requirement. Under the assumptions that H 2 and that kH is 
negligible in comparison with b, the minimization may only be 
conducted on the two first terms of (C3). Doing so, the 
following optimal value of H is found: 
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which may be used in equations (11) and (12). 
 
 
   
 

 


