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he  histamine  H3-receptor  inverse  agonist  Pitolisant  improves  fear  memory  in
ice
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 i  g  h  l  i g  h  t  s

Pitolisant  is  a novel  H3 receptor  inverse  agonist  used  to treat  narcoleptic  patients.
We  show  that  Pitolisant  improved  consolidation  in  the  fear  conditioning  task  in  mice.
Dizocilpine  impaired  consolidation  and  reconsolidation  in  this  task.
Pitolisant  completely  reversed  the  memory  deficits  induced  by  dizocilpine.
Pitolisant  may  be useful  to treat  cognitive  deficits  in  humans.
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a  b  s  t  r  a  c  t

Numerous  studies  have  demonstrated  that  brain  histamine  plays  a crucial  role  in learning  and  memory
and  histamine  H3 receptor  inverse  agonists  (H3R inverse  agonists)  have  been  proposed  to treat  cognitive
disorders.  Pitolisant  (BF2.649,  1-{3-[3-(4-chlorophenyl)propoxy]propyl}piperidine, hydrochloride)  was
the  first  H3R inverse  agonist  that  has  been  tested  in  human  trials  and  is  well  tolerated.  The  present  study
investigated  whether  Pitolisant  (0.625–20  mg/kg,  i.p.)  improves  consolidation  and  reconsolidation  pro-
cesses  in  the  fear  conditioning  task  in female  C57BL/6J  mice.  We  also  tested  whether  Pitolisant  reverses
memory  deficits  induced  by the  non-competitive  N-methyl-d-aspartate  (NMDA)  antagonist  dizocilpine
(MK-801).  Our  results  indicate  that post-training  systemic  injections  of  Pitolisant  facilitated  consolidation
of  contextual  fear  memory  and  reversed  amnesia  induced  by  an  i.p.  injection  of  0.12  mg/kg  dizocilpine.
emory
onsolidation
econsolidation
ear conditioning
ice

In addition,  none  of  the  doses  of  Pitolisant  we  have  tested  after  reactivation  (reexposure  to  the  context  in
which  training  took  place  48 h earlier)  affected  reconsolidation,  whereas  dizocilpine  disrupted  it. How-
ever,  Pitolisant  was  able  to reverse  the  deficit  in  reconsolidation  induced  by  0.12  mg/kg  dizocilpine.  The
present  results  are  the  first  demonstration  that  Pitolisant  is effective  in improving  consolidation  pro-
cesses  in  the  fear  condition  task  and  add  further  evidence  to its  potential  for treating  cognitive  disorders.
. Introduction

Pitolisant (BF2.649 or tiprolisant) is a promising new medica-
ion that enhances wakefulness and reduces excessive daytime
leep in patients suffering from narcolepsy [1,2]. Animal studies
ave demonstrated that the wake promoting effects of Pitolisant
esult from an increased activity of histaminergic neurons in the
rain [1,3]. Histamine is an important biogenic amine involved in

any cognitive functions such as vigilance, learning and memory.

nterestingly, several drugs that activate histaminergic transmis-
ion have cognitive enhancing properties and can potentially
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reverse learning disorders associated with Alzheimer’s disease [4].
Pitolisant is a selective inverse agonist for the histamine H3 recep-
tor and enhances histaminergic activity in the brain of mice [3].
However, its effects on memory processes have poorly been inves-
tigated and its therapeutic potential to alleviate cognitive problems
in humans is unknown.

Neurons that synthetize histamine are exclusively located in
the tuberomamillary nucleus (TMN), a region located in the pos-
terior part of the hypothalamus. Histaminergic neurons send
their fibers to almost all brain areas including the amygdala and
the nucleus basalis magnocellularis (NBM), two  cortical areas
involved in memory processes essential to consolidate adverse

events [5,6]. Histamine is synthesized from l-histidine by the
enzyme histidine decarboxylase (HDC) and its effects are medi-
ated by four histamine receptors in the brain: the histamine H1,
H2, H3 and H4 receptors (H1R, H2R, H3R and H4R). H1R and H2R

dx.doi.org/10.1016/j.bbr.2012.12.063
http://www.sciencedirect.com/science/journal/01664328
http://www.elsevier.com/locate/bbr
mailto:christian.brabant@ulg.ac.be
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re mainly postsynaptic excitatory receptors whereas H3R and
4R are inhibitory receptors coupled to Gi/o proteins [7,8]. H3R
ere originally described as presynaptic autoreceptors located on
istaminergic axons and their activation inhibits the release
nd synthesis of histamine [9].  Nevertheless, later studies have
ound that most H3R are inhibitory heteroreceptors located
n non-histaminergic axons. Their activation can inhibit the
ynthesis and release of various neurotransmitters such as gamma-
minobutyric acid (GABA), acetylcholine, glutamate, dopamine and
orepinephrine [4,7,10].

Pharmacological manipulations that increase brain histaminer-
ic activity generally facilitate memory consolidation in various
earning tasks (see [11] for a review). Consolidation refers to the
rocess that stabilizes a memory trace after acquisition of a new

nformation. Immediately after the acquisition phase, the memory
race is fragile and labile and is gradually converted into a last-
ng trace that is stable over time [12]. During the consolidation
hase, memories are susceptible to disruption when amnesic treat-
ents are applied shortly after learning such as electroconvulsive

hocks [13]. Glutamate transmission and in particular N-methyl-
-aspartate (NMDA) receptors play a critical role in consolidation
f fear memories since the blockade of NMDA receptors impairs
emory consolidation [14] whereas NMDA receptor activation

acilitates consolidation [15]. In addition, other neurotransmitter
ystems like histamine can facilitate the consolidation of memories
16]. The systemic injection of H3R inverse agonists improve con-
olidation in the inhibitory avoidance test [17], the social memory
est [18,19],  the two-trail place recognition task [20] and the fear
onditioning task [14].

Memory formation is a dynamic process. When a memory is
riefly reactivated, it can return in a labile state and requires
hen a process of stabilization to be able to return in long term

emory again and not be forgotten [21,22]. During this memory
rocess called reconsolidation, the duration of exposure to the
riginal learning context is an important determinant of subse-
uent memory processing. A short exposure to the context results

n reconsolidation whereas a longer exposure leads to extinction
23]. Nader et al. [24] showed that memory reconsolidation can
e disrupted in rats when a protein-synthesis inhibitor is injected

n the amygdala after a brief reactivation of the fear memory.
s for consolidation, NMDA receptors play an important function

n reconsolidation processes [25]. The blockade of NMDA recep-
ors with dizocilpine impairs memory reconsolidation in the fear
onditioning task [14,26].  Inversely, activation of these receptors
ith the partial agonist d-cycloserine facilitates reconsolidation

n the same task [26]. Other neurotransmitter systems such as �-
drenergic signaling could be implicated in reconsolidation. It has
een shown that the �-adrenergic receptor antagonist propranolol

njected systemically disrupted reconsolidation of appetitive mem-
ries [27]. Additionally, propranolol and the �-adrenergic receptor
gonist isoproterenol microinjected into the amygdala respectively
mpaired and enhanced reconsolidation in the fear conditioning
ask [28]. The role of histamine transmission is practically unknown
n reconsolidation processes. In our laboratory, we have previ-
usly demonstrated that thioperamide can block the deficit in
econsolidation produced by dizocilpine in the fear conditioning
est [14].

Only one study has investigated whether Pitolisant has cogni-
ive enhancing properties. Ligneau et al. [3] have shown that the
ntraperitoneal (i.p.) administration of Pitolisant improves work-
ng memory measured with the two-trial object recognition task in

ice. The purpose of the present study is to further investigate the

ffects of Pitolisant on memory processes using the fear condition-
ng test. A first set of experiments examined whether i.p. injections
f Pitolisant can improve consolidation of a contextual fear mem-
ry in mice. Therefore, different doses of Pitolisant were injected
esearch 243 (2013) 199– 204

immediately after the training session alone or in combination with
dizocilpine. A second set of experiments tested the effects of various
doses of Pitolisant on reconsolidation. Two  days after acquisition of
the fear memory, mice were briefly reexposed to the learning con-
text (reactivation session) and were then injected with Pitolisant
alone or in combination with dizocilpine.

2. Materials and methods

2.1. Animals

For the whole study, 252 naïve female C57BL/6J mice, born in the central ani-
mal  farm of the University of Liège, were employed. One week before the start
of  each experiment, mice were individually housed in transparent polycarbonate
cages (15 cm L × 33 cm W × 13 cm H). Water and food (standard pellets, Carfil Qual-
ity  BVDA, Oud-Turnhout, Belgium) were available ad libitum during the whole study.
At  the beginning of the experiment, mice were 10–12 weeks old and weighed
18–22 g. The animal room was  maintained on a 12 h light–dark cycle (lights on
at  8.00 am)  with an ambient temperature of 20–22 ◦C. All procedures were car-
ried out during the light phase between 9:00 am and 2:00 pm.  All experimental
protocols have been approved by the ethic committee on animal experimenta-
tion of the University of Liège in accordance with the recommendations of the
European Community Council for the Ethical Treatment of Animals (EEC Council
Directive No. 86/609) and the Guidelines approved by the European Commission
(No. 2007/526/CE).

2.2. Drugs

Dizocilpine maleate (MK-801) was  purchased from Sigma–Aldrich (Bornem,
Belgium) and Pitolisant maleate (BF2.649) from Tocris Bioscience (Bristol, United
Kingdom). Substances were prepared daily and dissolved in sterile 0.9% saline in
order to deliver final doses of 0.12 mg/kg dizocilpine and 0.625, 1.25, 2.5, 5, 10 or
20  mg/kg Pitolisant. All solutions were administered through the intraperitoneal
(i.p.) route in a volume of 10 ml/kg (0.01 ml/g body weight). A control treatment
consisted of an equal volume of saline solution.

2.3. Behavioral apparatus

An automated rodent conditioning system (MED Associates Inc., St. Albans, VT,
USA, ENV-307W-TH) was used to study contextual fear conditioning of each mice
(for  a detailed description see Charlier and Tirelli [14]). Conditioned freezing was
measured in two identical conditioning chambers (24 cm L × 20 cm W × 21.5 cm H)
enclosed in sound-attenuating cubicles with ventilation fans (emitting a background
noise of 69 dB). The walls and the ceiling were constructed of clear Plexiglas. The
front was  a horizontally hinged door. The floor of each chamber consisted of 23 stain-
less  steel rods (3 mm in diameter, 8 mm apart). The chambers were illuminated by
a  single house light, mounted in the top centre of the right wall, and were cleaned
with 10% ethanol after utilization. A software program controlled a shock scrambler
that delivered the footshock (US) through the floor rods. Stimuli presentation and
data recording from both boxes were controlled by a MED-PC program via a spe-
cific interface. Freezing was defined as a total absence of movements (except those
related to respiratory movements) and was measured in terms of percent time spent
in that posture during the experimental session.

2.4. Experimental procedure

The conditioning procedure was  similar to that of previous studies [14,29].
Briefly, before the start of each experiment, mice were habituated to handling
and  injected with a saline solution. Prior to each experimental session, mice were
weighed in the colony room and returned into their individual home cage. Then,
mice each left in their individual home cage were placed on a cart and conducted
to  the testing room. Mice were tested less than 3 min later. Immediately thereafter,
mice were injected with the appropriate treatment, replaced in their home cage and
returned to the colony room.

The contextual fear conditioning comprised two basic phases: the training
session (acquisition) and the memory retention test session (recall). Training
consisted in placing the mouse in the test chamber (whose context provided the
CS) where it was left undisturbed for 2 min (pre-shock period). After this period,
the mouse received two moderate footshocks (28 s apart, 2 s duration, 0.25 mA
intensity; US). Then, it remained in the chamber for an additional 30 s (post-shock
period). Freezing posture was recorded during both pre- and post-shock periods.
On  the retention test session, which took place 72 h after the training session, the
mouse was  replaced in the training chamber for a 5 min  test period during which

conditioned freezing was recorded. In the experiments studying reconsolidation, a
reactivation session was performed 48 h after the training session and 24 h prior to
the retention session. This session consisted in exposing the mouse to the training
chamber for a short period of 2 min  during which freezing was recorded without
any footshock being delivered.
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Fig. 1. Effects of the histamine H3R inverse agonist Pitolisant on consolidation of a
contextually-conditioned fear memory in C57BL/6J mice. Mice were trained under
two  foot-shocks that induced reliable freezing behavior. The drug (at one of the
four doses) or saline (n = 12) was  injected i.p. immediately after completion of train-
ing.  The retention test took place 72 h later. Memory performance on the retention
test was  expressed in terms of percent time spent freezing. Columns represent
means ± standard error of the mean (vertical bars). (a) Value significantly differ-
ent  from that of the saline group at p < 0.015 (2.5 mg/kg) or p < 0.048 (5 mg/kg),
(b) Value significantly different from that of the 0.625 mg/kg Pitolisant group at
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Fig. 2. Effects of Pitolisant on dizocilpine-induced deficit in consolidation of a
contextually-conditioned fear memory in C57BL/6J mice. Mice were trained under
two  foot-shocks that induced reliable freezing behavior. Dizocilpine (0.12 mg/kg)
and Pitolisant (at one of the three possible doses) were injected i.p. a few seconds
apart and immediately after training. The control groups received saline twice or
dizocilpine plus saline (n = 12). The retention test was performed 72 h later. Mem-
ory  performance was expressed in terms of percent time spent freezing. Columns
represent means ± standard error of the mean (vertical bars). (a) Value significantly
different from that of the saline-plus-saline group (all comparisons at p < 0.001),
(b)  value significantly different from that of the dizocilpine-plus-saline group (all
comparisons at p < 0.001), (c) value significantly different from that of the group
treated with dizocilpine (0.12 mg/kg) and Pitolisant (1.25 mg/kg) (all comparisons
 < 0.01 (2.5 mg/kg) or p < 0.05 (5 mg/kg), as yielded by post-ANOVA Newman–Keuls
ests.

The psychopharmacological effects of Pitolisant were revealed on the reten-
ion test session, the drugs being injected immediately after the training session
n  the consolidation experiments (Experiments 1 and 2) or after the reactivation
ession in the reconsolidation experiments (Experiments 3 and 4). In Experiment 1,
ve  independent groups of 12 mice were each injected with saline, 0.625, 1.25, 2.5
r 5 mg/kg Pitolisant. In Experiment 2, where the potential effects of Pitolisant on
izocilpine-induced amnesia were evaluated, four groups of 12 mice were injected
ith 0.12 mg/kg dizocilpine a few seconds before receiving saline, 1.25, 2.5 or

 mg/kg Pitolisant, a fifth group receiving saline twice. Experiment 3 comprised
ix  groups of 10 mice that received saline, 1.25, 2.5, 5, 10 or 20 mg/kg Pitolisant.
inally, Experiment 4, which evaluated the effects of Pitolisant on dizocilpine-
nduced deficit in reconsolidation, involved five groups of 12 mice that were injected

ith 0.12 mg/kg dizocilpine prior to receiving saline, 2.5, 5, 10 or 20 mg/kg Pitolisant,
 fifth group being injected with saline twice.

.5.  Data analysis

The reliability of the effects was evaluated using fixed model one-way analy-
es  of variance (ANOVA), in which the mean scores of conditioned freezing (percent
ime spent in freezing posture) on the retention test were considered as the depend-
nt variable and the experimental groups as the independent variable. In case
f  significant effect, relevant between mean differences were assessed using the
ewman–Keuls post hoc test. The data and analyses of freezing scores on the training
nd reactivation sessions were not presented in Section 3, the corresponding levels
eing graphically and statistically undistinguishable across groups. Significance was
lways set at p < 0.05.

. Results

.1. Effect of Pitolisant on consolidation

Fig. 1 shows the effects of Pitolisant on consolidation of a contex-
ual fear conditioning (Experiment 1). The freezing values derived
rom the groups having received the two highest doses of this H3R
nverse agonist (2.5 or 5 mg/kg) were significantly greater than that
f the saline group, from which the effect induced by the two lower

oses of Pitolisant did not statistically differ. This profile of effects
as supported by the one-way ANOVA (F(4,55) = 4.71, p < 0.002) and

ubsequent Newman–Keuls post hoc tests.
at  p < 0.001), as yielded by post-ANOVA Newman–Keuls tests.

3.2. Effect of Pitolisant on dizocilpine-induced deficit in
consolidation

Fig. 2 presents the interactive effects of dizocilpine and Pitolisant
administered directly after the training session on conditioned
freezing consolidation (Experiment 2). The values derived from the
two groups that received 2.5 or 5 mg/kg Pitolisant after dizocilpine
were significantly greater than that of the group treated with
dizocilpine plus saline, reaching the levels of the control group
that received saline twice. This pattern of effects was revealed by
the one-way ANOVA (F(4,55) = 12.02, p < 0.000) and Newman–Keuls
tests (2.5 mg/kg at p < 0.001 or 5 mg/kg at p < 0.001). Further-
more, the decrease in memory performance in mice treated with
dizocilpine plus saline was  significant at p < 0.001. This effect
was also observed in the group injected with dizocilpine plus
1.25 mg/kg Pitolisant at p < 0.001, indicating that this low dose was
unable to reverse the amnesia induced by the antagonist of the
NMDR.

3.3. Effect of Pitolisant on reconsolidation

Fig. 3 represents conditioned freezing on the retention test
in mice having received one of the five doses of Pitolisant
(1.25–20 mg/kg) immediately after the reactivation session (Exper-
iment 3). There was  no significant change in memory performance
in any of the five groups, which exhibited similar values. This

absence of efficacy is corroborated by the one-way ANOVA
(F(5,54) = 0.34, p > 0.88).
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Fig. 3. Effects of Pitolisant on reconsolidation of a contextually-conditioned fear
memory in C57BL/6J mice. Mice were trained under two  foot-shocks that induce reli-
able freezing behavior. Forty-eight hours later, Pitolisant (at one of the five possible
doses) or saline were given i.p. immediately after a reactivation session (n = 10). The
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Fig. 4. Effects of Pitolisant on dizocilpine-induced deficit in reconsolidation of
a  contextually-conditioned fear memory in C57BL/6J mice. Mice were trained
under two  foot-shocks that induced reliable freezing behavior. Forty-eight hours
later, mice received i.p. injections of dizocilpine (0.12 mg/kg) and Pitolisant (at
one of the four possible doses) a few seconds apart and immediately after a
reactivation session. The control groups received saline twice or dizocilpine plus
saline (n = 12). The retention test was  performed 24 h later and memory perfor-
mance was expressed in terms of percent time spent freezing. Columns represent
means ± standard errors of the mean (vertical bars). (a) Value significantly differ-
ent  from that of the saline-plus-saline group (all comparisons at p < 0.05), (b) value
significantly different from that of the dizocilpine-plus-saline group (all compar-
isons at p < 0.05), (c) value significantly different from that of the group treated
with  dizocilpine (0.12 mg/kg) and Pitolisant (2.5 mg/kg) at p < 0.001, (d) value sig-
etention test was  conducted 24 h later and memory performance was  expressed in
erms of percent time spent freezing. Columns represent means ± standard error of
he  mean (vertical bars). There were no statistical significant drug effects.

.4. Effect of Pitolisant on dizocilpine-induced deficit in
econsolidation

Fig. 4 depicts the interactive effects of dizocilpine and Pitolisant
dministered after the reactivation session on conditioned freez-
ng measured on the retention test (Experiment 4). The value
erived from the group treated with the highest dose of Pitolisant
20 mg/kg) right after dizocilpine (0.12 mg/kg) was significantly
reater than that of all other groups treated this NMDR antagonist
nd reached the levels of the control group that had received saline
wice. This profile of effects was supported by the one-way ANOVA
F(5,66) = 10.75, p < 0.001) and Newman–Keuls tests (all comparisons
t p < 0.001). Interestingly, 10 mg/kg Pitolisant induced an interme-
iate effect. Specifically, the values of this group was significantly

ower than that of the group treated with saline twice (p < 0.05)
hile being higher than that of the group injected with dizocilpine
lus saline (p < 0.05). Note that the lowest doses of Pitolisant (2.5
nd 5 mg/kg) failed to reverse the memory reconsolidation deficit
nduced by dizocilpine (respectively p > 0.26 and p > 0.31).

. Discussion

The current study replicates our previous findings showing
hat the blockade of H3R improves consolidation processes in
he fear conditioning task [14]. In agreement with what we had
bserved with thioperamide, the i.p. administration of Pitolisant
fter the conditioning trial facilitated consolidation of contextual
ear memory. In addition, post-training injection of the NMDA
ntagonist dizocilpine impaired consolidation, an effect that was
ompletely reversed by the administration of Pitolisant. In other
xperiments, Pitolisant, dizocilpine or the combination of these
rugs were injected after the reactivation session to evaluate
hether Pitolisant affects reconsolidation mechanisms. Pitolisant
id not alter reconsolidation when injected alone but it was able
o completely prevent the deficit in reconsolidation induced by

izocilpine.

Ligneau et al. [3] demonstrated that Pitolisant improves work-
ng memory in the two-trial object recognition task in mice. The
resent study shows that i.p. injections of Pitolisant also enhance
nificantly different from that of the group treated with dizocilpine (0.12 mg/kg) and
Pitolisant (5 mg/kg) at p < 0.001, (e) value significantly different from that of the
group treated with dizocilpine (0.12 mg/kg) and Pitolisant (10 mg/kg) at p < 0.05, as
yielded by post-ANOVA Newman–Keuls tests.

consolidation in the contextual fear conditioning paradigm. These
results are in agreement with previous experiments demonstrat-
ing that the systemic injection of H3R inverse agonists facilitates
memory consolidation in the passive avoidance task [17], the social
memory test [18,19] and the two-trail place recognition task [20].
Together, these data indicate that H3R inverse agonists have ben-
eficial effects on different aspects of memory but the neuronal
mechanisms underlying these effects are still unclear. Previous
studies in rats have demonstrated that the basolateral amygdala
(BLA) and the hippocampus are involved in the consolidation of
adverse events such as fear memory [5,30,31]. However, these brain
regions are unlikely to be the sites through which i.p. injections
of thioperamide and Pitolisant improve consolidation processes
in the fear conditioning task (Charlier and Tirelli [14]; present
results). Thioperamide microinjected in the BLA impairs consolida-
tion of fear memory in rats [32]. Procognitive effects are observed
in the fear conditioning paradigm when H3R of the BLA or the
hippocampus are activated rather than blocked [32–34],  an obser-
vation opposite to the results obtained after systemic injections
of thioperamide or Pitolisant (Charlier and Tirelli [14]; present
results).

Many studies have shown that the NBM plays a central role
in memory consolidation of information acquired in the fear con-
ditioning task [6,35].  Benetti et al. [36] found that thioperamide

microinjected into the NBM improves consolidation of contextual
fear memory in rats. These results are in agreement with our exper-
iments showing that systemic administration of thioperamide or
Pitolisant facilitates consolidation in C57BL/6J mice (Charlier and
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irelli [14]; present results). Evidence suggests that H3R inverse
gonists improve memory consolidation in the fear conditioning
aradigm through the activation of H2R in the NBM [36]. The

ocal administration of H3R inverse agonists such as thioperamide
nto the NBM increases histamine release in this brain region
hrough the blockade of H3 autoreceptors located on histaminer-
ic fibers [37]. Moreover, the procognitive effects of thioperamide
n consolidation of fear memory were prevented by the intra-NBM
dministration of the H2R antagonist zolantidine [36]. Therefore,
enetti et al. [36] have proposed that thioperamide improves
onsolidation of contextual fear memory because this compound
ncreases histamine release in the NBM through the blockade of

3 autoreceptors. According to their hypothesis, increased lev-
ls of endogenous histamine activate postsynaptic H2R in the
BM. The results of the present study show that Pitolisant has

he same procognitive effects on consolidation processes in the
ear conditioning task than thioperamide [14]. Thus, the neuronal

echanisms proposed by Benetti et al. [36] to explain the action of
hioperamide on contextual fear memory might also be valid for the
esults with have obtained with Pitolisant. In the future, it might be
nteresting to investigate whether the procognitive effects of sys-
emic injections of thioperamide and Pitolisant on consolidation
an be reversed by the intracerebral injection of an H2R antagonist
n the NBM.

The current study shows that Pitolisant improves consolida-
ion, but not reconsolidation, when injected alone in the fear
onditioning task, an observation consistent with our previous
tudy conducted with thioperamide [14]. Other studies have found
hat certain experimental manipulations exert differential effects
n consolidation and reconsolidation processes in the fear con-
itioning test and suggest that these mnemonic processes are
ualitatively and quantitatively distinct [38]. For example, thiop-
ramide administered locally in the BLA impairs consolidation,
ut not reconsolidation, of contextual fear memory in rats [32,39].
oreover, Lee et al. [31] have reported a double dissociation in the
olecular mechanisms that underlie consolidation and reconsol-

dation in the contextual fear conditioning paradigm by infusing
ntisense oligodeoxynucleotides into the hippocampus of rats.
hey have demonstrated that brain-derived neurotrophic factor
BDNF), but not the transcription factor Zif268, is required for
onsolidation. Conversely, Zif268, but not BDNF, is recruited for
econsolidation. These results suggest that we have reported differ-
ntial effects of H3R inverse agonists (thioperamide and Pitolisant)
n consolidation and reconsolidation in the fear conditioning task
robably because distinct neuronal mechanisms underlie these
nemonic processes. Consequently, our data indicate that his-

aminergic pathways essentially contribute to neuronal circuits
nvolved in consolidation of aversive events.

In agreement with our previous study conducted with thiop-
ramide [14], Pitolisant blocked the deficits in consolidation and
econsolidation induced by dizocilpine (Experiments 2 and 4). The
euronal mechanisms that mediate the ability of thioperamide
nd Pitolisant to improve memory consolidation when injected
lone are not necessarily the same than those involved in their
bility to prevent dizocilpine-induced amnesia. In addition to the
echanism proposed above to explain how Pitolisant ameliorates

onsolidation per se, other neural mechanisms might be involved
n its actions on amnesia produced by dizocilpine. Histamine can
otentiate NMDA receptors by interacting with an allosteric site

ocated on these receptors [40]. In cultured hippocampal cells,
istamine enhanced NMDA receptor-mediated transmission [41]
nd this histamine–NMDA interaction could mediate the ability

f histamine to reverse dizocilpine-induced amnesia [42]. Since
MDA receptors play an important function in both consolida-

ion and reconsolidation processes, it is possible that thioperamide
nd Pitolisant reversed dizocilpine-induced amnesia in our studies

[

[
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through direct activation of NMDA receptors by histamine released
by these H3R inverse agonists. It is important to note that elevated
levels of histamine in the brain and H3R inverse agonists can con-
fer neuroprotection in various animal models of neurotoxicity (see
Bhowmik et al. [43] for a review). Thus, the ability of Pitolisant to
attenuate dizocilpine-induced amnesia in our experiments could
also result from a neuroprotective action.

In summary, the present study demonstrates that Pitolisant
improves consolidation in the fear conditioning task in mice.
Additionally, this histaminergic drug reverses the deficits in con-
solidation and reconsolidation induced by dizocilpine. However,
reconsolidation processes were not affected when Pitolisant was
injected alone immediately after the reactivation session. As sug-
gested by Tiligada et al. [4],  our results indicate that Pitolisant
could be useful for the treatment of cognitive deficits associated
with Alzheimer’s disease. Together, the present study highlights the
need to further investigate the procognitive effects of Pitolisant in
animal models and to test whether this compound could be useful
in the treatment of cognitive deficits in human clinical trials.
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