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Discontinuous Galerkin Methods

• Main idea
– Finite-element discretization
– Same discontinuous polynomial approximations for the

• Test functions ϕh and 
• Trial functions δϕ

– Definition of operators on the interface trace:
• Jump operator:
• Mean operator:

– Continuity is weakly enforced, such that the method
• Is consistent
• Is stable
• Has the optimal convergence rate
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Discontinuous Galerkin Methods

• Discontinuous Galerkin methods vs Continuous
– More expensive (more degrees of freedom)
– More difficult to implement
– …

• So why discontinuous Galerkin methods?
– Weak enforcement of C1 continuity for high-order equations

• Strain-gradient effect
• Shells with complex material behaviors
• Toward high-order computational homogenization 

– Exploitation of the discontinuous mesh to simulate dynamic 
fracture [Seagraves, Jérusalem, Noels, Radovitzky, col. ULg-MIT]:

• Correct wave propagation before fracture
• Easy to parallelize & scalable
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Discontinuous Galerkin Methods

• Continuous field / discontinuous derivative
– No new nodes
– Weak enforcement of

C1 continuity
– Displacement formulations 

of high-order differential 
equations

– Usual shape functions in 3D (no new requirement)
– Applications to

• Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells 

& Dung, CMAME 2007]

• Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 
2009]

• Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; 
Bala-Chandran et al. 2008]
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Topics

• Key principles of DG methods
– Illustration on volume FE

• Discontinuous Mesh & Dynamic Fracture
• Kirchhoff-Love shells 

– Kinematics
– Non-Linear shells
– Numerical examples

• Strain gradient elasticity
• Conclusions & Perspectives
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Key principles of DG methods

• Application to non-linear mechanics 
– Formulation in terms of the first Piola stress tensor P

&

– New weak formulation obtained by integration by parts on
each element Ω 

e



Department of Aerospace and Mechanical Engineering

Key principles of DG methods

• Interface term rewritten as the sum of 3 terms
– Introduction of the numerical flux h

• Has to be consistent:

• One possible choice:
– Weak enforcement of the compatibility

– Stabilization controlled by parameter β, for all mesh sizes hs

– Those terms can also be explicitly derived from a variational 
formulation (Hu-Washizu-de Veubeke functional)

Noels & Radovitzky, IJNME 2006 & JAM 2006



Department of Aerospace and Mechanical Engineering

Key principles of DG methods

• Numerical applications
– Properties for a polynomial approximation of order k

• Consistent, stable for β >Ck, convergence in the e-norm in k
• Explicit time integration with conditional stability
• High scalability

– Examples
Taylor’s impact Wave propagation

Time evolution of the free face velocity
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Key principles of DG methods

• Numerical applications
– Application to oligo-crystal plasticity

Aluminum oligo crystal sample

Dogbone tensile test sample

Grain profile from EBSD measurement

Mesh setup according to 
orientation mapping

Oligo crystal sample preparation: MIT + Alcoa.

Sample cutting, polishing & Electron Backscatter Diffraction (EBSD): Caltech 
+ MIT (Z. Zhao).

Tensile test & Digital image correlation (DIC): Rutgers (S. Kuchnicki, A. 
Cuitino) + MIT.

Theoretical polycrystal model: Rutgers + MIT.
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Key principles of DG methods

• Numerical applications
– Application to oligo-crystal plasticity

Surface strain mapping from DIC
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Discontinuous Mesh & Dynamic Fracture

• Dynamic fracture
– Fracture: a gradual process of separation which occurs in 

small regions of material adjacent to the tip of a forming 
crack: the cohesive zone [Dugdale 1960, Barrenblatt 1962, …]

– Separation is resisted to by a cohesive traction
– 2-parameter cohesive law

• Peak cohesive traction σmax (spall strength)
• Fracture energy Gc

• Automatically accounts for time scale [Camacho & Ortiz, 1996]

• Intrinsic law vs Extrinsic law

Failure criterion external 
to the cohesive law

Failure criterion 
incorporated within 
the cohesive law
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Discontinuous Mesh & Dynamic Fracture

• Finite element discretization & interface elements
– The cohesive law is integrated on an interface element 

inserted between two adjacent tetrahedra [Ortiz & Pandolfi 1999]

– Potential structure of the cohesive law:
[Ortiz & Pandolfi 1999]

• Effective opening in terms of βc the
ratio between the shear and normal 
critical tractions:

• Definition of a potential:

• Interface traction:
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Discontinuous Mesh & Dynamic Fracture

• Two methods
– Intrinsic Law

• Cohesive elements inserted from the beginning
• Drawbacks:

– Efficient if a priori knowledge of the crack path 
– Mesh dependency [Xu & Needelman, 1994]
– Initial slope modifies the effective elastic modulus
– This slope should tend to infinity [Klein et al. 2001]:

» Alteration of a wave propagation
» Critical time step is reduced

– Extrinsic Law
• Cohesive elements inserted on the fly when 

failure criterion is verified [Ortiz & Pandolfi 1999]

• Drawback
– Complex implementation in 3D (parallelization)

• New DG/extrinsic method [Seagraves, Jerusalem, Radovitzky, Noels]
– Interface elements inserted from the beginning
– Interface law corresponds initially to the DG interface forces
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Discontinuous Mesh & Dynamic Fracture

• New DG/extrinsic method:
[Seagraves, Jerusalem, Radovitzky, Noels, col. MIT & ULg]

– Numerical application: the spall test
• Two opposite waves interact at the center of the specimen 
• The interaction leads to stresses higher than the spall stress
• The specimen breaks exactly at its middle
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Discontinuous Galerkin Methods

• Continuous field / discontinuous derivative
– No new nodes
– Weak enforcement of

C1 continuity
– Displacement formulations 

of high-order differential 
equations

– Usual shape functions in 3D (no new requirement)
– Applications to

• Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells 

& Dung, CMAME 2007]

• Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 
2009]

• Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; 
Bala-Chandran et al. 2008]
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Kirchhoff-Love Shells

• Description of the thin body

• Deformation mapping

• Shearing is neglected

& the gradient of thickness stretch   neglected
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Mapping of the 
mid-surface

Mapping of the normal 
to the mid-surfaceThickness stretch

Higher order equation
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Kirchhoff-Love Shells

• Resultant equilibrium equations:
– Linear momentum

– Angular momentum

– In terms of resultant stresses:       

of resultant applied tension        and torque

and of the mid-surface Jacobian
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Kirchhoff-Love Shells

• Non-linear material behavior
– Through the thickness integration by Simpson’s rule
– At each Simpson point

• Internal energy W(C=FTF) with 

• Iteration on the thickness ratio in order to reach 
the plane stress assumption σ33=0

– Simpson’s rule leads to the 

resultant stresses:
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Kirchhoff-Love Shells

• Non-linear discontinuous Galerkin formulation
– New weak form obtained from the momentum equations
– Integration by parts on each element A e

– Across 2 elements δ t is discontinuous
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Kirchhoff-Love Shells

• Interface terms rewritten as the sum of 3 terms
– Introduction of the numerical flux h

• Has to be consistent:

• One possible choice:

– Weak enforcement of the compatibility

– Stabilization controlled by parameter β, for all mesh sizes hs

Linearization leads to the 
material tangent modulii Hm
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Kirchhoff-Love Shells

• New weak formulation

• Implementation
– Shell elements

• Membrane and bending responses 
• 2x2 (4x4) Gauss points for bi-quadratic 

(bi-cubic) quadrangles
– Interface elements

• 3 contributions
• 2 (4) Gauss points for quadratic (cubic) meshes
• Contributions of neighboring shells evaluated at these points

Se-

Se+

ν-
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Kirchhoff-Love Shells

• Pinched open hemisphere 
– Properties:

• 18-degree hole
• Thickness 0.04 m; Radius 10 m
• Young 68.25 MPa; Poisson 0.3

– Comparison of the DG methods 
• Quadratic, cubic & distorted el.

with literature 
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Kirchhoff-Love Shells

• Pinched open hemisphere 
Influence of the stabilization Influence of the mesh size

parameter

– Stability if β > 10
– Order of convergence in the L2-norm in k+1
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Kirchhoff-Love Shells

• Plate ring 
– Properties:

• Radii 6 -10 m
• Thickness 0.03 m
• Young 12 GPa; Poisson 0

– Comparison of DG methods 
• Quadratic elements

with literature 
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Kirchhoff-Love Shells

• Clamped cylinder        
– Properties:

• Radius 1.016 m; Length 
3.048 m; Thickness 0.03 m

• Young 20.685 MPa; Poisson 
0.3

– Comparison of DG methods 
• Quadratic & cubic elements

with literature 
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Strain-gradient elasticity

• Strain-gradient effect
– Length scales in modern technology are now of the order of 

the micrometer or nanometer
– At these scales, material laws depend on the strain but also 

on the strain-gradient
– Example: 

• Bi-material tensile test:

• E1/E2 = 4
• Characteristic length l
• Differential equation:
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Strain-gradient elasticity

• Strain-gradient theory of linear elasticity
– At a material point stress is a function of the strain and of the 

gradient of strain [Toupin 1962, Mindlin 1964]:
• Strain energy                     depends on the strain and its gradient

• Low and high order stresses introduced as the work conjugate of 

low and high order strains: and

– Governing PDE obtained from the virtual work statement:

&

&
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Strain-gradient elasticity

• Discontinuous Galerkin formulation for strain-gradient theory
– Test functions uh and trial functions δu are C0

– New weak formulation obtained by repeated integrations by 
parts on each element Ω 

e :

Bala Chandran, Noels & Radovitzky
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Strain-gradient elasticity

• Interface term rewritten as the sum of 3 terms
– Introduction of the numerical flux h

• Has to be consistent:

• One possible choice:

– Weak enforcement of the compatibility

– Stabilization controlled by parameter β, for all mesh sizes hs

Bala Chandran, Noels & Radovitzky
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• Numerical applications
– Properties for polynomial approximation of order k

• Consistent, stable for β >Ck

• Convergence in the e-norm in k-1, but in k+1 in the L2-norm
– Examples

Bi-material tensile test Stress concentration

Strain-gradient elasticity
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Conclusions & Perspectives

• Development of a discontinuous Galerkin formulation
– A formulation has been proposed for non-linear dynamics
– Application to high-order differential equations

• Strain gradient elasticity
• Shells

– Application to dynamic fracture 
• Works in progress 

– Fracture of thin structures
– Fracture of composite structures (RVE)




