University of Liège Department of Aerospace and Mechanical Engineering

Discontinuous Galerkin methods for solid mechanics: Application to fracture, shells & strain gradient elasticity

Ludovic Noels

Computational & Multiscale Mechanics of Materials, ULg Chemin des Chevreuils 1, B4000 Liège, Belgium <u>L.Noels@ulg.ac.be</u>

Universiteit Gent - October 2009

• Main idea

- Finite-element discretization
- Same discontinuous polynomial approximations for the

- Definition of operators on the interface trace:
 - Jump operator: $\llbracket \bullet \rrbracket = \bullet^+ \bullet^-$
 - Mean operator: $\langle \bullet \rangle = \frac{\bullet^+ + \bullet^-}{2}$
- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - Has the optimal convergence rate

- Discontinuous Galerkin methods vs Continuous
 - More expensive (more degrees of freedom)
 - More difficult to implement
 - ...
- So why discontinuous Galerkin methods?
 - Weak enforcement of C^1 continuity for high-order equations
 - Strain-gradient effect
 - Shells with complex material behaviors
 - Toward high-order computational homogenization
 - Exploitation of the discontinuous mesh to simulate dynamic fracture [Seagraves, Jérusalem, Noels, Radovitzky, col. ULg-MIT]:
 - Correct wave propagation before fracture
 - Easy to parallelize & scalable

- Continuous field / discontinuous derivative
 - No new nodes
 - Weak enforcement of
 C¹ continuity
 - Displacement formulations of high-order differential equations

- Usual shape functions in 3D (no new requirement)
- Applications to
 - Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells & Dung, CMAME 2007]
 - Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 2009]
 - Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; Bala-Chandran et al. 2008]

Topics

- Key principles of DG methods
 Illustration on volume FE
- Discontinuous Mesh & Dynamic Fracture
- Kirchhoff-Love shells
 - Kinematics
 - Non-Linear shells
 - Numerical examples
- Strain gradient elasticity
- Conclusions & Perspectives

• Application to non-linear mechanics

– Formulation in terms of the first Piola stress tensor $\ensuremath{\mathbf{P}}$

 $\boldsymbol{\nabla}_{0} \cdot \mathbf{P}^{T} = 0 \text{ in } \Omega \quad \boldsymbol{\&} \quad \begin{cases} \mathbf{P} \cdot \boldsymbol{N} = \bar{\boldsymbol{T}} \text{ on } \partial_{N} \Omega \\ \boldsymbol{\varphi}_{h} = \bar{\boldsymbol{\varphi}}_{h} \text{ on } \partial_{D} B \end{cases}$

– New weak formulation obtained by integration by parts on each element Ω^e

- Interface term rewritten as the sum of 3 terms
 - Introduction of the numerical flux h

$$\int_{\partial_I B_0} \left[\!\left[\delta \boldsymbol{\varphi} \cdot \mathbf{P}\left(\boldsymbol{\varphi}_h\right)\right]\!\right] \cdot \mathbf{N}^- \, d\partial B \to \int_{\partial_I B_0} \left[\!\left[\delta \boldsymbol{\varphi}\right]\!\right] \cdot h\left(\mathbf{P}^+, \mathbf{P}^-, \mathbf{N}^-\right) \, d\partial B$$

• Has to be consistent: <

$$egin{aligned} & \mathbf{J}_{\mathbf{r}B_0} \ & \mathbf{h}\left(\mathbf{P}^+,\,\mathbf{P}^-,\,oldsymbol{N}^-
ight) = -oldsymbol{h}\left(\mathbf{P}^-,\,\mathbf{P}^+,\,oldsymbol{N}^+
ight) \ & oldsymbol{h}\left(\mathbf{P}_{ ext{exact}},\,oldsymbol{P}_{ ext{exact}},\,oldsymbol{N}^-
ight) = \mathbf{P}_{ ext{exact}}\cdotoldsymbol{N}^- \end{aligned}$$

- One possible choice: $h(\mathbf{P}^+, \mathbf{P}^-, \mathbf{N}^-) = \langle \mathbf{P} \rangle \cdot \mathbf{N}^-$
- Weak enforcement of the compatibility

$$\int_{\partial_I B_0} \left[\!\!\left[\boldsymbol{\varphi}_h\right]\!\!\right] \cdot \left\langle \frac{\partial \mathbf{P}}{\partial \mathbf{F}} : \boldsymbol{\nabla}_0 \delta \boldsymbol{\varphi} \right\rangle \cdot \boldsymbol{N}^- \ d\partial B$$

- Stabilization controlled by parameter β , for all mesh sizes h^s $\int_{\partial_I B_0} \llbracket \varphi_h \rrbracket \otimes \mathbf{N}^- : \left\langle \frac{\beta}{h^s} \frac{\partial \mathbf{P}}{\partial \mathbf{F}} \right\rangle : \llbracket \delta \varphi \rrbracket \otimes \mathbf{N}^- \ d\partial B = \mathbb{N}$ Noels & Radovitzky, IJNME 2006 & JAM 2006
- Those terms can also be explicitly derived from a variational formulation (Hu-Washizu-de Veubeke functional)

- Numerical applications
 - Properties for a polynomial approximation of order k
 - Consistent, stable for $\beta > C^k$, convergence in the e-norm in k
 - Explicit time integration with conditional stability $\Delta t_{\rm crit} = \frac{h^s}{\sqrt{3}} \sqrt{\frac{\rho_0}{E}}$
 - High scalability
 - Examples

de Liège

Numerical applications

- Application to oligo-crystal plasticity

Aluminum oligo crystal sample

Dogbone tensile test sample

Oligo crystal sample preparation: MIT + Alcoa.

Sample cutting, polishing & Electron Backscatter Diffraction (EBSD): Caltech + MIT (Z. Zhao).

Tensile test & Digital image correlation (DIC): Rutgers (S. Kuchnicki, A. Cuitino) + MIT.

Theoretical polycrystal model: Rutgers + MIT.

Grain profile from EBSD measurement

Mesh setup according to orientation mapping

Department of Aerospace and Mechanical Engineering

Université de Liège

- Numerical applications
 - Application to oligo-crystal plasticity

• Dynamic fracture

- Fracture: a gradual process of separation which occurs in small regions of material adjacent to the tip of a forming crack: the cohesive zone [Dugdale 1960, Barrenblatt 1962, ...]
- Separation is resisted to by a cohesive traction
- 2-parameter cohesive law
 - Peak cohesive traction σ_{max} (spall strength)
 - Fracture energy G_c
 - Automatically accounts for time scale [Camacho & Ortiz, 1996]

- Finite element discretization & interface elements
 - The cohesive law is integrated on an interface element inserted between two adjacent tetrahedra [Ortiz & Pandolfi 1999] 3+
 - Potential structure of the cohesive law:
 [Ortiz & Pandolfi 1999]
 - Effective opening in terms of β_c the ratio between the shear and normal critical tractions:

$$\delta = \sqrt{\frac{\left|\left[\left[\boldsymbol{\varphi}\right]\right] \cdot \boldsymbol{N}^{-}\right|^{2}}{\delta_{n}^{2} = \left\|\boldsymbol{\delta}_{n}\right\|^{2}}} + \beta_{c}^{2} \underbrace{\left\|\left[\left[\boldsymbol{\varphi}\right]\right] - \left[\left[\boldsymbol{\varphi}\right]\right] \cdot \boldsymbol{N}^{-} \boldsymbol{N}^{-}\right]\right|^{2}}_{\delta_{s}^{2} = \left\|\boldsymbol{\delta}_{s}\right\|^{2}}$$

- Definition of a potential: $\phi = \phi(\delta)$
- Interface traction: $t = \frac{\partial \phi}{\partial \delta} = \frac{\partial \phi}{\partial \delta_n} N^- + \frac{\partial \phi}{\partial \delta_s} \frac{\delta_s}{\delta_s}$

niversité de Liège

• Two methods

- Intrinsic Law
 - Cohesive elements inserted from the beginning σ_{max}
 - Drawbacks:
 - Efficient if a priori knowledge of the crack path
 - Mesh dependency [Xu & Needelman, 1994]
 - Initial slope modifies the effective elastic modulus
 - This slope should tend to infinity [Klein et al. 2001]:
 - » Alteration of a wave propagation
 - » Critical time step is reduced
- Extrinsic Law
 - Cohesive elements inserted on the fly when failure criterion is verified [Ortiz & Pandolfi 1999]
 - Drawback
 - Complex implementation in 3D (parallelization)
- New DG/extrinsic method [Seagraves, Jerusalem, Radovitzky, Noels]
 - Interface elements inserted from the beginning
 - Interface law corresponds initially to the DG interface forces

de Liège

 G_c

 σ_{max}

G

• New DG/extrinsic method:

[Seagraves, Jerusalem, Radovitzky, Noels, col. MIT & ULg]

- Numerical application: the spall test
 - Two opposite waves interact at the center of the specimen
 - The interaction leads to stresses higher than the spall stress
 - The specimen breaks exactly at its middle

- Continuous field / discontinuous derivative
 - No new nodes
 - Weak enforcement of
 C¹ continuity
 - Displacement formulations of high-order differential equations

- Usual shape functions in 3D (no new requirement)
- Applications to
 - Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells & Dung, CMAME 2007]
 - Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 2009]
 - Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; Bala-Chandran et al. 2008]

Higher order equation

- Resultant equilibrium equations:
 - Linear momentum

$$rac{1}{ar{j}}\left(ar{j}oldsymbol{n}^lpha
ight)_{,lpha}+oldsymbol{n}^\mathcal{A}=0$$

Angular momentum

$$\frac{1}{\overline{j}}\left(\overline{j}\tilde{\boldsymbol{m}}^{\alpha}\right)_{,\alpha}-\boldsymbol{l}+\lambda\boldsymbol{t}+\tilde{\boldsymbol{m}}^{\mathcal{A}}=0$$

– In terms of resultant stresses:

$$\left\{ \begin{aligned} \boldsymbol{n}^{\alpha} &= \frac{1}{\bar{j}} \int_{h_{\min 0}}^{h_{\max 0}} \boldsymbol{\sigma} \boldsymbol{g}^{\alpha} \det \left(\boldsymbol{\nabla} \boldsymbol{\Phi}\right) d\xi^{3} \\ \tilde{\boldsymbol{m}}^{\alpha} &= \frac{1}{\bar{j}} \int_{h_{\min 0}}^{h_{\max 0}} \xi^{3} \boldsymbol{\sigma} \boldsymbol{g}^{\alpha} \det \left(\boldsymbol{\nabla} \boldsymbol{\Phi}\right) d\xi^{3} \\ \boldsymbol{l} &= \frac{1}{\bar{j}} \int_{h_{\min 0}}^{h_{\max 0}} \boldsymbol{\sigma} \boldsymbol{g}^{3} \det \left(\boldsymbol{\nabla} \boldsymbol{\Phi}\right) d\xi^{3} \end{aligned} \right.$$

ah a

of resultant applied tension n^A and torque \tilde{m}^A

and of the mid-surface Jacobian $\bar{j} = \|\varphi_{,1} \wedge \varphi_{,2}\|$

Non-linear material behavior

- Through the thickness integration by Simpson's rule
- At each Simpson point
 - Internal energy $W(C=F^{T}F)$ with \prec

$$\begin{cases} \mathbf{C} = \boldsymbol{g}_i \cdot \boldsymbol{g}_j \ \boldsymbol{g}_0^i \otimes \boldsymbol{g}_0^j = g_{ij} \ \boldsymbol{g}_0^i \otimes \boldsymbol{g}_0^j \\ \boldsymbol{\sigma} = \sigma^{ij} \ \boldsymbol{g}_i \otimes \boldsymbol{g}_j = 2 \frac{\det\left(\boldsymbol{\nabla}\boldsymbol{\Phi}_0\right)}{\det\left(\boldsymbol{\nabla}\boldsymbol{\Phi}\right)} \frac{\partial W}{\partial g_{ij}} \ \boldsymbol{g}_i \otimes \boldsymbol{g}_j \end{cases}$$

• Iteration on the thickness ratio $\lambda_h = \frac{h_{\max} - h_{\min}}{h_{\max} - h_{\min}}$ in order to reach the plane stress assumption $\sigma^{33}=0$

Simpson's rule leads to the resultant stresses:

$$\begin{cases} \boldsymbol{n}^{\alpha} = \frac{1}{\bar{j}} \int_{h_{\min 0}}^{h_{\max 0}} \boldsymbol{\sigma} \boldsymbol{g}^{\alpha} \det \left(\boldsymbol{\nabla} \boldsymbol{\Phi}\right) d\xi^{3} \\ \tilde{\boldsymbol{m}}^{\alpha} = \frac{1}{\bar{j}} \int_{h_{\min 0}}^{h_{\max 0}} \xi^{3} \boldsymbol{\sigma} \boldsymbol{g}^{\alpha} \det \left(\boldsymbol{\nabla} \boldsymbol{\Phi}\right) d\xi^{3} \\ \boldsymbol{l} = \frac{1}{\bar{j}} \int_{h_{\min 0}}^{h_{\max 0}} \boldsymbol{\sigma} \boldsymbol{g}^{3} \det \left(\boldsymbol{\nabla} \boldsymbol{\Phi}\right) d\xi^{3} \end{cases}$$

• Non-linear discontinuous Galerkin formulation

- New weak form obtained from the momentum equations
- Integration by parts on each element \mathcal{A}^{e}
- Across 2 elements δt is discontinuous

Department of Aerospace and Mechanical Engineering

de Liège

- Interface terms rewritten as the sum of 3 terms
 - Introduction of the numerical flux h

$$\int_{\partial_{I}\mathcal{A}_{h}} \left[\!\left[\bar{j}\tilde{\boldsymbol{m}}^{\alpha}\left(\boldsymbol{\varphi}_{h}\right)\cdot\delta\boldsymbol{t}\lambda_{h}\right]\!\right]\boldsymbol{\nu}_{\alpha}^{-}d\mathcal{A} \rightarrow \int_{\partial_{I}\mathcal{A}_{h}}\left[\!\left[\delta\boldsymbol{t}\right]\!\right]\cdot\boldsymbol{h}\left(\left(\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}\right)^{+},\left(\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}\right)^{-},\boldsymbol{\nu}_{\alpha}^{-}\right)d\mathcal{A}$$

- Has to be consistent: $h(\lambda_h \bar{j} \tilde{m}_{exact}^{\alpha}, \bar{j} \lambda_h \tilde{m}_{exact}^{\alpha}, \nu_{\alpha}) = \lambda_h \bar{j} \tilde{m}_{exact}^{\alpha} \nu_{\alpha}^{-1}$
- One possible choice: $h\left(\left(\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}\right)^{+},\left(\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}\right)^{-},\nu_{\alpha}^{-}\right)=\nu_{\alpha}^{-}\left\langle\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}\right\rangle$
- Weak enforcement of the compatibility

- Stabilization controlled by parameter β , for all mesh sizes h^s

$$\int_{\partial_{I}\mathcal{A}_{h}\cup\partial_{T}\mathcal{A}_{h}}\left[\!\left[t\left(\boldsymbol{\varphi}_{h}\right)\right]\!\right]\cdot\boldsymbol{\varphi}_{,\beta}\left\langle\frac{\beta\bar{j}_{0}\mathcal{H}_{m}^{\alpha\beta\gamma\delta}}{h^{s}}\right\rangle\left[\!\left[\delta t\right]\!\right]\cdot\boldsymbol{\varphi}_{,\gamma}\nu_{\alpha}^{-}\nu_{\delta}^{-}d\partial\mathcal{A}$$

New weak formulation

 $\int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{n}^{\alpha} \left(\boldsymbol{\varphi}_{h}\right) \cdot \delta \boldsymbol{\varphi}_{,\alpha} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \tilde{\boldsymbol{m}}^{\alpha} \left(\boldsymbol{\varphi}_{h}\right) \cdot \left(\delta \boldsymbol{t} \lambda_{h}\right)_{,\alpha} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l} \cdot \delta \boldsymbol{t} \lambda_{h} d\mathcal{A} + \int_{\mathcal{A}_{h}} \bar{j} \boldsymbol{l$

$$\int_{\partial_{I}\mathcal{A}_{h}\cup\partial_{T}\mathcal{A}_{h}}\left[\!\left[\boldsymbol{t}\left(\boldsymbol{\varphi}_{h}\right)\right]\!\right]\cdot\left\langle\bar{j}_{0}\mathcal{H}_{m}^{\alpha\beta\gamma\delta}\left(\delta\boldsymbol{\varphi}_{,\gamma}\cdot\boldsymbol{t}_{,\delta}+\boldsymbol{\varphi}_{,\gamma}\cdot\delta\boldsymbol{t}_{,\delta}\right)\boldsymbol{\varphi}_{,\beta}+\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}\cdot\boldsymbol{\varphi}_{,\beta}\right.\left.\delta\boldsymbol{\varphi}_{,\beta}\right\rangle\nu_{\alpha}^{-}d\partial\mathcal{A}$$

 $\int_{\partial_{I}\mathcal{A}_{h}\cup\partial_{T}\mathcal{A}_{h}} \left[\!\left[\delta t\right]\!\right] \cdot \langle \bar{j}\lambda_{h}\tilde{m}^{\alpha}\rangle \nu_{\alpha}^{-}d\partial\mathcal{A} + \int_{\partial_{I}\mathcal{A}_{h}\cup\partial_{T}\mathcal{A}_{h}} \left[\!\left[t\left(\varphi_{h}\right)\right]\!\right] \cdot \varphi_{,\beta} \left\langle \frac{\beta \bar{j}_{0}\mathcal{H}_{m}^{\alpha\beta\gamma\delta}}{h^{s}} \right\rangle \left[\!\left[\delta t\right]\!\right] \cdot \varphi_{,\gamma}\nu_{\alpha}^{-}\nu_{\delta}^{-}d\partial\mathcal{A} = \int_{\partial_{N}\mathcal{A}_{h}} \bar{j}\bar{m} \cdot \delta\varphi d\mathcal{A} + \int_{\partial_{M}\mathcal{A}_{h}} \bar{j}\bar{m} \cdot \delta t\lambda_{h}d\mathcal{A} + \int_{\mathcal{A}_{h}} n^{\mathcal{A}} \cdot \delta\varphi \bar{j}d\mathcal{A} + \int_{\mathcal{A}_{h}} \tilde{m}^{\mathcal{A}} \cdot \delta t\lambda_{h}\bar{j}d\mathcal{A}$

- Implementation
 - Shell elements
 - Membrane and bending responses
 - 2x2 (4x4) Gauss points for bi-quadratic
 (bi-cubic) quadrangles
 - Interface elements
 - 3 contributions
 - 2 (4) Gauss points for quadratic (cubic) meshes
 - Contributions of neighboring shells evaluated at these points

Université de Liège

- Pinched open hemisphere
 - Properties:
 - 18-degree hole
 - Thickness 0.04 m; Radius 10 m
 - Young 68.25 MPa; Poisson 0.3
 - Comparison of the DG methods
 - Quadratic, cubic & distorted el.

with literature

Université de Liège

- Pinched open hemisphere Influence of the stabilization Influence of the mesh size parameter 10^u 10 8 10 Error on 8 6 3 δ (m) 10^{-2} 4 $-\delta y_{B}$, 12 bi-quad. el. 2 δx_{A} , 12 bi-quad. el. $-\delta y_{B}^{A}$, 8 bi-cubic el. 1 10⁻³∟ 10⁻² δx_{A}^{-} , 8 bi-cubic el. 0└ 10⁰ 10⁻¹ 10² 10^{3} 10^{1} 10^{4} h^s/ R β
 - Stability if $\beta > 10$
 - Order of convergence in the L^2 -norm in k+1

de Liège

- Plate ring
 - Properties:
 - Radii 6 -10 m
 - Thickness 0.03 m
 - Young 12 GPa; Poisson 0
 - Comparison of DG methods
 - Quadratic elements

with literature

Clamped cylinder

- Properties:
 - Radius 1.016 m; Length
 3.048 m; Thickness 0.03 m
 - Young 20.685 MPa; Poisson 0.3
- Comparison of DG methods
 - Quadratic & cubic elements with literature

Université de Liège

Strain-gradient elasticity

• Strain-gradient effect

- Length scales in modern technology are now of the order of the micrometer or nanometer
- At these scales, material laws depend on the strain but also on the strain-gradient

- Characteristic length *l*
- Differential equation: $E(u_{,xx} l^2 u_{,xxxx}) = 0$

de Liège

- Strain-gradient theory of linear elasticity
 - At a material point stress is a function of the strain and of the gradient of strain [Toupin 1962, Mindlin 1964].
 - Strain energy $W = W(\varepsilon, \mathbb{E})$ depends on the strain and its gradient
 - Low and high order stresses introduced as the work conjugate of low and high order strains: $\sigma = \frac{\partial W}{\partial \varepsilon} = \mathcal{H} : \varepsilon$ and $\mathbb{K} = \frac{\partial W}{\partial \mathbb{E}} = \mathcal{J} : \mathbb{E}$
 - Governing PDE obtained from the virtual work statement:

$$\int_{B} \left(\boldsymbol{\sigma} : \delta \boldsymbol{\varepsilon} + \mathbb{K} : \delta \mathbb{E} \right) dB = \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \delta \boldsymbol{u} \, d\partial B + \int_{\partial_{M}B} \boldsymbol{r} \cdot \underbrace{\nabla \delta \boldsymbol{u} \cdot \boldsymbol{n}}_{D\delta \boldsymbol{u}} \, d\partial B$$
$$\boldsymbol{\nabla} \cdot (\boldsymbol{\sigma} - \boldsymbol{\nabla} \cdot \mathbb{K}) = 0 \text{ in } B \qquad \boldsymbol{\&}$$
$$\left\{ \begin{pmatrix} \boldsymbol{n} \otimes \boldsymbol{n} \end{pmatrix} : \mathbb{K} = \boldsymbol{r} \text{ in } \partial_{M}B \\ D\boldsymbol{u} = \overline{D\boldsymbol{u}} \text{ in } \partial_{T}B \end{cases} \qquad \boldsymbol{\&} \quad \left\{ \begin{matrix} \boldsymbol{n} \cdot (\boldsymbol{\sigma} - \boldsymbol{\nabla} \cdot \mathbb{K}) + \left(\boldsymbol{n} \stackrel{s}{\boldsymbol{\nabla}} \cdot \boldsymbol{n} - \stackrel{s}{\boldsymbol{\nabla}}\right) \cdot (\boldsymbol{n} \cdot \mathbb{K}) = \bar{\boldsymbol{T}} \text{ in } \partial_{N}B \\ \boldsymbol{u} = \bar{\boldsymbol{u}} \text{ in } \partial_{D}B \end{matrix} \right.$$

Strain-gradient elasticity

- Discontinuous Galerkin formulation for strain-gradient theory
 - Test functions u_h and trial functions δu are C^0
 - New weak formulation obtained by repeated integrations by parts on each element Ω^e :

• Interface term rewritten as the sum of 3 terms

Introduction of the numerical flux h

$$\int_{\partial_I B} \boldsymbol{n}^- \cdot \left[\!\!\left[\mathbb{K}\left(\boldsymbol{u}_h\right): \boldsymbol{\nabla}\delta\boldsymbol{u}\right]\!\!\right] \, d\partial B \to \int_{\partial_I B} \left[\!\!\left[\boldsymbol{\nabla}\delta\boldsymbol{u}\right]\!\!\right]: \mathbf{h}\left(\mathbb{K}^+, \, \mathbb{K}^-, \, \boldsymbol{n}^-\right) \, d\partial B$$

$$\stackrel{\bullet}{\frown} \mathbf{h}\left(\mathbb{K}^+, \, \mathbb{K}^-, \, \boldsymbol{n}^-\right) = -\mathbf{h}\left(\mathbb{K}^-, \, \mathbb{K}^+, \, \boldsymbol{n}^+\right)$$

• Has to be consistent:

$$igg > \mathbf{h}\left(\mathbb{K}_{ ext{exact}},\ \mathbb{K}_{ ext{exact}},\ oldsymbol{n}
ight) = oldsymbol{n}\cdot\mathbb{K}_{ ext{exact}}$$

• One possible choice:

$$\mathbf{h}\left(\mathbb{K}^{+},\,\mathbb{K}^{-},\,oldsymbol{n}^{-}
ight)=oldsymbol{n}^{-}\cdot\left\langle\mathbb{K}
ight
angle$$

- Weak enforcement of the compatibility

$$\int_{\partial_I B} \left(\boldsymbol{n}^- \otimes \llbracket \boldsymbol{\nabla} \boldsymbol{u}_h \rrbracket \right) \stackrel{!}{:} \left\langle \mathcal{J} \stackrel{!}{:} \left(\boldsymbol{\nabla} \otimes \boldsymbol{\nabla} \otimes \delta \boldsymbol{u} \right) \right\rangle \ d\partial B$$

- Stabilization controlled by parameter β , for all mesh sizes h^s

$$\int_{\partial_I B} \left(\boldsymbol{n}^- \otimes \llbracket \boldsymbol{\nabla} \boldsymbol{u}_h \rrbracket \right) \stackrel{.}{:} \left\langle \frac{\beta \mathcal{J}}{h^s} \right\rangle \stackrel{.}{:} \left(\boldsymbol{n}^- \otimes \llbracket \boldsymbol{\nabla} \delta \boldsymbol{u} \rrbracket \right) \ d\partial B$$

Bala Chandran, Noels & Radovitzky

Strain-gradient elasticity

- Numerical applications
 - Properties for polynomial approximation of order k
 - Consistent, stable for $\beta > C^k$
 - Convergence in the e-norm in k-1, but in k+1 in the L^2 -norm
 - Examples

Conclusions & Perspectives

- Development of a discontinuous Galerkin formulation
 - A formulation has been proposed for non-linear dynamics
 - Application to high-order differential equations
 - Strain gradient elasticity
 - Shells
 - Application to dynamic fracture
- Works in progress
 - Fracture of thin structures
 - Fracture of composite structures (RVE)

