
Computational & Multiscale  

Mechanics of Materials  CM3 
www.ltas-cm3.ulg.ac.be 

 

CM3 June 2013    CFRAC 2013 

Modeling of Damage to Crack Transition using 

a Coupled Discontinuous Galerkin / Cohesive 

Extrinsic Law Framework 
 

 

L. Wu , G. Becker  and L. Noels 

 

CFRAC 2013 



CM3 June 2013    CFRAC 2013     2 

Content 

• Introduction 

• Non-local damage model to cohesive zone model 

– Implicit gradient enhanced damage model 

– Energy equivalence of damage model and cohesive zone model  

– 1D bar case 

• Damage to crack 

– Discontinuous Galerkin / Cohesive Extrinsic Law Framework 

– Damage to crack transition  

• Application 

– Compact tension specimen 

• Conclusions 



CM3 June 2013    CFRAC 2013     3 

Introduction 

• Material fracture process 

– Damage accumulation 

– crack 

 

 

 

𝑇 

  

𝑇 

  

𝑇 

  

𝑇 

  



CM3 June 2013    CFRAC 2013     4 

Introduction 

• Material fracture process 

– Damage accumulation 

– crack 
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Non-local damage model to cohesive zone model 

• Implicit gradient enhanced damage model [Peerlings et al. 96, Geers et al. 97, …] 

– A state variable is replaced by a non-local value reflecting the interaction between 

neighboring material points  

 

 

– Use Green functions as weight w(y; x)               Implicit gradient enhanced model  
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– A state variable is replaced by a non-local value reflecting the interaction between 

neighboring material points  

 

 

– Use Green functions as weight w(y; x)               Implicit gradient enhanced model  

  

                                                           with 

                                                     

– General form for anisotropic cases 

 

 

 

– Damage evolution 
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Non-local damage model to cohesive zone model 

• Energy equivalence of damage model and cohesive zone model  

      - Cohesive law can be constructed from damage model [Planas et al. 1993, Cazes et al. 2009…] 
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Non-local damage model to cohesive zone model 

• 1D case analysis 

          A – cross section of the bar 

          σ – tensile stress 

          𝑢𝐿 – the displacement at right end of   

                  the bar 
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Non-local damage model to cohesive zone model 

• 1D case analysis 

ϕs 

𝐴𝑡  

𝑢  

dϕs 

𝐴𝜎T 

- Numerical solution 



CM3 June 2013    CFRAC 2013     15 

Non-local damage model to cohesive zone model 

• 1D case analysis 

𝑢 T 

ϕs 

𝐴𝑡  

𝑢  

dϕs 

𝐴𝜎T 

- Numerical solution 

- Approximation at high damage 

𝑢  

σ 

  

σ 

  

𝜀hom C~

D~𝜀hom 

When damage is rather high:  

[Dufour et al. 2008, …] 

 

Stress equivalence: 

 

 

 

 

 

 

 

 

 

 

 

),(~~
hom DC  𝑢  

L
L

)d(
0

hom  𝑢  

 EDED C ))~(1()'1( hom 



CM3 June 2013    CFRAC 2013     16 

Non-local damage model to cohesive zone model 

• 1D case analysis 

𝑢 T 

ϕs 

𝐴𝑡  

𝑢  

dϕs 

𝐴𝜎T 

- Numerical solution 

- Approximation at high damage 

𝑢  

σ 

  

σ 

  

𝜀hom C~

D~𝜀hom 

When damage is rather high:  

[Dufour et al. 2008, …] 

 

Stress equivalence: 

 

 

 

 

 

 

 

 

 

 

),(~~
hom DC  𝑢  

L
L

)d(
0

hom  𝑢  

 EDED C ))~(1()'1( hom 



CM3 June 2013    CFRAC 2013     17 

Non-local damage model to cohesive zone model 

• 1D case analysis 

𝑢 T 

ϕs 

𝐴𝑡  

𝑢  

dϕs 

𝐴𝜎T 

- Numerical solution 

- Approximation at high damage 

𝑢  

σ 

  

σ 

  

𝜀hom C~

D~𝜀hom 

When damage is rather high:  

[Dufour et al. 2008, …] 

 

Stress equivalence: 

 

 

 

Example: [Geers et al. 1999, …] 

𝐷 = 1 −
𝜅𝑖
𝜅

𝛽 𝜅𝑐 − 𝜅

𝜅𝑐 − 𝜅𝑖

𝛼 

 

 

 

 

 

 

 

 

 𝒄𝑔 = diag 2.0  𝑚𝑚
2 

 

),(~~
hom DC  𝑢  

L
L

)d(
0

hom  𝑢  

𝜅 𝑥 = max [𝜀 (𝑥, 𝜏)|𝜏 ≤ 𝑡] 

 EDED C ))~(1()'1( hom 



CM3 June 2013    CFRAC 2013     18 

• Problems with cohesive elements 

– Intrinsic Cohesive Law (ICL) 

• Cohesive elements inserted from the beginning 

• Drawbacks: 

– Efficient if a priori knowledge of the crack path  

– Mesh dependency [Xu & Needelman, 1994] 

– Initial slope modifies the effective elastic modulus 

– This slope should tend to infinity [Klein et al. 2001]: 

» Alteration of a wave propagation 

» Critical time step is reduced 

Discontinuous Galerkin / Cohesive Extrinsic Law Framework 
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– This slope should tend to infinity [Klein et al. 2001]: 

» Alteration of a wave propagation 

» Critical time step is reduced 

– Extrinsic Cohesive Law (ECL) 

• Cohesive elements inserted on the fly when  

 failure criterion is verified [Ortiz & Pandolfi 1999] 

• Drawback 

– Complex implementation in 3D (parallelization) 

• Solution 
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• Discontinuous Galerkin (DG) methods 

– Finite-element discretization 

– Same discontinuous polynomial approximations for the 

• Test functions uh and  

• Trial functions du 

 

 

 

 

– Definition of operators on the interface trace: 

• Jump operator: 

• Mean operator: 

Discontinuous Galerkin / Cohesive Extrinsic Law Framework 
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• Governing equations 

                                     Boundary conditions 

• Weak formulation obtained by integration by parts on each element  
e  
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 𝝈 𝒖ℎ : 𝜵𝛿𝒖 dΩ +  𝛿𝒖 ⋅ 𝝈 ⋅ 𝒏−d𝜕Ω
𝜕𝐼Ω

=  𝒕 ⋅ 𝛿𝒖d𝜕Ω
𝜕𝑁ΩΩ

 

• Governing equations 

                                     Boundary conditions 

• Weak formulation obtained by integration by parts on each element  
e  

 

Discontinuous Galerkin / Cohesive Extrinsic Law Framework 

New interface termes 

𝜕𝑁Ω 
𝜕𝑁Ω
e 

𝜕𝐷Ω 

𝜕𝐷Ω
e 𝜕𝐼Ω

e′ 

𝜕𝐼Ω
e 

Ωe′ 

Ωe 

𝒙+ 𝒙− 
𝒏+ 

𝒏− 

𝜕𝐼Ω 

  𝛁 ⋅ 𝜎𝑇 𝒖ℎ ⋅ 𝛿𝒖 dΩ = 0
Ωee

 

  −𝝈 𝒖ℎ : 𝛁𝛿𝒖 dΩ +  𝛿𝒖 ⋅ 𝝈 ⋅ 𝒏d𝜕Ω
𝜕Ωe𝑒

= 0
Ωee

 

0σ  T

  eee  ~~
gc

tnσ 

  0~
g  ecn



CM3 June 2013    CFRAC 2013     24 

 𝝈 𝒖ℎ : 𝜵𝛿𝒖 dΩ +  𝛿𝒖 ⋅ 𝝈 ⋅ 𝒏−d𝜕Ω
𝜕𝐼Ω

=  𝒕 ⋅ 𝛿𝒖d𝜕Ω
𝜕𝑁ΩΩ

 

• Governing equations 

                                     Boundary conditions 

• Weak formulation obtained by integration by parts on each element  
e  

 

Discontinuous Galerkin / Cohesive Extrinsic Law Framework 

0σ  T

  eee  ~~
gc

tnσ 

  0~
g  ecn

New interface termes 

𝜕𝑁Ω 
𝜕𝑁Ω
e 

𝜕𝐷Ω 

𝜕𝐷Ω
e 𝜕𝐼Ω

e′ 

𝜕𝐼Ω
e 

Ωe′ 

Ωe 

𝒙+ 𝒙− 
𝒏+ 

𝒏− 

𝜕𝐼Ω 

  𝛁 ⋅ 𝜎𝑇 𝒖ℎ ⋅ 𝛿𝒖 dΩ = 0
Ωee

 

  −𝝈 𝒖ℎ : 𝛁𝛿𝒖 dΩ +  𝛿𝒖 ⋅ 𝝈 ⋅ 𝒏d𝜕Ω
𝜕Ωe𝑒

= 0
Ωee

 

 𝝈 𝒖ℎ : 𝜵𝛿𝒖 dΩ
Ω

+ 𝛿𝒖 ⋅ 〈𝝈〉 ⋅ 𝒏−d𝜕Ω
𝜕𝐼Ω

+

+ 𝛿𝒖 ⊗ 𝒏−:
𝛽𝑠
ℎ𝑠
C𝐞 : 𝒖 ⊗ 𝒏−d𝜕Ω

𝜕𝐼Ω

+ 𝒖 ⋅ C𝐞: 𝛁𝛿𝒖 ⋅ 𝒏−d𝜕Ω
𝜕𝐼Ω

=  𝒕 ⋅ 𝒏d𝜕Ω
𝜕𝑁Ω

 

Enforcement of the 

compatibility 
Stabilization 



CM3 June 2013    CFRAC 2013     25 

 𝝈 𝒖ℎ : 𝜵𝛿𝒖 dΩ
Ω

+ 𝛼𝒕 −( 𝒖 ) ⋅ 𝛿𝒖 d𝜕Ω
𝜕𝐼Ω

+ (1 − 𝛼) 𝛿𝒖 ⋅ 〈𝝈〉 ⋅ 𝒏−d𝜕Ω
𝜕𝐼Ω

+ (1 − 𝛼) 𝛿𝒖 ⊗ 𝒏−:
𝛽𝑠
ℎ𝑠
C𝐞 : 𝒖 ⊗ 𝒏−d𝜕Ω

𝜕𝐼Ω

+ (1 − 𝛼) 𝒖 ⋅ C𝐞: 𝛁𝛿𝒖 ⋅ 𝒏−d𝜕Ω
𝜕𝐼Ω

=  𝒕 ⋅ 𝒏d𝜕Ω
𝜕𝑁Ω

 

Discontinuous Galerkin / Cohesive Extrinsic Law Framework 

• Combining with cohesive law 

• Transition from damage to crack 

- Critical damage DT 
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Discontinuous Galerkin / Cohesive Extrinsic Law Framework 

• Combining with cohesive law 
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• Compact tension specimen [Geers et al. 1999, …] 
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Application 

• Compact tension specimen  

− Results  
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• Implicit gradient enhanced damage 

– Easy implementation 

– Extra degree of freedom on nodes 

• Damage to crack  

– Cohesive law needs to be constructed  

• High damage (approximation) 

• Low damage (numerical solution) 

– Transition criterion from the information of damage and stress 

• DG method 

– Computationally efficient // method 

– Consistent 

– Extrinsic cohesive law 

 

 

 

Conclusions 


