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• Intra-laminar fracture challenges 

• Fracture can be 

• At fiber interfaces (debonding)  

• In matrix 

• Initially there is no crack 

• Cell size effect 

 

Introduction 
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• Intra-laminar fracture challenges 

• Fracture can be 

• At fiber interfaces (debonding)  

• In matrix 

• Initially there is no crack 

• Cell size effect 

• Numerical approach 

• Cohesive elements inserted between two  

 bulk elements 

• They integrate the cohesive Traction Separation Laws 

• Characterized by  

• Strength sc & 

• Critical energy release rate GC 

• Can be tailored for  

• Debonding 

• Matrix crack 
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• Problems with cohesive elements 

• Intrinsic Cohesive Law (ICL) 

• Cohesive elements inserted from the beginning 

• Drawbacks: 

• Efficient if a priori knowledge of the crack path  

• Mesh dependency [Xu & Needelman, 1994] 

• Initial slope modifies the effective elastic modulus 

• This slope should tend to infinity [Klein et al. 2001]: 

• Alteration of a wave propagation 

• Critical time step is reduced 

Introduction 
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• Problems with cohesive elements 

• Intrinsic Cohesive Law (ICL) 

• Cohesive elements inserted from the beginning 

• Drawbacks: 

• Efficient if a priori knowledge of the crack path  

• Mesh dependency [Xu & Needelman, 1994] 

• Initial slope modifies the effective elastic modulus 

• This slope should tend to infinity [Klein et al. 2001]: 

• Alteration of a wave propagation 

• Critical time step is reduced 

• Extrinsic Cohesive Law (ECL) 

• Cohesive elements inserted on the fly when  

     the failure criterion is verified [Ortiz & Pandolfi 1999] 

• Drawback 

• Complex implementation in 3D (parallelization) 

Introduction 

D (+) 

t (+) 

t (+) 

D  

t  

Dc  

GC 

sc 

D  

t  

GC 

Dc  

sc 



CM3 June 2013    CFRAC 2013     7 

• Solution: Discontinuous Galerkin/Extrinsic Cohesive Law method 

• Embeds interface elements  

• Consistent 

• Highly scalable 

• Successful applications 

Introduction 

Ceramic fragmentation Failure of blast loaded elasto-plastic  

thin structures 

[Radovitzky et al., CMAME 2011] 

[Becker & Noels., IJNME 2012] 
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• Discontinuous Galerkin (DG) methods 

• Finite-element discretization 

• Same discontinuous polynomial approximations for the 

• Test functions h and  

• Trial functions d 

 

 

 

 

 

• Definition of operators on the interface trace: 

• Jump operator: 

• Mean operator: 

 

• Continuity is weakly enforced, such that the method 

• Is consistent 

•  Is stable 

•  Has the optimal convergence rate 

Hybrid DG/ECL fracture framework 
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• Discontinuous Galerkin (DG) methods (2) 

• Formulation in terms of the first Piola-Kirchhoff stress tensor P  

    &  

• Weak formulation obtained by integration by parts on each element  e  

Hybrid DG/ECL fracture framework 
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• Discontinuous Galerkin (DG) methods (2) 

• Formulation in terms of the first Piola-Kirchhoff stress tensor P  

    &  

• Weak formulation obtained by integration by parts on each element  e  

Hybrid DG/ECL fracture framework 
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  −𝐏:𝛁0𝜹𝝋𝑑ΩΩ0
𝑒𝑒 +   𝜹𝝋 ⋅ 𝐏 ⋅ 𝑵𝑑𝜕Ω𝜕Ω0

𝑒𝑒 =0 
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• Discontinuous Galerkin (DG) methods (2) 

• Formulation in terms of the first Piola-Kirchhoff stress tensor P  

    &  

• Weak formulation obtained by integration by parts on each element  e  

Hybrid DG/ECL fracture framework 

New interface terms 

𝛁0 ⋅ 𝐏
𝑇 = 0 in Ω0 

𝐏 ⋅ 𝑵 = 𝑻  on 𝜕𝑁Ω0 

𝝋 = 𝝋  on 𝜕𝐷Ω0 

𝜕𝑁Ω0 

𝜕𝑁Ω0
e 

𝜕𝐷Ω0 

𝜕𝐷Ω0
e 

𝜕𝐼Ω0
e′  

𝜕𝐼Ω0
e 

Ω0
e′ 

Ωe 

𝑿+ 𝑿− 

𝑵+ 

𝑵− 

𝜕𝐼Ω0  

  𝛁0 ⋅ 𝐏
𝑇 ⋅ 𝜹𝝋𝑑Ω

Ω0
𝑒

= 0

𝑒

 

  −𝐏:𝛁0𝜹𝝋𝑑ΩΩ0
𝑒𝑒 +   𝜹𝝋 ⋅ 𝐏 ⋅ 𝑵𝑑𝜕Ω𝜕Ω0

𝑒𝑒 =0 

 𝐏: 𝛁0𝜹𝝋𝑑ΩΩ0
 +  𝜹𝝋 ⋅ 𝐏 ⋅ 𝑵−𝑑𝜕Ω
𝜕IΩ0

= 𝑻 ⋅ 𝜹𝝋𝑑𝜕Ω
𝜕𝑁Ω0

 



CM3 June 2013    CFRAC 2013     12 

• Discontinuous Galerkin (DG) methods (3) 

 

 

 

 

 

Hybrid DG/ECL fracture framework 

 𝐏: 𝛁0𝜹𝝋𝑑ΩΩ0
 +  𝜹𝝋 ⋅ 𝐏 ⋅ 𝑵−𝑑𝜕Ω
𝜕IΩ0

= 𝑻 ⋅ 𝜹𝝋𝑑𝜕Ω
𝜕𝑁Ω0

 



CM3 June 2013    CFRAC 2013     13 

• Discontinuous Galerkin (DG) methods (3) 

 

 

• Introduction of a consistent numerical flux 

 

 

Hybrid DG/ECL fracture framework 
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• Discontinuous Galerkin (DG) methods (3) 

 

 

• Introduction of a consistent numerical flux 

 

 

• Weak enforcement of the compatibility & symmetrization 

 

 

 

 

Hybrid DG/ECL fracture framework 
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• Discontinuous Galerkin (DG) methods (3) 

 

 

• Introduction of a consistent numerical flux 

 

 

• Weak enforcement of the compatibility & symmetrization 

 

 

 

 

• Stabilization controlled by a parameter s for all mesh sizes hs  

 

 

Hybrid DG/ECL fracture framework 

 𝐏: 𝛁0𝜹𝝋𝑑ΩΩ0
 +  𝜹𝝋 ⋅ 〈𝐏〉 ⋅ 𝑵−𝑑𝜕Ω
𝜕IΩ0

= 𝑻 ⋅ 𝜹𝝋𝑑𝜕Ω
𝜕𝑁Ω0

 

 𝐏: 𝛁0𝜹𝝋𝑑ΩΩ0
 +  𝜹𝝋 ⋅ 𝐏 ⋅ 𝑵−𝑑𝜕Ω
𝜕IΩ0

= 𝑻 ⋅ 𝜹𝝋𝑑𝜕Ω
𝜕𝑁Ω0

 

 𝐏: 𝛁0𝜹𝝋𝑑ΩΩ0
+  𝜹𝝋 ⋅ 〈𝐏〉 ⋅ 𝑵−𝑑𝜕Ω
𝜕IΩ0

+ 𝝋 ⋅ 〈𝑪el: 𝛁𝟎𝜹𝝋〉 ⋅ 𝑵
−𝑑𝜕Ω

𝜕IΩ0
 

 

= 𝑻 ⋅ 𝜹𝝋𝑑𝜕Ω
𝜕𝑁Ω0

 

 𝐏: 𝛁0𝜹𝝋𝑑ΩΩ0
+  𝜹𝝋 ⋅ 〈𝐏〉 ⋅ 𝑵−𝑑𝜕Ω
𝜕IΩ0

+ 𝝋 ⋅ 〈𝑪el: 𝛁𝟎𝜹𝝋〉 ⋅ 𝑵
−𝑑𝜕Ω

𝜕IΩ0
 

 

+  𝝋 ⊗𝑵−:
𝛽𝑠𝑪
el

ℎ𝑠
: 𝜹𝝋 ⊗𝑵−𝑑𝜕Ω

𝜕IΩ0
 = 𝑻 ⋅ 𝜹𝝋𝑑𝜕Ω
𝜕𝑁Ω0

 

[Noels & Radovitzky, IJNME 2006] 
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• Hybrid Discontinuous Galerkin/Extrinsic Cohesive Law method 

• Final DG formulation 

 

 

 

• Interface terms integrated on an interface element 

Hybrid DG/ECL fracture framework 
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• Hybrid Discontinuous Galerkin/Extrinsic Cohesive Law method 

• Final DG formulation 

 

 

 

• Interface terms integrated on an interface element 

• Taking advantage of the interface elements  

• Check is fracture criterion is reached (a: 0->1) 

• If so, use the extrinsic cohesive law  

 

 

 

 

 

Hybrid DG/ECL fracture framework 
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• Efficient // implementation 

• Based on the ghost-faces method 

• Initial mesh 

 

 

 

 

 

 

 

Hybrid DG/ECL fracture framework 
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• Efficient // implementation (2) 

• Based on the ghost-faces method 

 

• Partitioned mesh (METIS) 

• Internal forces can be 

computed 

• At bulk elements 

• At interface elements in 

the partitions 

 

 

 

 

 

 

Hybrid DG/ECL fracture framework 
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• Efficient // implementation (2) 

• Based on the ghost-faces method 

 

• Partitioned mesh (METIS) 

• Internal forces can be 

computed 

• At bulk elements 

• At interface elements in 

the partitions 

• Interface elements at 

processors boundaries? 

 

 

 

 

 

 

 

Hybrid DG/ECL fracture framework 
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• Efficient // implementation (3) 

• Based on the ghost-faces method 

 

 

 

 

 

 

 

 

 

• Create ghost elements 

• Internal forces can be 

computed at processors 

boundaries interfaces 

• If deformation of ghost 

elements is correct 
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• Efficient // implementation (4) 

• Based on the ghost-faces method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Update positions of ghost 

elements nodes 

• Only exchange 
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Application to intra-laminar failure of composites 

• Composite materials 

• UD carbon-fiber (60%) reinforced epoxy 

• Elasto-plastic matrix  

• Transverse anisotropic fibers 

• Interface failure:  

• sC = 45 MPa, GC = 100 J/m2 

• Intra-matrix failure: 

•  sC = 83 MPa, GC = 78 J/m2 [Sato et al., 1986] 

 

• Transverse loading experiments 
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Application to intra-laminar failure of composites 

• Micro-models 

• Study of the cell size effect (3D random cells) 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Consider a transverse loading dum on the cells 
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Application to intra-laminar failure of composites 

• Simulations 
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Application to intra-laminar failure of composites 

• Micro-Meso fracture model for intra-laminar failure 

• Epoxy-CF (60%), transverse loading 

• 3 stages captured 

• Cell size effect 

Elastic response 
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Application to intra-laminar failure of composites 

• Micro-Meso fracture model for intra-laminar failure 

• Epoxy-CF (60%), transverse loading 

• 3 stages captured 

• Cell size effect 

Elastic response Damage due to debonding 
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Application to intra-laminar failure of composites 

• Micro-Meso fracture model for intra-laminar failure 

• Epoxy-CF (60%), transverse loading 

• 3 stages captured 

• Cell size effect 

Elastic response Damage due to debonding Meso-crack 
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• Micro-Meso fracture model for intra-laminar failure (2) 

• Scale transition after softening onset 

• Should not depend on the RVE size 

 

Application to intra-laminar failure of composites 
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• Micro-Meso fracture model for intra-laminar failure (2) 

• Scale transition after softening onset 

• Should not depend on the RVE size 

• The displacement dum of the RVE needs to be corrected 

• Mesoscopic surface traction directly obtained 

 

• Compute a mesoscopic opening (increment) 

 

    which accounts for the change in the  

    structural stiffness C due to irreversible  

    processes 

 

 

 

Application to intra-laminar failure of composites 
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[Verhoosel et al., IJNME 2010] 
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• Micro-Meso fracture model for intra-laminar failure (2) 

• Scale transition after softening onset 

• Should not depend on the RVE size 

• The displacement dum of the RVE needs to be corrected 

• Mesoscopic surface traction directly obtained 

 

• Compute a mesoscopic opening (increment) 

 

    which accounts for the change in the  

    structural stiffness C due to irreversible  

    processes 

 

 

• Corresponds to a meso-scale cohesive law 

• Area converges to the apparent energy 

       release rate of the composite: 122 J/m2  

• To be compared to GC of epoxy (78 J/m2) 

 

Application to intra-laminar failure of composites 
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• Comparison with experiments 

• Loading curve can be compared up to 

strain softening 

• Similar failure mode 

 

 

 

 

 

 

 

Application to intra-laminar failure of composites 
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• Hybrid DG/ECL method 

 

– Efficient parallel computational method 

 

– Can be used to simulate micro failure 

 

• Micro-meso model 

 

– Meso-scale cohesive law can be extracted from simulations 

 

– Small cells can provide accurate results 

 

• Perspectives 

 

– Loading direction effects 

 

– Computational multiscale failure 

 

 

Conclusions 


