

An energy momentum conserving algorithm using the incremental potential for visco-plasticity

L. Noels, L. Stainier, J.-P. Ponthot University of Liège, LTAS-MCT, Belgium

7th World Congress on Computational Mechanics Los Angeles, California, USA, July 16-22, 2006

Tel: +32-(0)4-366-91-26 Fax: +32-(0)4-366-91-41 e-mail: mct@ulg.ac.be Chemin des chevreuils 1 B-4000 Liège - Belgium www.ulg.ac.be/ltas-mct/

Introduction Industrial problems

- Industrial context:
 - Structures must be able to resist to crash situations
 - Numerical simulations by finite elements is a key to design structures
 - Large deformations, plasticity,...
 - Efficient time integration in the non-linear range is needed
- Goal:
 - Numerical simulation of blade off and wind-milling in a turboengine
 - Example from SNECMA

- 1. Scientific motivations
- 2. Conserving scheme in the non-linear range
- 3. New formulation using the variational update approach
- 4. Numerical examples
- 5. Conclusions

- Spatial discretization into finite elements
- Temporal integration of the balance equations: $M \ddot{\vec{x}} + \vec{F}^{int} = \vec{F}^{ext}$
- 2 methods:
 - Explicit method

$$\underbrace{ \stackrel{\vec{x}_n}{\vec{x}_n} }_{\vec{x}_n} = \mathbf{M}^{-1} \left(\vec{F}_n^{\text{ext}} - \vec{F}_n^{\text{int}} \right) \xrightarrow{\text{deduction}} \vec{x}_{n+1}, \dot{\vec{x}}_{n+1}$$

- Non iterative
- Small memory requirement
- Very fast dynamics
- Conditionally stable (small time step)
- Implicit method

$$\vec{x}_{n} \\ \vdots \\ \vec{x}_{n} \\ \vec{x}_{n+1} \\ \vec{x}_{n}, \\ \vec{x}_{n+1}, \\ \vec{x}_{n+1}, \\ \vec{x}_{n}, \\ \vec{x}_{n+1}, \\ \vec{x}_{n+$$

- Iterative
- Larger memory requirement
- Unconditionally stable (large time step)

Slower dynamics

- If wave propagation effects are negligible
 - ----- Implicit schemes are more suitable
 - Sheet metal forming (springback, superplastic forming, ...)
 - Crashworthiness simulations (car crash, blade loss, shock absorber, ...)
- Nowadays, people choose explicit scheme mainly because of difficulties linked to implicit scheme:
 - Lack of smoothness (contact, elasto-plasticity, ...)
 - convergence can be difficult
 - Lack of available methods (commercial codes)
- Little room for improvement in explicit methods
- Complex problems can take advantage of combining explicit and implicit algorithms
- Necessity of developing robust and accurate implicit schemes

- Conservation of linear momentum (Newton's law)
 - Continuous dynamics
 - Time discretization

Continuous dynamics

Conservation of energy

Time discretization

$$\frac{\partial \vec{x} \wedge \mathbf{M} \dot{\vec{x}}}{\partial t} = \vec{x} \wedge \vec{F}^{\text{ext}}$$

$$\sum_{nodes} \sum_{nodes} \vec{x}_{n+1} \wedge \mathbf{M} \dot{\vec{x}}_{n+1} - \vec{x}_n \wedge \mathbf{M} \dot{\vec{x}}_n = \Delta t \sum_{nodes} \vec{x}_{n+1/2} \wedge \vec{F}_{n+1/2}^{\text{ext}}$$

$$\& \sum_{nodes} \vec{x}_{n+1/2} \wedge \vec{F}_{n+1/2}^{\text{int}} = 0$$

 $\sum \mathbf{M} \dot{\vec{x}}_{n+1} - \mathbf{M} \dot{\vec{x}}_n = \Delta t \quad \sum \vec{F}_{n+1/2}^{\text{ext}} \quad \& \qquad \sum \vec{F}_{n+1/2}^{\text{int}} = 0$

nodes

W^{int}: internal energy; W^{ext}: external energy; *D*^{int}: dissipation (plasticity ...)

ime discretization
$$W_{n+1}^{\text{int}} - W_n^{\text{int}} + \Delta D^{\text{int}} = \sum_{nodes} \vec{F}_{n+1/2}^{\text{int}} \bullet [\vec{x}_{n+1} - \vec{x}_n] \quad \&$$
$$\sum_{nodes} \frac{1}{2} \mathbf{M} \dot{\vec{x}}_{n+1} \bullet \dot{\vec{x}}_{n+1} - \frac{1}{2} \mathbf{M} \dot{\vec{x}}_n \bullet \dot{\vec{x}}_n + W_{n+1}^{\text{int}} - W_n^{\text{int}} + \Delta D^{\text{int}} = \sum_{nodes} \vec{F}_{n+1/2}^{\text{ext}} \bullet [\vec{x}_{n+1} - \vec{x}_n]$$

$$\frac{\partial}{\partial t}K + \frac{\partial}{\partial t}W^{\text{int}} = \frac{\partial}{\partial t}W^{\text{ext}} - \dot{D}^{\text{int}}$$

Continuous dynamics

 $\frac{\partial \mathbf{M}\dot{\vec{x}}}{\partial t} = \vec{F}^{\text{ext}}$

nodes

T

1. Scientific motivations Implicit algorithms

- α-generalized family (Chung & Hulbert [JAM, 1993])
 - Newmark relations:

$$\begin{cases} \ddot{x}_{n+1} = \frac{1}{\beta \Delta t^2} \left[\vec{x}_{n+1} - \vec{x}_n - \Delta t \, \dot{\vec{x}}_n - \left[\frac{1}{2} - \beta \right] \Delta t^2 \, \ddot{\vec{x}}_n \right] \\ \dot{\vec{x}}_{n+1} = \frac{\gamma}{\beta \Delta t} \left[\vec{x}_{n+1} - \vec{x}_n + \left[\frac{\beta}{\gamma} - 1 \right] \Delta t \, \dot{\vec{x}}_n + \left[\frac{\beta}{\gamma} - \frac{1}{2} \right] \Delta t^2 \, \ddot{\vec{x}}_n \right] \\ \frac{1 - \alpha_M}{1 - \alpha_F} M \, \ddot{\vec{x}}_{n+1} + \frac{\alpha_M}{1 - \alpha_F} M \, \ddot{\vec{x}}_n + \left[\vec{F}_{n+1}^{\text{int}} - \vec{F}_{n+1}^{\text{ext}} \right] + \frac{\alpha_F}{1 - \alpha_F} \left[\vec{F}_n^{\text{int}} - \vec{F}_n^{\text{ext}} \right] = 0 \end{cases}$$

- Balance equation:
 - $\alpha_{\rm M} = 0$ and $\alpha_{\rm F} = 0$ (no numerical dissipation)
 - Linear range: consistency (i.e. physical results) demonstrated
 - Non-linear range with small time steps: consistency verified
 - Non-linear range with large time steps: total energy conserved but without consistency (e.g. plastic dissipation greater than the total energy, work of the normal contact forces > 0, ...)
- $\alpha_{\rm M} \neq 0$ and/or $\alpha_{\rm F} \neq 0$ (numerical dissipation)
 - Numerical dissipation is proved to be positive only in the linear range

1. Scientific motivations Numerical example: mass-spring system

Example: mass-spring system
 (2D) with an initial velocity
 perpendicular to the spring
 (Armero & Romero [CMAME, 1999])

Explicit method: $\Delta tcrit \sim 0.72s$;

1 revolution \sim 4s

 Chung-Hulbert implicit scheme (numerical damping)

 Newmark implicit scheme (no numerical damping)

2. Conserving scheme in the non-linear range Principle

- Consistent implicit algorithms in the non-linear range:
 - The Energy Momentum Conserving Algorithm or EMCA (Simo et al. [ZAMP 92], Gonzalez & Simo [CMAME 96]):
 - Conservation of the linear momentum
 - Conservation of the angular momentum
 - Conservation of the energy (no numerical dissipation)
 - The Energy Dissipative Momentum Conserving algorithm or EDMC (Armero & Romero [CMAME, 2001]):
 - Conservation of the linear momentum
 - Conservation of the angular momentum
 - Numerical dissipation of the energy is proved to be positive

2. Conserving scheme in the non-linear range Principle

- Based on the mid-point scheme (Simo et al. [ZAMP, 1992]):
 - Relations between displacements, velocities, accelerations

$$\frac{\ddot{\vec{x}}_{n+1} + \ddot{\vec{x}}_n}{2} = \frac{\dot{\vec{x}}_{n+1} - \dot{\vec{x}}_n}{\Delta t} \\ \frac{\dot{\vec{x}}_{n+1} + \dot{\vec{x}}_n}{2} \left(+ \dot{\vec{x}}_{n+1}^{\text{diss}} \right) = \frac{\vec{x}_{n+1} - \vec{x}_n}{\Delta t}$$

– Balance equation

$$M \frac{\ddot{\vec{x}}_{n+1} + \ddot{\vec{x}}_n}{2} = \vec{F}_{n+1/2}^{\text{ext}} - \vec{F}_{n+1/2}^{\text{int}} \left(-\vec{F}_{n+1/2}^{\text{diss}}\right)$$

- Energy Momentum Conserving Algorithm (EMCA):
 - With $\vec{F}_{n+1/2}^{\text{int}} \neq \int_{V_0} \mathbf{F}_{n+1/2}^{-T} \mathbf{S}_{n+1/2} \vec{D} dV_0$ and $\vec{F}_{n+1/2}^{\text{ext}}$ designed to verify conserving equations

F: deformation gradient; C: right Cauchy-Green strain; S: 2nd Piola-Kirchhoff stress;

 φ : shape functions; $\vec{D} = \partial \varphi / \partial \vec{x}_0$

- Energy-Dissipation Momentum-Conserving (Armero & Romero [CMAME, 2001]):
 - Same internal and external forces as in the EMCA
 - With $\vec{F}_{n+1/2}^{\text{diss}}$ and $\dot{\vec{x}}_{n+1}^{\text{diss}}$ designed to achieve positive numerical dissipation without spectral bifurcation

2. Conserving scheme in the non-linear range The mass-spring system

- Forces of the spring for any potential V
 - <u>Without</u> numerical dissipation (EMCA) (Gonzalez & Simo [CMAME, 1996])

$$\vec{F}_{n+1/2}^{\text{int}} = \frac{V(l_{n+1}) - V(l_n)}{l_{n+1}^2 - l_n^2} \left[\vec{x}_{n+1} + \vec{x}_n \right]$$

- The consistency of the EMCA solution does not depend on Δt
- The Newmark solution does not conserve the angular momentum

EXAC 2. Conserving scheme in the non-linear range Formulations in the literature

- Elastic formulation:
 - Saint Venant-Kirchhoff hyperelastic model (Simo et al. [ZAMP, 1992])
 - General formulation for hyperelasticity (stress derived from a potential V) (Gonzalez [CMAME, 2000]): $O(\|c_{n+1}-c_n\|^2)$

$$\vec{F}_{n+1/2}^{\text{int}} = \int_{V_0} \frac{\mathbf{F}_n + \mathbf{F}_{n+1}}{2} 2\frac{\partial V}{\partial \mathbf{C}} \left(\frac{\mathbf{C}_n + \mathbf{C}_{n+1}}{2}\right) + 2 \frac{V(\mathbf{C}_{n+1}) - V(\mathbf{C}_n) - \frac{\partial V}{\partial \mathbf{C}} \left(\frac{\mathbf{C}_n + \mathbf{C}_{n+1}}{2}\right) : \Delta \mathbf{C}}{\left\|\Delta \mathbf{C}\right\|^2} \Delta \mathbf{C} \left\|\vec{D}dV_0\right\|$$

F: deformation gradient; **C**: right Cauchy-Green strain; *V*: potential; φ : shape functions; $\vec{D} = \partial \varphi / \partial \vec{x}_0$

- Classical formulation: $\vec{F}^{\text{int}} = 2 \int_{V_0} \mathbf{F} \frac{\partial V}{\partial \mathbf{C}} \vec{D} dV_0$

Penalty contact formulation (Armero & Petöcz [CMAME, 1998-1999]):

$$g_{n+1}^{d} = g_{n}^{d} + \vec{n}_{n+1/2} \bullet \left[\vec{x}_{n+1} - \vec{x}_{n} - \vec{y}_{n+1}(u_{n+1/2}) + \vec{y}_{n}(u_{n+1/2}) \right]$$
$$\vec{F}_{n+1/2}^{\text{cont}} = \frac{V\left(g_{n+1}^{d}\right) - V\left(g_{n}^{d}\right)}{g_{n+1}^{d} - g_{n}^{d}} \vec{n}_{n+1/2}$$

EXAC 2. Conserving scheme in the non-linear range Formulations in the literature

- Elasto-plastic materials:
 - Hyperelasticity with elasto-plastic behavior (Meng & Laursen [CMAME, 2001]):
 - energy dissipation of the algorithm corresponds to the internal dissipation of the material
 - Isotropic hardening only
 - Hyperelasticity with elasto-plastic behavior (Armero [CMAME, 2006]):
 - Energy dissipation from the internal forces corresponds to the plastic dissipation
 - Modification of the radial return mapping
 - Yield criterion satisfied at the end of the time-step
 - Hypoelastic formulation:
 - Stress obtained incrementally from a hardening law
 - No possible definition of an internal potential!
 - Idea: the internal forces are established to be consistent on a loading/unloading cycle
 - Assumption made on the Hooke tensor
 - Energy dissipation from the internal forces corresponds to the plastic dissipation

2. Conserving scheme in the non-linear range Numerical results

Numerical simulation of a blade loss in an aero engine

2. Conserving scheme in the non-linear range Numerical results

- Blade off:
 - Rotation velocity 5,000rpm
 - EDMC algorithm
 - Hypoelastic formulation
 - 29,000 dof's
 - One revolution simulation
 - 9,000 time steps
 - 50,000 iterations (only 9,000 with stiffness matrix updating)
- Demonstrates the robustness and efficiency of the conserving schemes

- Development of a general approach leading to conserving algorithm for any material behavior!
- What we want:
 - No assumption on the material behavior
 - Material model unchanged compared to the standard approach:
 - From a given strain tensor, the outputs of the model are the same
 - Use of the same material libraries
 - Expression of the internal forces for the conserving algorithm remains the same as in the elastic case
 - Yield criterion satisfied at the end of the time step
- Solution derives from the variational formulation of visco-plastic updates [Ortiz & Stainier, CMAME 1999] that allows the definition of an energy, even for complex material behaviors

$$\mathbf{S}_{n+1} = 2 \frac{\partial \Delta D^{\text{eff}}}{\partial \mathbf{C}_{n+1}} \left(\mathbf{C}_{n+1}, \mathbf{C}_n \right)$$

C: right Cauchy-Green strain

S: second Piola-Kirchhoff stress

 ΔD^{eff} : incremental potential

3. Variational update approach Use of an incremental potential

 $\mathbf{F}_{n+1}^{\text{pl}} = \exp(\Delta \varepsilon^{\text{pl}} \mathbf{N}) \mathbf{F}_{n}^{\text{pl}}$

Description of the variational update for elasto-plasticity

- Multiplicative plasticity: $\mathbf{F} = \mathbf{F}^{el} \mathbf{F}^{pl}$
- Plastic flow:
- Functional increment:

W^{el}: reversible potential;
W^{pl}: dissipation by plasticity;
Ψ*: dissipation by viscosity

$$\Delta D(\mathbf{F}_{n+1}, \mathbf{F}_{n}, \boldsymbol{\varepsilon}_{n+1}^{\text{pl}}, \boldsymbol{\varepsilon}_{n}^{\text{pl}}, \mathbf{N}) = W^{\text{el}} \Big(\mathbf{F}_{n+1} \mathbf{F}_{n+1}^{\text{pl}^{-1}}(\boldsymbol{\varepsilon}_{n+1}^{\text{pl}}, \mathbf{N}) \Big) - W^{\text{el}} \Big(\mathbf{F}_{n} \mathbf{F}_{n}^{\text{pl}^{-1}}(\boldsymbol{\varepsilon}_{n}^{\text{pl}}, \mathbf{N}) \Big) + W^{\text{pl}} \Big(\boldsymbol{\varepsilon}_{n+1}^{\text{pl}} \Big) - W^{\text{pl}} \Big(\boldsymbol{\varepsilon}_{n}^{\text{pl}} \Big) + \Delta t \Psi^{*} \Big(\frac{\boldsymbol{\varepsilon}_{n+1}^{\text{pl}} - \boldsymbol{\varepsilon}_{n}^{\text{pl}}}{\Delta t} \Big)$$

N: flow direction

- Effective potential: $\Delta D^{\text{eff}}(\mathbf{F}_{n+1}) = \min_{\varepsilon_{n+1}^{\text{pl}}, \mathbf{N}} \Delta D(\mathbf{F}_{n+1}, \mathbf{F}_{n}, \varepsilon_{n+1}^{\text{pl}}, \mathbf{N})$
 - Minimization with respect to ε^{pl} satisfies yield criterion
 - Minimization with respect to N satisfies radial return mapping Stress derivation: $\mathbf{S}_{n+1} = 2 \frac{\partial \Delta D^{\text{eff}}(\mathbf{F}_{n+1})}{\partial \mathbf{C}}$

- 3. Variational update approach Use of an incremental potential
- Conserving internal forces directly obtained from Gonzalez elastic formulation [CMAME 2000]

Properties:

- 2 material configurations computed:
 - Mid configuration trough $\frac{\partial \Delta D^{\text{eff}}}{\partial \mathbf{C}} \left(\frac{\mathbf{C}_{n+1} + \mathbf{C}_n}{2} \right)$
 - Final configuration trough $\Delta D^{\text{eff}}(\mathbf{C}_{n+1},\mathbf{C}_n)$
- Material model unchanged
- Yield criterion verified at configuration n+1
- Conservation of linear and angular momentum
- Conservation of energy:

$$\sum_{nodes} \vec{F}_{n+1/2}^{\text{int}} \bullet [\vec{x}_{n+1} - \vec{x}_n] = W_{n+1}^{\text{el}} - W_n^{\text{el}} + W_{n+1}^{\text{pl}} - W_n^{\text{pl}} + \Delta t \Psi^*$$

3. Variational update approach Simulation of a tumbling beam

• Tumbling beam:

- Initial symmetrical loads (t < 10s)
- Elasto-perfectly-plastic hyperelastic material

	Equ	ivalent plastic st	rain	
0.000	0.0325	0.0650	0.0975	<u>0.1</u> 30

3. Variational update approach Simulation of a tumbling beam

• Time evolution of the results:

3. Variational update approach Simulation of the Taylor impact

- Impact of a cylinder:
 - Hyperelastic model
 - Elasto-plastic hardening law
 - Simulation during 80 μs

Method	Final length [mm]	Final radius [mm]	Max e ^{pl}
EMCA; $\Delta t = 25$ ns	21.4	6.77	2.61
EMCA; $\Delta t = 400$ ns	21.4	6.81	2.61
Newmark; $\Delta t = 25$ ns	21.4	6.77	2.61
Newmark; $\Delta t = 400$ ns	21.5	6.87	2.81
EMCA; Meng & Laursen	21.6	6.78	2.62
Newmark; Simo	-	6.97	-

3. Variational update approach Impact of two 2D-cylinders

- Two cylinders (Meng & Laursen):
 - Left one has an initial velocity (initial kinetic energy 14J)
 - Elasto-perfectly-plastic hyperelastic material

3. Variational update approach Impact of two 2D-cylinders

Results comparison at the end of the simulation

3. Variational update approach Impact of two 2D-cylinders

• Results evolution comparison for $\Delta t = 20$ ms

- Impact of 2 hollow 3Dcylinders:
 - Right one has a initial velocity ($\dot{\vec{x}}_{0X} = 10\dot{\vec{x}}_{0Y}$)
 - Elasto-plastic hyperelastic material (steel)

y

X

Frictional contact

3. Variational update approach Impact of two 3D-cylinders

Time evolution of the results:

5. Conclusions

- Developed a visco-elastic formulation leading to a conserving time integration scheme
- Use of the variational update formulation:
 - The formulation derives from a energy potential
 - The formulation is general for any material behavior
- The internal force expression remains the same as for elasticity
- The momentum and the energy are conserved
- The yield criterion is satisfied at the end of the time step
- Numerical examples demonstrate the robustness