

Automated radiosynthesis of 1-(2-[18F]fluoroethyl)tryptophan, a potential substrate for indoleamine 2,3-dioxygenase PET imaging

Henrottin J.1,2; Zervosen A.1; Lemaire C.1; Galleni M.3; Luxen A.1

¹ULg - Université de Liège - Centre de Recherches du Cyclotron - Liège - Bât. B30, Allée du 6 août, 8 - Belgium ²ULg – Université de Liège – Département de Chimie – Bât. B.6, Allée de la Chimie, 3 – Belgium ³ULg – Université de Liège – Département des Sciences de la Vie – Macromolécules Biologiques – Bât. B.6a, Allée de la Chimie, 3 – Belgium email: Jean.Henrottin@ulq.ac.be

Introduction

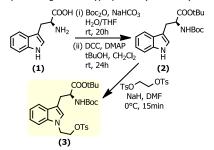
Indoleamine 2,3-dioxygenase (h-IDO) is an enzyme catalyzing the initial and rate-limiting step in the catabolism of tryptophan along the kynurenine pathway (Figures 1 & 2). This enzyme is located in brain and has been detected in high concentration in human tumor cells. Furthermore this enzyme could be responsible for the suppression of immune responses by blocking locally T-lymphocyte proliferation.[1,2]

Therefore, a radiotracer based on tryptophan structure seems to be well adapted to bring out the presence of h-IDO, and thus, of tumors.

COOH COOH COOH IDO/TDO Formamidase **NHCHO** NH_2 L-Tryptophan N-Formyl-Kynurenine Kynurenine

Figure 1 | The two first steps in the catabolism of L-tryptophan along the kynurenine pathway

Herein, an automated radiosynthesis of the 1-(2-[18F]fluoroethyl)-tryptophan (18FETrp), a radiotracer previously described,[3] is reported.


Figure 2 | Structure of h-IDO

Results

The automated radiosynthesis of ¹⁸FETrp **5** needs the prior synthesis of a precursor owing a tosyl moiety which allows the easy introduction of the radioactive [18 F]fluoride ($t_{1/2}$ = 109,7min) by a classical method with potassium carbonate and kryptopfix[4,5].

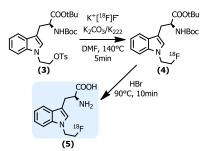
1. Precursor Synthesis

The tosylate precursor 3 was synthesized in three steps starting from L-tryptophan 1 (Scheme 1).

Scheme 1 | Synthesis of 1-(2-tosyloxyethyl)tryptophan 3 (precursor)

This amino acid was firstly protected with two acidic leaving groups, with a global yield of 38% for two steps

Then the intermediate 2 was alkylated with ethylene glycol ditosylate, to afford the tosylate precursor 3 (yield: 49%).


2. Automated Radiosynthesis on FASTlab™

optimize radioprotection, radiosynthesis of 1-(2-[18 F]fluoroethyl)-tryptophan was carried out on a *GE Healthcare FASTlab™* automated system (Figure 2).

Figure 2 | GE Healthcare FASTlab™ synthesizer

The tosylate precursor 3 was labeled[4,5] (Scheme 2) under different conditions (Table 1). The best radiochemical decay-corrected yield (RCY) (57%) was obtained when the labeling was carried out in DMF, for 5 minutes at 140° C (n = 3).

Scheme 2 | Radiochemical synthesis of 1-(2-[18F]fluoroethyl)-tryptophan **5** (18FETrp)

Table 1 | Influence of solvent and temperature on the radiochemical decay-corrected yield (RCY) of 3

Solvent Temperature		Time	RCY	
ACN	90 °C	10 min	28%	
	120 °C	3 min	25%	
DMF	140 °C	3 min	51%	
	140 °C	5 min	57%	

The intermediate 4 was purified on a tC18 solid phase extraction cartridge (Sep-Pak®) hydrolyzed at 90°C for 10 minutes, to give the ¹⁸FETrp **5** (Scheme 2).

Finally the labeled compound 5 was purified on semi-preparative HPLC and formulated.

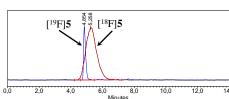


Figure 3 | HPLC chromatogram of purified and formulated nca ¹⁸FETrp (in red) and cold reference 19FETrp (in blue)

The fully automated process takes around 40 minutes and the ¹⁸FETrp **5** was obtained, after purification on semi-preparative HPLC, with global radiochemical decay-corrected yield of 30% (n = 5). The radiochemical purity was >98%.

3. Enzymatic Tests

In vitro enzymatic tests with recombinant h-IDO[6] were carried out with cold reference 19FETrp, in presence of methylene blue [100µM], ascorbic acid [200mM] and sodium phosphate buffer [50mM, pH 6.5] at 37°C. Figure 4 shows the decrease of the fluorescence signal of ¹⁹FETrp, studied by HPLC, according to the time of incubation. This decrease is due to the opening of the indole ring of the substrate. For a concentration of substrates smaller than K_{mr} , the k_{cal}/K_m – values (Table 2) were determined from curves (Figure 4). Furthermore, [19F]**5** is not a substrate of recombinant *h*-TDO^[7], an enzyme expressed in liver (Table 2). Thus 19FETrp is a specific substrate of h-IDO.

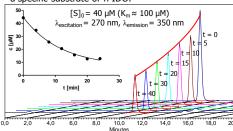


Figure 4 | HPLC chromatogram superposition showing the decrease of the fluorescence signal of ¹⁹FETrp in function of incubation time

Table 2 | In vitro enzymatic tests realized with [19F]5 and some other substrates known for h-IDO and h-TDO (37°C, pH 6.5)

		Percentage of substrate consumed after incubation with ^[6,7]					
	Tested Substrates	h-IDO			<i>h-</i> TDO		
		0.5μM 1 h	0.5μM 4 h	k_{cat}/K_{m} [10 ² M ⁻¹ s ⁻¹]	1μM 1h	10μM 1h	
4,0	<i>L</i> -Trp 1	> 97	100	1700±400	67	100	
	<i>N</i> -Me-Trp	100	100	38±17	0	3	
	5-HO-Trp	100	100	21±4	0	14	
	[¹⁹ F] 5	84	100	5.8±0.7	0	2	

Conclusion

Herein, an automated synthesis of 1-(2-[18F]fluoroethyl)-tryptophan, with good radiochemical yields, has been developed. In vitro studies with cold reference 19FETrp show that [19F]5 is a good and specific substrate of h-IDO. Moreover, some studies with this new radiochemical compound, still under progress, could confirm that ¹⁸FETrp ([¹⁸F]**5**) is a molecule of choice to bring out the presence of h-IDO, an enzyme which is located in brain and tumor cells.

References

- [1] Uyttenhove C.; Van den Eynde B. J.; & al., (2003) Nat. Med., 9, 1269-1274.
- [2] Röhrig U. F.; Awad L.; & al., (2010) J. Med. Chem., 53, 1172-1189. [3] Ting S.; Chen S.; & al., (2012) Appl. Radiat. Isotopes, 70(4), 676-680.

- [4] Hamacher K., Coenen H. H., Stöcklin G., (1986) J. Nucl. Med., 27(2), 235-238. [5] Thonon D.; Luxen A.; & al., (2011) Tetrahedron, 67, 5572-5576. [6] Dolušić E.; Frédérick R.; & al. (2011) Eur. J. Med. Chem., 46, 3058-3065. [7] Dolušić E.; Frédérick R.; & al. (2011) J. Med. Chem., 54, 5320-5334.

Acknowledgements

We gratefully acknowledge the Région Wallonne (Keymarker Project (BioWin)) and the Chemistry Department of Liège University (ULg) for the financial support.