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Abstract

This paper presents the application of the dual analysis concept to plate bending. In
this method, a same problem is analyzed parallely by a displacement and an
equilibrium model. The energetic distance between these two models is the sum of
both global errors and consequently, an upper bound of each of them. After an
exposition of the two models, numerical examples are presented, which illustrate the
high obtainable accuracy of the method.
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1 Introduction

Today, most of engineering analyses deal with problems involving differential
equations which are too difficult to be solved analytically. Currently, the most
widely used method of solving these problems, especially those with irregular
geometries and complex boundary conditions, is the Finite Element Method (FEM),
which over time has become an indispensable tool for engineers.

The best known family of finite element models is the displacement model, in
which the compatibility equations are a priori verified, from the fact that the
variables are displacements. The solution of the problem then leads to weak forms of
the equilibrium equations. But there exists a dual family of finite elements, which
are called equilibrium elements. In these elements, an equilibrated stress field is
used, and the result of the computation consists in weak compatibility equations.

A same problem may be treated by both methods. An interesting fact is that the
comparison of the results obtained by these two approaches leads to a useful error
measure. This is the so-called dual analysis. 1Its initial form, which was developed
by Fraeijs de Veubeke in the 60°s [1], is based on the fact that under some restrictive
conditions on the data (homogeneous prescribed displacements or zero load), the
two models give an upper and a lower bound of the energy, respectively. The



difference between these energies is an energetic measure of the sum of the errors of
both models. The abovementioned restrictions, the lack of equilibrium models in
most FEM codes and the fact that at this time, performing two analyses of the same
problem was considered as too time-consuming were at that time obstacles to a wide
use of the method.

The huge improvement of computers in the recent times significantly modified the
situation. By now, a double analysis is no more an obstacle. Moreover, newer
investigations [5, 7] reformulated the dual analysis in a more general way, where
energy bounds do no more play the central role. The result of this reconsideration is
that in fact, dual error bounds do exist for all cases, not for the strain energy, but for
the total complementary energy. This all gives to the dual analysis a renewed
attractiveness.

This paper is devoted to the application of the dual analysis to plate problems.
After a presentation of the problem and a recall of the dual analysis principles, an
equilibrium element is presented, which allows the appliance of a pressure field.
Finally, numerical examples illustrate the estimation of the error by dual analysis as
a comparison of total energies.

2 General notations and the spaces of admissible fields

In what follows, the plate will be described as a plane domain Q with a Lipschitz-
continuous boundary I'. A pressure p is acting within the domain. Boundary I' is
split in two parts, namely I'; where kinematical conditions («# and u,) are prescribed,
and I', where loads are applied.

Using the notation o, for the moment field, one can write the internal

equilibrium equations in the following form,
Do, +p=0 in Q (1)
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Ox,0x

where p is the transverse load and D, = =0, are the partial derivatives of

second order.
The compatibility equations consist to say that the curvatures «; derive from a

transverse displacement field u,

K; =Dyu (2)
Finally, the constitutive equations may be written as
O; = nglekl (3)

where H represents the plate Hooke matrix.
The following boundary conditions will be assumed, as they are sufficiently
representative, though not the most general ones,



g _z (4)

In these expressions, u is the deflection, u, is its normal derivative, g, is the normal
moment, K, is the Kirchhoff load, and the Z; are the corner loads.

The purpose of problems in strong form is to find exact solutions satisfying all
the equations from (1) to (4). As such a solution can only be obtained for academic
problems, the practical way is to find an approximate solution of the weak problem
as expressed by a variational principle. In the displacement formulation, it is the
principle of minimal total energy. In the equilibrium formulation, it is the principle
of minimal total complementary energy. Let us introduce the function spaces of
kinematically and statically admissible fields.

Let two spaces of kinematically admissible displacements, denoted by V" and
V, , respectively, be defined by

V={ue H(Q)u=it,u, =i, on I (5)
V,={ue H*(Q).u=u, =0onT,| (6)

Here, H’(Q)denotes the Sobolev space of order 2 [8]. Obviously, ¥, contains all

differences between two elements of V, that is to say, it is the linear space of
admissible displacement variations. These spaces lead to a bounded energy,

J.Q Hifkl Kij (u)Kkl (u)dQ < (7)
From condition (7), both " and ¥, may be equipped by the energetic norm

||u||V - ([Q H 15 (WK, (“)dQ)l/z (8)

where H is a bounded uniformly positive definite matrix.

Similarly, the two spaces of statically admissible stress fields, £, and statically
admissible stress variations, £, , are defined by

E=lo, e }(Q),i,j=12:Dyo, +p=0,K, =K

79 n

E,=lo, e *(Q),i,j=12:Dy0,=0,K, =0, =2,=0 on T, } (10)

i
The complementary energy of their elements is bounded,

IQH[;,(],JUJ,{, <o (11)

Both Eand E, may be equipped by the energetic norm

/2

||O-||E = (IQ Hij_'l:lo_zjo_kldQ)l (12)

which is physically equivalent to norm (7) when o, = H;,k;, .



3 Dual analysis

3.1 The displacement approach

The displacement approach consists in finding a displacement field u€ ¥ for which
stresses are in equilibrium. The weak form of this condition is

[ Hyurey ), ()dQ = [ prdQ+ L (K,v—&,v,)dl + ;Zvi,vv eV, (13)
where Z,,i =1,...,n. are corner loads.

We here recognize a variational problem of the classical form,
Find u €V such that
a,(u,v)=f,(v),Vvel, (14)
where

a, ,v) = [ H i, (e, (1)dQ,

fr(v) = _vadQ+_"r (K,v—o,v,)dl + ZZvi,Vv eV,
2 i=1

Problem (14) has a unique solution, from a classical inequality of Sobolev
spaces. It may also be presented as the solution of the following minimization
problem : Find u €V such that

M) = inf TI(v), Vv e V (15)
where
() = %ay V)= £, ()

Functional I is called fotal energy.

3.2 The equilibrium approach

Here, equilibrium is supposed to hold a priori. The equilibrium method is to find an
equilibrated stress field that verifies the so-called compatibility condition [9], which
in weak form writes as

[ Hoyd= [ (K, (@i —7,i,)dl + ) Z,(0)ii,, V7 € E, (16)
‘ i=1

This leads to the following variational problem,
Find o € E such that
a,(o,7)=f,(r),VT € E, (17)



where
-1 — — & —
a(o,7) = [ Hyo,7,dQ, f(0) = [ (K, (0)i —7,i,)dT + ) Z,(2)8,
! i=1

The solution of this variational problem exists and is unique. It is equivalent to solve
the following minimization problem: Find o€ E that minimizes the total
complementary energy

Y(o)=inf ¥(§),VEeE (18)
where

V() =34~ @)

This principle is the basis of the equilibrium approach and solving it leads to
compatibility equations.

3.3 The general dual analysis

Let u, €V, c V be the discrete solution of (15), that is the element that minimizes
the total energy in some finite element subspace V, of V. It is easy to prove [7] that
the energetic norm of the error may be calculated by

|aul) = —u,[; =2[u,) - T1w)] (19)

Similarly, let o, € E, — E be a strictly admissible approximate stress field (discrete
solution of (18)). The energetic norm of the stress error may be reckoned as

[acl, =llo-a[, =2[¥(c,) - ¥(e)] (20)

From some elementary properties of the exact solution [5], the following
relationship between I1(x) and ¥(o) may be obtained, which is

IT(u) + ¥ (o) =0 (2D

Adding this result to relations (19) and (20) directly leads to the fundamental
result of the general dual analysis concerning the errors,

|ad|” +[ac]; =2[w,)+¥(o,)] (22)

This error measure only requires very simple computations from the results.
Moreover, if one considers the generalized total complementary energy defined as
being the total complementary energy in equilibrium models, and minus the total
energy for displacement models, one finds that displacement models converge to the
exact solution from below, while equilibrium models converge to the exact solution
from above [5]. The distance between the two curves measures the global added
error of both models, see Figure 1.

Practically, it is preferable to work with the square root of (22) and to compare it
with an evaluation of the energetic norm of the true solution, namely



(4, w.0)]* =[a,(c.0)]* = B a, (u;,,un%a,;(ah,a,,)} 23)

from which follows a useful relative error measure

g 112l +laof, z{Hw,,)vP(ah)}” o
ol + [ U(u)+V(0))

where
1 1 . .
Uu,)= EaV (u,,u,),Vio,) = EaE (o,,0,) is the strain energy and the
complementary energy, respectively.

This relative error measure only requires very simple computations from the
results. One may naturally object that rwo finite element models are necessary to
obtain such an error measure. But the present proof never used the assumption that
u;, and oy, should be Rayleigh-Ritz approximations. The only requirement is that u,
and o, have to be admissible fields. As an example, after a displacement finite
element analysis, one may construct a statically admissible o field, inspired from
the displacement analysis, and use the above results. This way is the Ladeveze
method [10]. The symmetrical construction, which could be named dual Ladeveze
method, relates to the compatibility error [6]. As a conclusion, Ladeveze’s approach
may be considered as a special form of the general dual analysis.

b

Total energy

Equilibrium model

-------------------------------------------------------- Exact solution

Displacement model

Number of dcm:nts'

Figure 1: Convergence and error of both types of approximation

In the particular case of structures where

- one type of boundary conditions is homogeneous,



- The approximate homogeneous fields are obtained by a Rayleigh-Ritz
procedure,

one can prove the existence of upper and lower bounds of the exact energy. This
is the classical dual analysis as proposed by Fraeijs de Veubeke. In this case, the
cumulated error is thus measured by the difference between the strain and
complementary energies.

4 Choosing finite elements for plate bending

Here, we would like to choose appropriate finite elements for the displacement
approach and the equilibrium approach.

In the displacement model, continuity of deflection at the interfaces is the first
requirement to satisfy. The next requirement is the continuity of normal slope
between adjacent elements. Thus, C' - continuity requirement has to be obtained.
Another reason for trying to a rigorous enforcement of normal slope continuity is to
guarantee that the direct influence coefficients are actually lower bounds to the true
ones in case of the homogeneous displacement boundary. From the above strict
conditions, the conforming elements of assembled triangle (HCT) or assembled
quadrilateral (CQ) [5] should be chosen. Moreover, in reformulating these elements,
the advantage of using the area coordinates is useful when assembling and
calculating the fields [13]. The reliability of this way has been well tested in our
package.

In the equilibrium approach, a triangular equilibrium plate element with degree
zero was first introduced by L.S.D. Morley [3]. A regular family of equilibrium
triangles and rectangles was still developed into a high level [4] but will not be
considered here. A drawback of the constant moment field is the impossibility of
obtaining exact equilibrium in the presence of a constant pressure, which is a severe
limitation. In order to solve this problem, it is necessary to add a special mode in
which the pressure is equilibrated by corner loads only. For this purpose, a particular
system of axes will be chosen as follows. Let us call 1, 2, 3 the nodes, as taken in the
counter clockwise sense. Let side 1-2 be the X axis. Y axis is perpendicular to it,
passed through node 1 and orientated in such a manner that Ys is positive. Let
ci(X)Y), c2(X)Y) and c3(X Y) be the three area coordinates and ¢, = 0 be the equation

of the side which is opposite to node i. The new moment field can be expressed as
follows

o=Np+Ty (25)

where N =[6,],i,j=1,2,3 is a constant matrix, § = [ﬂl B b ]T are unknowns,

amplitude y refers to pressure, and A is the area of the triangle.

The following special mode 7' has been obtained by the first author
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The complementary field in (26) has been added to the basic field (constant
field) in order to give the general field. To specify that our element contains this
special mode, we will call it enhanced Morley (EM) element. Results from this new
element were reported in earlier papers [9, 12].

5 Numerical results

Problem 1

Consider a square plate, edge length L =10, thickness ¢ = 0.1, Young’s modulus E =
2.05x10", Poisson’s ratio v = 0.3. It is clamped on all edges with a uniform
distributed load, p = -1000. Only a quarter (upper-right) of the plate is modelled due
to the symmetry of the geometry and the boundary condition, see Figure 2. An initial
coarse mesh is created with 8 triangles. Meshes of M x M elements over one quarter
are uniformly refined, with M = 4, §, 16 and 32. The exact strain energy is U, =
10.363879 [4].

Figure 2: Square plate and initial mesh



In the case of a clamped plate, one type of boundary conditions is homogeneous
(Fraeijs de Veubeke’s particular case). Therefore, the relative error can be rewritten

as
e {V(ah) - U(uh)} o7
V(o,)+U(u,)

The error is thus measured by the difference between the two obtained values of
the elastic energy.

Two different bending plate elements are used for the analyses. The first one is
the HCT conforming triangle which has reformulated in [13] with three degrees of
freedom (D.O.F.) per node. The other one is our enhanced Morley equilibrium
triangle with 1 D.O.F. per node and 1 D.O.F. per edge.

Mesh (121'\/2 él\l/gr)r?;lu) (flfé/%'eﬁ?gt) RE (%)
Vio,) Uu,)
2x2 25.53458 8.19668 71.69
4x4 14.99747 9.77068 45.94
8x8 11.47289 10.23024 23.93
16x16 10.55812 10.33456 10.34
32x32 10.36521 10.35726 1.96

Table 1: The results on relative error of conventional dual analysis
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Figure 3: Convergence curve for classically dual analysis



Herein, both approaches converge when the mesh is refined. The distance
between the two curves is a measure of convergence. Based on the global error
(R.E), this method leads to a reliable estimation. The convergence behaviour of the
strain energy in terms of the number of elements is illustrated in Figure 3.

Problem 2

Consider the L — shaped plate with a uniform pressure and clamped on a part of its
boundary, cf. Figure 4a. Data of problem: edge length L = 5, the quantitative
remainders are the same of the first problem. The meshes will generally be
composed of 3 — node or 6 — node triangles with two different levels of refinement.
Figure 4b is an example of a uniform mesh.

(a) (b)

Figure 4: L — shaped plate (a) and mesh of 1024 elements (b)

Finite element model

Mesh EM element HCT element Relative
error

D.O.F V(o,) D.O.F Uu,) R.E (%)
1 36 3.359811 30 1.372400 64.81
2 136 2.126611 108 1.618722 36.82
3 528 1.981689 408 1.711413 27.05
4 2080 1.865485 1584 1.751100 17.78
5 8256 1.820613 6240 1.769728 11.91

Table 2: The results on relative error of classically dual analysis
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Figure 5 plots the convergence of the energy of L — shaped plate in dual
analysis.
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Figure 5: convergence curve for L —shaped plate

The convergence of lower bound and upper bound of strain energy in this problem is
slow. This fact is not very surprising, as the problem is singular, due to the re-entrant
angle. In such cases, an adaptive mesh refinement procedure would lead to better
results.

Problem 3

Consider a square plate loaded at the centre, F =-1000, edge length L =10,
thickness ¢ = 0.1, Young’s modulus E = 2.05x10“, Poisson’s ratio v = 0.3. It is
clamped on one edge, the opposed edge being loaded with a prescribed non-zero
transversal displacement # =—-0.01(Figure 6a). The finite element meshes are
illustrated with triangular elements (Figure 6b) and quadrilateral elements (Figure
6¢).

In this problem, the displacement element is the HCT conforming triangle as
reformulated in [13] with three degrees of freedom (D.O.F.) per node. The
equilibrium is the classical Morley equilibrium triangle with 1 D.O.F. per node and
1 D.O.F. per edge [3].

The calculated results from HCT element and Morley element are summarized
in the following tables

11



L D F u
(a) (b)
(c)
Figure 6: Square plate, boundary conditions and mesh forms
Finite element model
K.A. Model (HCT element) S.A.Model (Morley element)
Nel
D.O.F U(u,) Sy () D.OF Vio,) Se(o))

8 15 28.630708 | 3.140623 17 21.124286 | 38.422033
32 55 27.797573 | 3.199027 67 25.3217398 | 47.223287
128 207 | 27.533898 | 3.214918 263 26.783227 | 50.2852997
512 799 | 27.440801 | 3.220142 | 1039 | 27.218831 51.198337

Table 3: Convergence of the energies
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Nel 2[M(u,) +¥(5,)] Uu,)+V(c,) Relative error (%)
8 16.384676 49.754994 57.39

32 5.393998 53.119313 31.87

128 1.633815 54.659632 17.34

512 0.482306 54317125 9.39

Table 4: Convergence of the errors in dual analysis

Results of tables 3 and 4 provide a global view based on the total energy and the
upper bound of global error estimation. The relative error corresponding to the final
mesh is still a large value (9.39%) [7]. Therefore, an improved solution is necessary.
For this reason, we apply the CQ element to the displacement model.

D.OF Uu,) Sy ) Relative error (%)
15 27.677173 3.197004 54.25
55 27.495156 3.214167 30.02
207 27.433853 3.219642 16.21
799 27.408949 3.221671 8.72

Table 5: Convergence of the errors in dual analysis is improved significantly when

using the conforming quadrilateral (CQ) element

The relative error corresponding to the final mesh of using CQ element gets a better
result than the previous estimation (8.72%). The convergence behaviour of total
energy in dual analysis is illustrated in Figure 7.
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Figure 7: Convergence curve for the generally dual analysis



6 Conclusion

The application of dual analysis to plates is shown to work as an efficient error
measure. Its classical form involving strain energy comparison is limited to
homogeneous boundary conditions. But its more evolved version based on the total
complementary energy works in any case.

The classical Morley element has been completed in order to make it able to
exactly equilibrate a pressure, a fact that allows us to treat more realistic problems.
This enhanced element is found to work fairly.

It has to be mentioned that, in the frame of dual analysis, there is no need to
know the exact solution, as it is always comprised between two the convergence
curves. So, the Richardson’s extrapolation is not necessary in the error evaluation.

Our results only derive from an evolution of the energy bounds as computed by
a uniform refinement of the mesh. Singular problems are more difficult to treat with
uniform meshes because the convergence is slow. Thereby, a sound knowledge is
necessary to generate finite element meshes based on cost-effective and accurate
solutions. We thus should combine our method with an adaptive local refinement
procedure in order to improve the cost effectiveness of the error bound evaluation.
The result of this investigation will be shown in a further paper.
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