AURORAE AT JUPITER: RECENT FINDINGS

Bertrand Bonfond - LPAP/ULg

The satellite footprints

What is a satellite footprint?

The Io footprint is formed of
 several spots
 a trail

Gérard et al. , 2006

The Europa tail

□ The lo footprint is not the only footprint to have a tail

Grodent et al., 2006

The multiple spots of the Ganymede footprint

Bonfond et al., MOP meeting, Boston, 2011

Spots multiplicity evolution

-6.4° Longitude (°)

Bonfond et al., 2008

Electron beam on Io

System III spots brightness variations

Ganymede footprint brightness variations

- 5 hours System III
 - Flapping of the current sheet
- □ 10-40 minutes
 - Related ton injections?
- □ 100-seconds
 - Bursty reconnections at Ganymede?
 - Double layer generation

The whole story

Heavy flux tubes go out

Emptied flux tubes go in

Phase space

Cowley and Bunce, 2001

Equatorial diffuse emissions

Radioti et al., 2009

Radioti et al., 2009

Dawn storms

Dawn Storms Projected

Clarke et al., 1998

Dawn storms

Compressed magnetosphere

No apparent solar wind trigger for them

Expanded magnetosphere

Nichols et al., 2009

Dawn storms

Color ratios up to 62
 E⁻ energy above 400 keV

Discontinuity

Discontinuity

Brightness variations

Nichols et al., 2009

Brightness variations

Magnetic field models

22

Magnetic field models

Local time variations

E. Composite of Mapping Results and UV Auroral Observations

Vogt et al., 2011

Main emission and GFP motion

Grodent et al., 2008

Main oval expansion

Main oval expansion

+250GWb according to VIPAL (Hess et al., 2011)

The usual case

An unusual case

Comparison

Outer emissions

La france france and

Injection blobs in the IR

The usual case

An unusual case

Solar wind driven changes?

Clarke et al., 2009

130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162

UT (DoY)

1, / km s⁻¹ Pdyn /

050

060

UT (DoY)

062

064

066

068

070

058

nPa

Internally driven changes

Tvashtar:

- Quiet since 2001
 Some signs of activity in 2006
 Giant plume in late February 2007
 Masubi:
 - active in March 2007

Sodium "Mendillosphere"

 Variability of the plasma torus

Sodium nebula

Yoneda et al., 2009

Fig. 1. Daily variations in $D_1 + D_2$ brightness of sodium nebula on eastern side (left) and western side (right).

HOM emissions

Yoneda et al., 2013

Nakagawa et al., 2000

À and the main oval

À and the main oval

Nichols, 2011

The polar dawn spots

Radioti et al. 2008

- Duration: from 10 min to 1 hour
- Spatial dimensions: ~ 3000x1000 km
- Power: 1 Giga Watt
- Magnetically maps to the night and predawn sectors

The polar dawn spots

Internally driven reconnection

(Woch et al. 1998, Kronberg et al., 2007)

Quasi-periodic polar flares

Bonfond et al., 2011

Origin?

- Pulsed reconnections at the dayside magnetopause
- Related to the high energy electron beams

Polar auroral filaments

- Long-lived, quasi-sunaligned polar auroral filaments
- Brightness of 100 kR
- Presumably map to the tail region, implying a relation to the tail dynamics.

Nichols et al., 2009

UV-IR comparison

Radioti et al., in press

