

Université de Liège

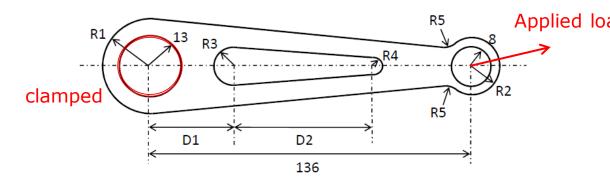
A comparative evaluation of optimization methods based on a 2-dof robot application.

E. Tromme, O. Brüls, G. Virlez, P. Duysinx

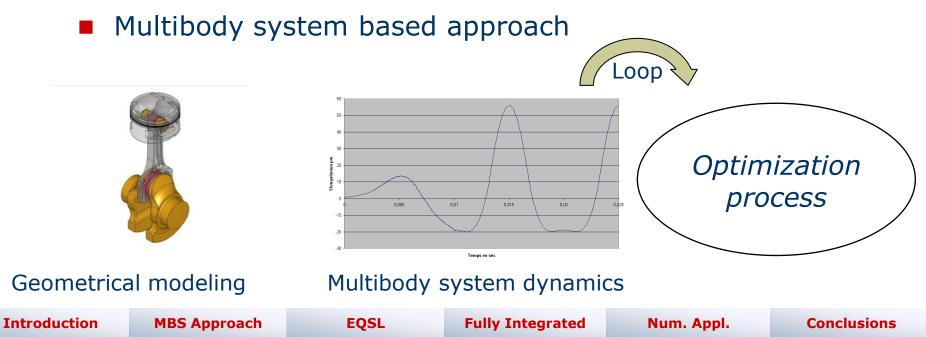
Aerospace and Mechanical Engineering Department University of Liège Belgium

Introduction – Optimization of a connecting rod

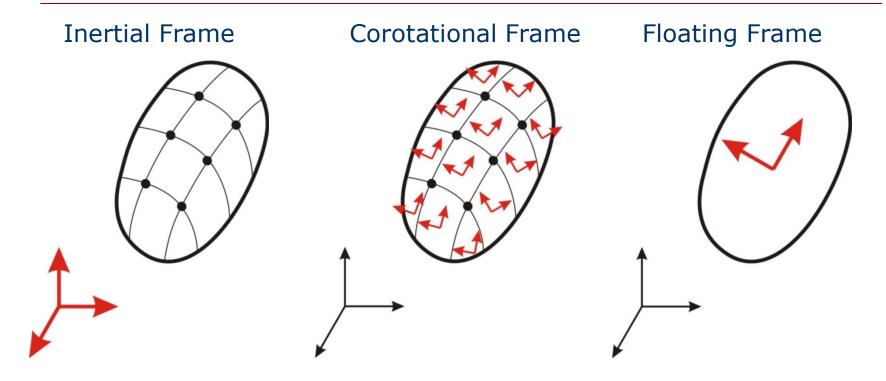
A component based approach



- Applied load Experience -Empirical load case
 - Dynamic factor amplification for safety
 - ➔ Not optimal



MBS: Several parameterizations



No distinction

Rigid motion + small deformation

Absolute coordinates (FE)

Rigid + Elast. Coord.

Inertia forces are easily computed in an inertial reference frame. Internal forces are easily computed in a body-attached frame.

Introduction

MBS Approach

EQSL

Fully Integrated

Num

Num. Appl.

Equation of FEM-MBS dynamics

- Motion of the flexible body (FEM) is represented by absolute nodal coordinates q (Geradin & Cardona, 2001)
- Dynamic equations of multibody system $\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} = \mathbf{g}(\dot{\mathbf{q}}, \mathbf{q}, t) = \mathbf{g}^{ext} \mathbf{g}^{int} \mathbf{g}^{gyr}$
- Subject to kinematic constraints of the motion $\label{eq:phi} \Phi(\mathbf{q},t) = \mathbf{0}$
- The solution is based on a Lagrange multiplier method

$$\begin{split} \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{\Phi}_{q}^{T}(\mathbf{q},t)\boldsymbol{\lambda} &= \mathbf{g}(\dot{\mathbf{q}},\mathbf{q},t) \\ \mathbf{\Phi}(\mathbf{q},t) &= \mathbf{0}, \end{split}$$

with the initial conditions

$$\mathbf{q}(0) = \mathbf{q}_0 \text{ and } \dot{\mathbf{q}}(0) = \dot{\mathbf{q}}_0.$$

Introduction

Num. Appl.

- The set of nonlinear DAE is solved using the generalized-α method (Chung and Hulbert, 1993)
- Definition of a pseudo acceleration vector a:

$$(1 - \alpha_m) \mathbf{a}_{n+1} + \alpha_m \mathbf{a}_n = (1 - \alpha_f) \ddot{\mathbf{q}}_{n+1} + \alpha_f \ddot{\mathbf{q}}_n,$$

Newmark integration formulae

$$\mathbf{q}_{n+1} = \mathbf{q}_n + h\dot{\mathbf{q}}_n + h^2 \left(1/2 - \beta\right) \mathbf{a}_n + h^2 \beta \mathbf{a}_{n+1}$$

$$\dot{\mathbf{q}}_{n+1} = \dot{\mathbf{q}}_n + h \left(1 - \gamma\right) \mathbf{a}_n + h \gamma \mathbf{a}_{n+1},$$

 Solve iteratively the linearized dynamic equation system (Newton-Raphson scheme)

$$\begin{split} \mathbf{M} \Delta \ddot{\mathbf{q}} + \mathbf{C}_t \Delta \dot{\mathbf{q}} + \mathbf{K}_t \Delta \mathbf{q} + \mathbf{\Phi}_{\mathbf{q}}^T \Delta \lambda &= \Delta \mathbf{r} \\ \mathbf{\Phi}_{\mathbf{q}} \Delta \mathbf{q} &= \Delta \mathbf{\Phi} \\ \end{split} \\ \text{where } \mathbf{r} = \mathbf{M} \ddot{\mathbf{q}} + \mathbf{\Phi}_{\mathbf{q}}^T \lambda - \mathbf{g} \end{split}$$

Introduction

The Equivalent Static Load method

Introduction

MBS Approach

EQSL

Fully Integrated

Num. Appl.

- Difficulties of dealing with dynamic constraints and loadings
- Definition of the Equivalent Static Load:

When a dynamic load is applied to a structure, the equivalent static load is defined as the static load that produces the <u>same displacement field</u> as the one created by the dynamic load at an arbitrary time. (Kang, Park & Arora, 2005)

Introduction of the concept on a linear structure

Equilibrium equation: $\mathbf{M}(\mathbf{x})\ddot{\mathbf{y}}(t) + \mathbf{K}(\mathbf{x})\mathbf{y}(t) = \mathbf{s}(t)$ $\Leftrightarrow \mathbf{K}(\mathbf{x})\mathbf{y}(t) = \mathbf{s}(t) - \mathbf{M}(\mathbf{x})\ddot{\mathbf{y}}(t)$

The EQSL: $\mathbf{f}_{eq}(t) = \mathbf{s}(t) - \mathbf{M}(\mathbf{x})\ddot{\mathbf{y}}(t)$

- In a discrete time domain, it exists one EQSL for each integration time step.
- The dynamic response optimization problem is transformed in a static response optimization problem with multiple load cases.

Introduction

EQSL

Fully Integrated

Num. Appl.

The EQSL Method for MBS optimization

$$\begin{array}{c|c} \textbf{Equations of motion for body } i \\ \hline \textbf{Floating Frame} \\ & \begin{matrix} \mathbf{m}_{RR}^{i} & \mathbf{m}_{R\theta}^{i} & \mathbf{m}_{Rf}^{i} \\ & \mathbf{m}_{\theta\theta}^{i} & \mathbf{m}_{\theta f}^{i} \\ & \text{sym.} & \mathbf{m}_{ff}^{i} \end{matrix} \end{matrix} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{R}}^{i} \\ \ddot{\boldsymbol{\theta}}^{i} \\ \ddot{\mathbf{q}}^{i}_{f} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{K}_{ff}^{i} \end{bmatrix} \begin{bmatrix} \mathbf{R}^{i} \\ \theta^{i} \\ \mathbf{q}^{i}_{f} \end{bmatrix} = - \begin{bmatrix} \mathbf{C}_{Ri}^{T} \\ \mathbf{C}_{\thetai}^{T} \\ \mathbf{C}_{qi}^{T} \end{bmatrix} \boldsymbol{\lambda} + \begin{bmatrix} \mathbf{g}_{R}^{i} \\ \mathbf{g}_{\theta}^{i} \\ \mathbf{g}_{f}^{i} \end{bmatrix} \\ & \begin{matrix} \mathbf{K}_{ff}^{i} \mathbf{q}_{f}^{i} = \underbrace{-\mathbf{m}_{fR}^{i} \ddot{\mathbf{R}}^{i} - \mathbf{m}_{f\theta}^{i} \ddot{\theta}^{i} - \mathbf{m}_{ff}^{i} \ddot{\mathbf{q}}_{f}^{i} - \mathbf{C}_{qi}^{T} \\ \mathbf{g}_{eq}^{i}(t) \end{array} \right. \begin{array}{c} \textbf{EQSL for body } i \text{ at time } t \\ (Kang, Park \& Arora, 2005) \end{array}$$

→ The EQSL method is tailored to a floating frame formalism.
→ Each body is optimized independtly.

Inertial Frame Linearized equations of the equations of motion

$$\mathbf{M}(t_i)\Delta\ddot{\mathbf{q}}(t_i) + \mathbf{C}_t(t_i)\Delta\dot{\mathbf{q}}(t_i) + \mathbf{K}_t(t_i)\Delta\mathbf{q}(t_i) + \mathbf{\Phi}_{\mathbf{q}}^T(t_i)\Delta\boldsymbol{\lambda}(t_i) = 0$$

$$\mathbf{K}_t(t_i)\Delta\mathbf{q}(t_i) = -\mathbf{M}(t_i)\Delta\ddot{\mathbf{q}}(t_i) - \mathbf{C}_t(t_i)\Delta\dot{\mathbf{q}}(t_i) - \mathbf{\Phi}_{\mathbf{q}}^T(t_i)\Delta\boldsymbol{\lambda}(t_i)$$

While the structure of the equations seems similar to the equilibrium equation of a static linear structure, <u>the optimization process can not</u> <u>be directly based on this equation.</u>

Introduction

MBS Approach

EQSL

Fully Integrated

Num. Appl.

Conclusions

Univer

Differences between the two MBS approaches

- Decoupling between the component flexibility
 - One stiffness matrix Kⁱ is defined per component.
- The matrix Kⁱ is constant with respect to the system configuration in the body attached frame.
- Decoupling between rigid body motions and deformations

Inertial Frame

- No decoupling between the component flexibility
 - **K**_t is related to the whole system.
- The matrix K_t evolves with respect to system configuration.
- No decoupling between rigid body motions and deformations in the displacement vector **q**.

In general

- Originally developed for <u>rigid MBS</u>
 - Flexibility introduced later
- Unable to represent geometric stiffening

- Developed to obtain an <u>integrated</u> <u>approach of the flexibility in MBS</u>
- For instance, stress analysis is straightforward

A <u>post-processing step</u> to define the EQSL with an **inertial** frame approach

- 1. For each component, it is possible to extract its tangent stiffness matrix by selecting suitable generalized coordinates
- 2. To avoid storing \mathbf{K}_t at each time step, a reference state is considered $(t_{ref}) \rightarrow$ Need of suitable transformations
- 3. Key point: introduction of a <u>corotational frame</u> in a post processing step for each component
 - Enables to define the deformation in the attached-body frame
 - Enables to define the appropriate transformations to go back to the reference state

Using the cororational frame

$$\mathbf{K}_{t}(t_{i})\Delta\mathbf{q}(t_{i}) = -\mathbf{M}(t_{i})\Delta\ddot{\mathbf{q}}(t_{i}) - \mathbf{C}_{t}(t_{i})\Delta\dot{\mathbf{q}}(t_{i}) - \mathbf{\Phi}_{\mathbf{q}}^{T}(t_{i})\Delta\lambda(t_{i})$$
$$\mathbf{K}_{t}^{b}(t_{ref})\mathbf{u}^{b}(t) = \mathbf{g}_{eq}^{b}(t)$$

Introduction

MBS Approach

EQSL

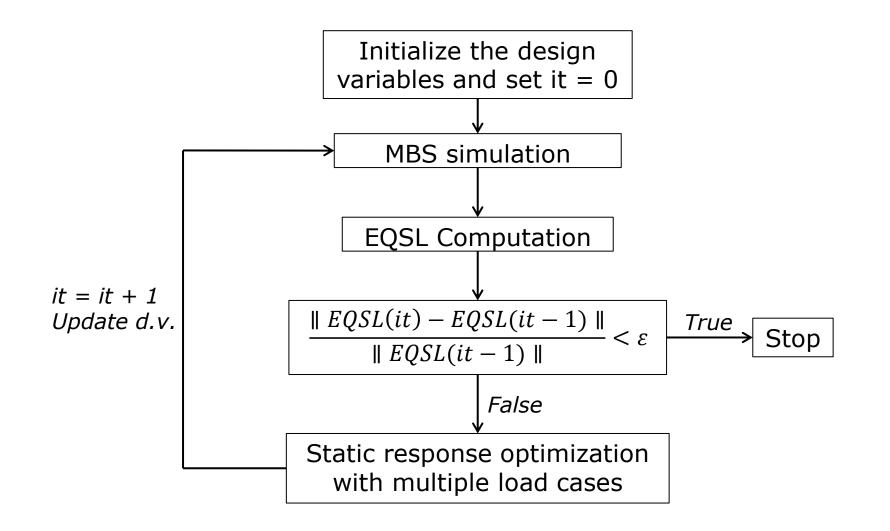
Fully Integrated

Num. Appl.

Flowchart of the optimization process using the EQSL method

Université

de Liège



Introduction MBS Approach EQSL Fully Integrated Num. Appl. Conclusions

The "fully integrated" method

Introduction

MBS Approach

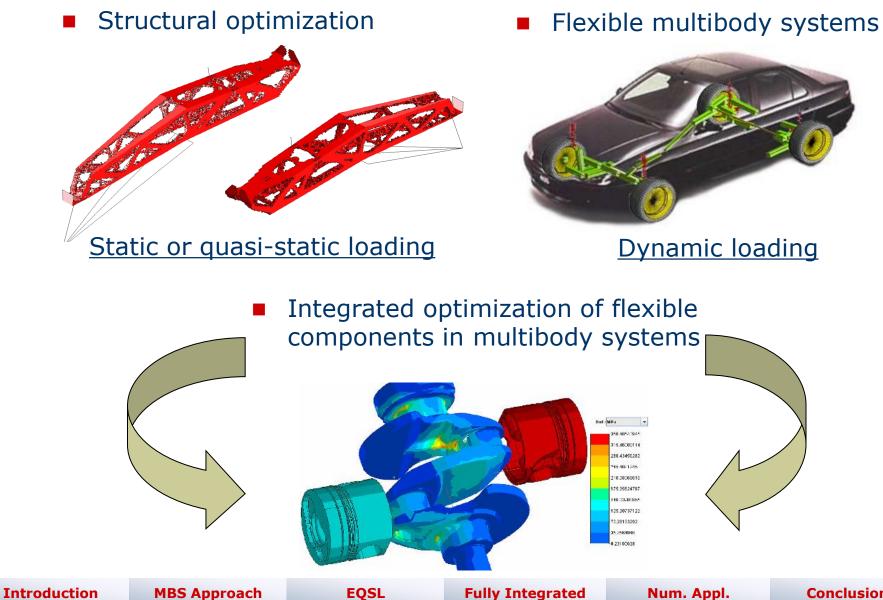
EQSL

Fully Integrated

Num. Appl.

C

Evolution of virtual prototyping



- Design problem casted in a mathematical programming problem minimize $\varphi(\mathbf{x})$ \mathbf{x}_{2}
 - subject to Equilibrium equation

$$c_{j}(\mathbf{x}) \leq \overline{c}_{j}, \qquad j = 1, \dots, n_{c}$$

$$\underline{x}_{v} \leq x_{v} \leq \overline{x}_{v}, \qquad v = 1, \dots, n_{v}$$

$$n_c, n_c, \dots, n_v, \dots, x^{k^*}$$

- Provides a general and robust framework to the solution procedure
- Various efficient solvers can be used.

Introduction

EQSL

Fully Integrated

Num. Appl.

- Finite difference scheme can be CPU-time consuming.
- A semi-analytical method has been developed by O. Brüls and
 P. Eberhard (2008) which can be integrated in the generalized-α scheme.

$$\mathbf{M} \frac{d\ddot{\mathbf{q}}}{dp_u} + \mathbf{C}_t \frac{d\dot{\mathbf{q}}}{dp_u} + \mathbf{K}_t \frac{d\mathbf{q}}{dp_u} + \mathbf{\Phi}_{\mathbf{q}}^T \frac{d\mathbf{\lambda}}{dp_u} = -\frac{\partial \mathbf{r}}{\partial p_u}$$
$$\mathbf{\Phi}_{\mathbf{q}} \frac{d\mathbf{q}}{dp_u} = -\frac{\partial}{\partial p_u} \mathbf{\Phi}$$

- Sensitivity equations are linear with respect to $\frac{d\mathbf{q}}{dp_u}$ and $\frac{d\boldsymbol{\lambda}}{dp_u}$.
- Same structure as the linearized equations of motion
 - Same integration procedure except for the residuals
 - Tangent iteration matrix is the same as the one of the original problem
 - No need to apply a Newton-Raphson procedure

Introduction

Numerical Applications

Introduction

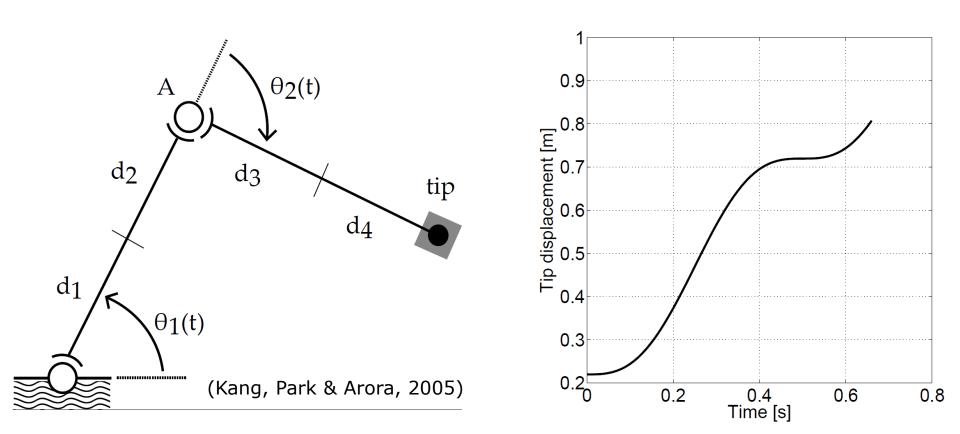
MBS Approach

EQSL

Fully Integrated

Num. Appl.

A 2-dof robot subject to tracking trajectory constaints



- Minimize the mass
- 4 beam elements
- Design variables: diameters
- Imposed rotations at hinges
- Time step: 0,0005 [s]

 $\Delta x_{tip}(t) = \Delta y_{tip}(t) = \frac{0.5}{T} \left(t - \frac{T}{2\pi} \sin\left(\frac{2\pi t}{T}\right) \right)$

Introduction

MBS Approach

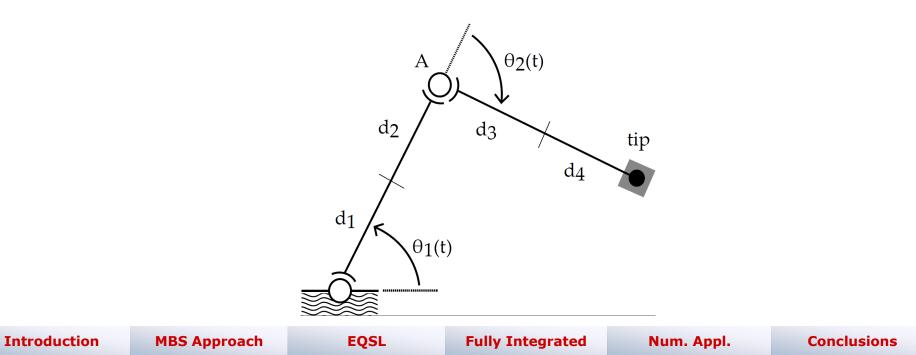
EQSL

Fully Integrated

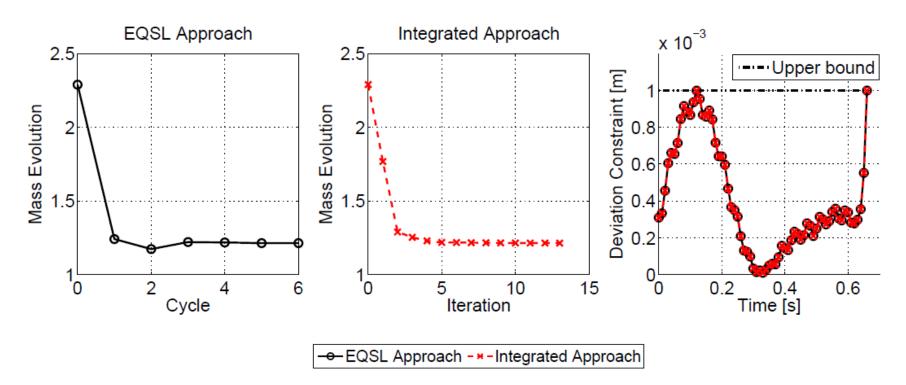
Num. Appl.

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & m\left(\mathbf{x}\right) \\ \text{subject to} & \sqrt{\delta y_a^2(t_n) + \delta y_{tip}^2(t_n)} \leq 0.001 \ [\text{m}], & n = 1, \dots 67, \\ & 0.02 \ [\text{m}] \leq x_v \leq 0.06 \ [\text{m}], & v = 1, \dots, 4. \end{array}$$

where $\delta y_a(t_n)$ and $\delta y_{tip}(t_n)$ are respectively the vertical deflections in <u>the iner-</u> <u>tial frame</u> of the first link at the hinge A and of the second link at the tip.



	Mass [kg]	Iterations	Inner iterations	$d_1 \ [mm]$	$d_2 \ [mm]$	$d_3 [mm]$	$d_4 \ [mm]$
EQSL Method	1.213	6	61	45.40	32.76	37.99	26.83
Integrated Method	1.214	13	/	45.44	32.69	38.08	26.78



Introduction

EQSL

Fully Integrated

Num. Appl.

Со

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & m\left(\mathbf{x}\right) \\ \text{subject to} & \sqrt{\delta x_{tip}^2(t_n) + \delta y_{tip}^2(t_n)} \leq 0.001 \ [\text{m}], & n = 1, \dots 51, \\ & 0.02 \ [\text{m}] \leq x_v \leq 0.06 \ [\text{m}], & i = 1, \dots, 4. \end{array}$$

where $\delta x_{tip}(t_n)$ and $\delta y_{tip}(t_n)$ are respectively the horizontal and vertical deflections of the robot tip in <u>the inertial frame</u>.

- Only the extremity of the second robot link is concerned by the optimization constraint.
- It is a constraint on the global system behavior.
- With the EQSL method, the components are optimized independently. The first link does not appear in the constraint formulation while it is obvious that its flexibility has a contribution to the tip displacement.
- The problem can be overcome by using a sum over the deflection of all the components.
- This problem does not appear with the fully integrated method as the system is also treated as a whole during the optimization process.

Introduction

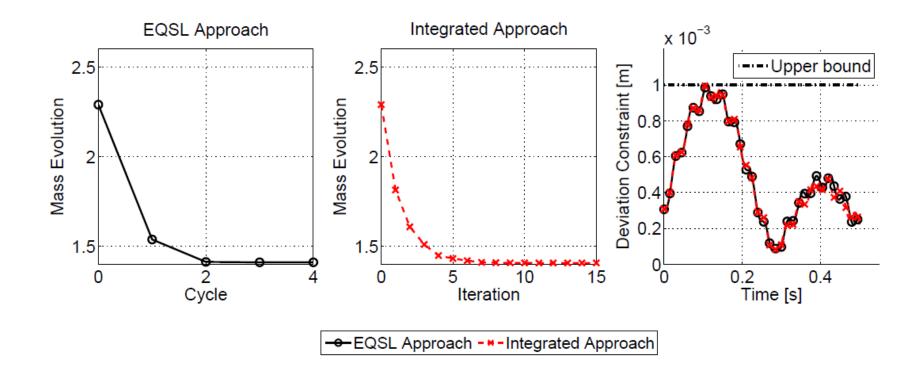
EQSL

Fully Integrated

Num. Appl.

Second numerical application - Results

	Mass [kg]	Iterations	. Inner iterations	$d_1 \; [mm]$	$d_2 \ [mm]$	$d_3 \ [mm]$	$d_4 \ [mm]$
EQSL Method	1.411	4	38	47.88	34.51	42.11	30.08
Integrated Method	1.408	15	/	48.59	34.82	41.60	29.02



Conclusions

- We proposed a method to derive the EQSL adapted to the nonlinear finite element based MBS formalism.
- Both methods can converge towards the same optimum for the considered example.
- Fundamental difference:
 - Fully integrated method: 1 dynamic analysis per iteration
 - EQSL method: 1 dynamic analysis + a set of static analysis per cycle
- For slowly varying body loads, the EQSL method normally requires less dynamic simulations and one dynamic analysis is more time consuming than one static analysis.
- The formulation of global behavior constraint can become rather complex with the EQSL method as the components are decoupled (e.g. multiple loop system).

Introduction

EQSL

Fully Integrated

Num. Appl.

- Ongoing work investigates systems with design dependent loading and more advanced cases as different behaviors are expected for the methods.
- A Lie group formulation enables to have a constant tangent stiffness matrix in the material frame and enables to have a measure of the deformation in the material frame.

Introduction

EQSL

Fully Integrated

Num. Appl.

Thank You Very Much For Your Attention

I acknowledge the Lightcar project sponsored by the Walloon Region of Belgium for its support.

Introduction

EQSL

Fully Integrated

Num. Appl.

Emmanuel TROMME

Automotive Engineering

Aerospace and Mechanical Engineering Department University of Liège

Chemin des Chevreuils, 1 building B52 4000 Liège Belgium

Email: emmanuel.tromme@ulg.ac.be

Tel: +32 4 366 91 73 Fax: +32 4 366 91 59

Introduction