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Abstract

The past year witnessed very significant advancesin the living anionic polymerization of
(meth)acrylate monomers, particularly in hydrocarbons at or below 0°C. Block polymerization of alkyl
methacrylates with primary alkyl acrylates, although somewhat improved, remains a challenge.
Anionic polymerization of styrene, diene and its derivatives was carried out with the aim of
synthesizing functional polymers and block copolymers of various architectures. There has been a
trend towards combining different living techniques in order to design polymers of unique architectures
and properties.

Abbreviations

DBTMGLI di-tert-butyl 2-lithio-2,4,4'-trimethylglutarate
EiBLi ethyl a-lithioisobutyrate

LAP ligated anionic polymerization
LiIOEEM lithium 2-(2-methoxy)ethoxy ethoxide
LiOEM lithium 2-methoxyethoxide

MMA methylmethacrylate

MNDO modified neglect of differential overlap
MW molecular weight

MWD molecular weight distribution

PIB poly(isobutylene)

PMMA poly(methylmethacrylate)

PtBMA poly(tert-butylmethacrylate)

THF tetrahydrofuran

Introduction

The discovery of 'living' anionic polymerization by M Szwarc in the fifties was the detonator for avery
broad area of actionin thisfield [1*]. An exceptional research effort was indeed undertaken, being
motivated by obvious mechanistic challenges and by the prospect of tailoring new polymeric materials,
and thus of achieving what was a dream until then: the molecular engineering of polymers.

At atime when the recently discovered controlled radical polymerization [2*] is viewed as a much less
demanding process, anionic polymerization still remains an important method, well-suited to kinetic
studies[3*], the synthesis of polymers of predictable molecular weight (MW) with a narrow molecular
weight distribution (MWD), tailoring of block copolymers [4,5*,6-9], design of nonlinear molecular
architectures [10**, 11] and telechelic polymers[12-17], and stereoregular polymerization [18,19].
Major progress in mechanistic studies and macromolecular engineering reported in the past year(s) isto
be found in the very challenging field of the anionic polymerization of (meth)acrylic monomers.
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Anionic polymerization of (meth)acrylic esters.

These esters are one of the most attractive and versatile family among the presently available
monomers. Their polymers encompass plastics, adhesives, elastomers, and their block copolymers have
potentia as thermoplastic elastomers, impact modifiers, or emulsifiers with excellent resistance to
weathering. Imparting control or living characteristics to the anionic polymerization of (meth)acrylate
implies, however, the need to minimize or to suppress a number of noxious secondary nucleophilic
reactions.

Contribution of ligated anionic polymerization (LAP)

Among the possible approaches to prepare well-defined (meth)acrylate homo- or copolymers, LAP has
been exploited for high efficiency. LAP isindeed the only method able to simultaneously control living
homo- and copolymerization of a number of monomers to high MW, low MWD, monomer conversion
close to 100%, with varying regio- and stereosel ectivity. The basic concept isto use suitable ligands,
that coordinatively interact with the active initiating or propagating ion-pairs and fulfill three major
functions: firstly, the promotion of a new complexa-tion equilibrium with ion-pairs and/or aggregates,
hopefully leading to a single stable active species; secondly, modulation of the electron density at the
metal-enolate ion-pair (i.e. stability and reactivity); and most importantly thirdly, protection of theion-
pair by an extended steric barrier, so that back-biting of the growing anion onto the antepenultimate
chain unit is minimized [20]. Two groups of efficient ligated systems have been studied quite recently:
firstly, y-type ligands such as aluminum alkyls[21,22] and some inorganic lithium salts [23]; and
secondly, p/o-type dual ligands, such as lithium 2-methoxyethoxide (LiOEM) [24*], lithium 2-(2-
methoxy)ethoxy ethoxide (LiOEEM) [25,26], and lithium aminoalkoxide [27]. When the anionic
species (Li counterion) responsible for the polymerization of methylmethacrylate (MMA) in toluene
are ligated by alkylaluminum compounds, living characteristics are observed, and predominantly
polymethylmethacrylate) (PMMA) is formed with, however, afairly broad MWD. This undesired
feature has been accounted for by a network of coordinative interactions between lithium counterions
at living chain ends and in-chain ester car-bonyl groups [28]. This network is destroyed by the addition
of an ester like Lewis base as the co-solvent, for example, methyl pivalate and diisooctyl phthalate
[21]. Yet, even at 0°C, a syndiotactic PMMA of narrow MWD isformed. As polymerization is slow
(half life of several hours), this method is restricted to the synthesis of low MW polymethacrylartes,
however, it ispoorly efficient inthe case of alkylacrylates [22]. Because of a much better
solubility in hydrocarbons, LiCIO,4 has been substituted for LiCl as the p-ligand in the polymerization
of (meth)acrylates.

Well-defined poly-(meth)acrylates have been accordingly synthesized in a toluene/THF (9/1, v/v)
mixture at -40°C [23]. Compared to p-type ligands, p/o-type ligands are much more efficient,
particularly for the successful block polymerization of MMA and primary acry-lates [24*,26]. It must
be pointed out that PMMA-b poly(n-butyl acrylate) diblocks have been synthesized in toluene at -20°C
by the 'flow-tube technique' [29], which allows monomer and initiator solutions to be mixed efficiently
within less than 1 msin amixing jet, and polymerization to occur in acapillary tube (5 ms<time<5
s) [24*]. 'This observation is encouraging for the scaling-up of production of engineered (meth)acrylate
based materials.
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Figure 1Postulated equilibrium between two active species with different reactivitiesin anionic
complexation with NR4+ XIAIR 3.
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Analysis of the active site structure

Models for the lithiated species active in the anionic polymerization of MMA, such as a-lithioesters,
were studied, some years ago, by multinuclear NMR spectroscopy [30], The interest of these modelsis,
however, limited by their reactivity which does not match the reactivity of the propagating species.
This reactivity changes rapidly while going from monomerie to dimeric and trimeric active species.
Moreover, models for MMA species are only stable at very low temperatures, which is an experimental
drawback. For these reasons, living poly(tert-butyl-methacrylate) (PtBMA), stable at 0°C, and its
dimeric model, di-tert-butyl 2-lithio-2,4,4'-trimethylglutarate (DBTMGL.i), have been recently studied
[31,32]. The last monomer units of PtBMA have also been selectively labeled by *C atoms (*C NMR
analysis). A parallel NMR study (®"Li, *H, "*C) of both the dimeric model and the growing chains has
been conducted in the absence and presence of - and p/o-type ligands [33,34], the main conclusions of
which are as follows:

1. Both DBTMGLI and living oligomers are engaged in an equilibrium between a dimeric and
unimeric form in THF from -70°C to 10°C [31], the aggregation being favored at higher temperature
and concentration.

2. Addition of LiCl completely perturbs the aggregation equilibrium. When the LiCl : DBTMGLI
molar ratio is greater than one, a1 : 1 complex is formed with afast exchange rate. *C Relaxation
times also indicate a dimeric aggregation for this complex, in full agreement with an MNDO (modified
neglect of differential overlap) calculation. Living PtBMA oligomersalso formal: 1 complex with
LiCl. Although no intramolecular complexation of Li* with the antepenultimate ester group is
observed, self-termination of these oligomers still occurs at 0°C.

3. A more complex situation results from the addition of LiOEEM, which shows a strong tendency to
self-aggregate into dimeric, trimeric, and tetrameric aggregates. Self-aggregation of LIOEEM competes
with mixed complexa-tion with DBTMGLi (1: 1, 3: 1 and probably 2 : 1 mixed aggregates) and living
PtBMA oligomers. However, parts of the DBTMGLi and PtBMA oligomers remain uncom-plexed
even when LIOEEM is used in excess, which suggests that at |east two kinds of active species may
contribute to the anionic polymerization of tor-butyl methacrylate and account for the bimodality of the
final polymer.

Last generations of ligands

In their study of the anionic polymerization of (meth)acry-lates in the presence of aluminum akyls
[21,22], Mller and co-workers [33**] have studied the effect of tetraalky-lammonium halides. The
living anionic polymerization of MMA, initiated by ethyl o-lithiocisobutyrate (EiBLi) in toluene at or
below 0°C, is very fast, because the half-reaction time is a few minutes compared to afew hoursin the
absence of ammonium salts. A polymer with MW up to 250,000 g/mol™ can be synthesized, which is
mainly syn-diotactic (75%) and of narrow MWD (< 1.2). It isworth noting that the the metal-free
anionic polymerization of MMA initiated by tetrabutylammonium malonate in THF is poorly
controlled (MWD > 2.0; [36]). The beneficial effect of tetraalkylammonium halide is thought to result
from the partial dissociation of the Li enolate complexed by NR;X/AIR'; into the considerably more
reactive ester enol aluminate 2 as shown in Figure 1. Interestingly enough, the anionic polymerization
of primary acrylates, such as n-butyl acrylate and 2-ethylhexyl acrylate, is controlled at -78°C.

A simple and economic method has been recently devised for the one-pot synthesis of an a-lithio ester
initiator together with a p/o-typeligand (T Zundel, Ph Teyssie, R Jérdbme, unpublished data).
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Figure 2 One pot strategy for the anionic polymerization of MMA by EiBLi in the presence of LiOEM
astheligand.

2-Methoxy-ethanol isfirst metallated in toluene by an excess of Li, with the formation of the expected
LiOEM ligand. This Li-alkoxide is able to metallate ethylisobutyrate, thus forming the initiator (EiBLi)
with the release of 2-methoxyethanol, which is reconverted into LIOEM by excess Li. This reaction
pathway, which isillustrated in Figure 2, makes the ligated LiOEM/EiBLi initiator more attractive for
the large scale polymerization of MMA in toluene at 0°C.

Finally, a new o-type ligand has been discovered that allows highly isotactic PMMA to be synthesized
in toluene at 0°C [37**]. According to a 'process-friendly’ method, sec-butyllithium is reacted with
hexa(octa)-methyl cyclotri-(tetra)siloxane (D3 or D4) leading to sec.C4Hg-Si(CH3)20Li, which isthe
actual ligand for unreacted sec.BuLi and, later on, for the propagating species of the MMA type. Figure
3 illustrates this cascade-type of reaction, which, under optimized experimental conditions (particularly
theinitial sec.BuLi: D3 [or D4] molar ratio) leads to a single mixed complex, as confirmed by

multinuclear NM R spectroscopy [38]. This active mixed complex promotes the quantitative living

polymerization of MMA in toluene within 1 h at 0°C, such that PMMA up to 100,000 g/mol'1 can be
synthesized with a narrow MWD (~ 1.1). The stereoregularity of PMMA isamazingly high, that is,
95% isotactic. The reason for this unusually high isotacticity is not yet clear. The attack of the meso-
prochiral face might, however, be preferential as result of the unusual bulkiness of the lig-ands around
the active center in the mixed complexes.

SBULi + (MepSiO)s —Lw  sBULMesSIO)eLi
sBuli l k2
sBuLi(MesSiQ)Lf + sBuli{MeSiO)sLi
sBuli l ka
sBuLi(MezSIO)Li + sBuli{Me,SiO)Li
sBuLi ] K4
2 sBuli{MesSiO)Li

Figure 3 Reaction of secBuLi with (MeSO)g4.
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Polymerization of methacrylatesin the presence of the tetraphenylphosphonium ion has also been
discussed in terms of phosphorylide-mediated polymerization [39].

Climbing back up the nucleophilic reactivity scale

One of the oldest constraints in anionic polymerization is the fact that an active growing site cannot
attack another type of monomer if it does not have the proper (higher) relative nucleophilicity. This
requirement explains why a well-defined sequence of monomers, that is, dienes, styrenes >
vinylpyridines > (meth)acrylates > oxiranes, siloxanes, has to be followed for the successful synthesis
of block copolymers. However, the results described hereafter demonstrate that such a classical rule
can be circumvented in some cases [40**].

The selected general strategy isillustrated in Figure 4 which basically consists of the nucleophilic
attack (by aninitiator or aliving growing chain) of a substituted disila-cyclopentane in a polar mixed
solvent, with the formation of a new silyl anion, nucleophilic enough to attack the other usual
monomers. The driving force of this process comes from the energy gain by the formation of more
stable bonds around the Si atom, and probably also from the release of ring strain, particularly if a
disila-cyclopentane is used. Although this strategy has to be optimized, very encouraging preliminary
results have been reported. Indeed, for the first time, potassium trimethylsilanolate, and living
potassium poly(ethylene oxide), both of which are unable to initiate styrene and MMA polymerization,
have been converted from oxyanionic active ends to silyl anionic ones by reaction with cyclic disila
derivatives, thus allowing homopoly-merization and sequential (co)polymerization of styrene or MMA
to proceed in a controlled way. These results pave the way to the direct synthesis of A-B-A triblock
copolymers from a,w-difunctiona living chains, in a sequence unaccessible to classical anionic
initiators.
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Figure 4 Use of cyclosila derivatives as reactivity amplifiers for the macromolecular engineering of
new copolymers: reaction scheme. PnO'M+ isaliving polymer with an oxyanionic chain end and
metal counterion; mis the number of monomer 2 (M,).

Recent achievementsin the anionicpolymerization of styrene (derivatives) anddienes
Difunctional initiating system

Undoubtedly, the most successful industrial application of anionic polymerization is the production of
the styrene-diene based thermoplastic elastomers (TPES). In order to improve the upper service
temperature, which is around 70°C, the synthesis of methacrylate-diene based triblocks has been
considered. In contrast to styrene and butadiene, which are of quite a comparable reactivity. MMA is
much more reactive than butadiene, such that it is mandatory to polymerize butadiene first, which
requires the availability of a hydrocarbon soluble a,w-difunctional initiator. Our laboratory has recently
reported on the efficiency of the diadduct of tert-butyllithium to 1,3-diisopropenyl benzene (DIB) in the
presence of ether ligands, which prevent the dianionic species from aggregating while preserving a
predominantly 1,4-microstructure for polybutadiene [41-45]. Substitution of MMA for styrene enabled
new TPEs to be synthesized with the same ultimate tensile properties as the traditional SBS, but with
an upper service temperature improved by ~50°C.

Functional polymers

The anionic polymerization of traditional monomers, such as styrene and dienes, usually fails when
they are substituted by functional groups because of the sensitivity of these groups to nueleophiles.
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Nakahama and coworkers [46-48,49*] have contributed remarkable progress to this field by the
deliberate introduction of an appropriate electron-withdrawing group on (a-methyl) styrene (para-
position), such as cyano [46,47], methyl sulfide [48] and N-arylimino [49*]. Polymers of strictly
controlled molecular structures have been synthesized as result of the appropriately changed reactivity
of both the monomer (enhanced electrophilicity) and the carbanion produced (reduced nucleophilicity).

Conditions for the successful anionic polymerization of styrene para-substituted by a silylvinyl group
have also been reported [50].

New industrial development

The anionic terpolymerization of styrene, isoprene and butadiene was reported by AF Halasafrom The
Goodyear Tire & Rubber Co., they achieved control of composition, microstructure and sequence
distribution in a unique family of elastomeric materials [51*]. These new elastomers can be tailor-made
with diverse viscoelastic responses in order to suit specific tire applications, in particular, those
required for high performance tires.

Combination of anionic with other living polymerizations

Living polymerizations (i.e. anionic, cationic, radical) provide the most versatile synthetic routes for
the preparation of awide variety of well-defined polymer structures. As each living mechanism is only
applicable to alimited number of monomers, it is highly desirable to combine at least two living
polymerization techniquesin order to prepare novel polymeric materials. Recent publications have
dealt with the combination of living anionic polymerization with cationic [52**,53* .54,55,56* ,57],
controlled radical [58], and group transfer [59] polymerizations.

In avery inventive series of papers [52**,53*,54], Ruckenstein and Zhang reported on new
methacrylate monomers, such as 2-(vinyloxy)ethyl methacrylate (VEMMA) and |-(isobutoxy)ethyl
methacrylate (BOEMA), that can be anionically polymerized in aliving way. These methacrylates are
substituted by groups that can either polymerize cationically (vinyloxy group in VEMMA) or initiate
the cationic polymerization of vinyl ethersin presence of ZnCl, (1-isobutyoxyethyl ester). These
difunctional monomers can be used advantageously to prepare copolymers with complex molecular
architectures, for example, comb-like, block-graft, and star-shaped structures.

In another series of papers, Mller and co-workers [55,56*] proposed the combination of living anionic
and cationic polymerization, in order to prepare poly(isobuty-lene) (PIB)-based linear and star-shaped
block copolymers. The strategy consists of the end-capping of living PIB chains by 1,1-diphenyl
ethylene, followed by quantitative metallation with a K-Na alloy. The resulting stable macrocarbanion
can initiate the living anionic polymerization of tBMA and, after exchange of Li* for K¥, the MMA
polymerization.

Conclusions

Fundamental and practical developments in anionic polymerization have been reviewed for the past
year. New concepts, initiating systems, reaction processes and materials have been discovered and put
into practice. Thisis very encouraging for an area which is somewhat considered as ‘dormant’. On the
other hand, envisioning further development in efforts in anionic polymerization might sound
unredlistic, at atime when so-called 'living' or controlled radical polymerization is viewed as a more
easily implemented process. Nevertheless, the performances of a controlled radical polymerization are
limited by a number of serious drawbacks, including the requirement for an oxygen-free system, the
difficulty to reach quantitative conversion, the poor or nonreactivity of some important monomers
(dienes, oxiranes, cyclosiloxanes, etc.), the too high metal residue in ATRP (atom transfer radical
polymerization), and so on. In brief, living anionic polymerization is still an important method to be
preferentially chosen in the years to come for precise tailoring of complex materials.
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