
NEW METHODS FOR HANDLING THE RANGE DEPENDENCE OF THE CLUTTER
SPECTRUM IN NON-SIDELOOKING MONOSTATIC STAP RADARS

Fabian D. Lapierre (Research Fellow), Marc Van Droogenbroeck and Jacques G. Verly

University of Liège, Department of Electrical Engineering and Computer Science
Sart-Tilman, Building B28, B-4000 Liège, Belgium

{ F.lapierre, M.VanDroogenbroeck, Jacques.Verly}@ulg.ac.be

c
�

IEEE 2002. Published in the 2003 International Conference
on Acoustics, Speech, and Signal Processing (ICASSP 2003),
scheduled for April 6-10, 2003 in Hong Kong SAR, China. Per-
sonal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribu-
tion to servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE. Con-
tact: Manager, Copyrights and Permissions / IEEE Service Center
/ 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331,
USA. Telephone: + Intl. 908-562-3966.

ABSTRACT

We address the problem of detecting slow-moving targets using a
non-sideloking monostatic space-time adaptive processing (STAP)
radar. The construction of optimum weights at each range implies
the estimation of the clutter covariance matrix. This is typically
done by straight averaging of neighboring data snapshots. The
range-dependence of these snapshots generally results in poor per-
formance. We present two new methods that handle the range-
dependence by exploiting the geometry of the direction-Doppler
curves.

1. INTRODUCTION

Space-time adaptive processing (STAP) radars are used to detect
slow-moving targets [1]. STAP relies on the transmission of a train
of coherent pulses, the echos of which are received on a linear
array-antenna. In monostatic (MS) radar configurations, the trans-
mitter and the receiver are colocated. In sidelooking (SL) config-
urations, the antenna is parallel to the radar velocity vector. Prior
research has mostly focused on SL MS configurations [1, 2]. Here,
we consider non-SL MS configurations.

The construction of the adaptive weights used for the optimal re-
jection of clutter at any given range implies the estimation of
a clutter-plus-noise covariance matrix using data at neighboring
ranges. In STAP, clutter is best described in terms of a 2D power
spectral density (PSD) showing the distribution of expected power
as a function of spatial and Doppler frequencies. These maps ex-
hibit a clutter ridge, the shape of which changes with changing
range for all non-SL MS configurations. This range-dependence
creates major problems in the estimation of the covariance matrix.

Two approaches have been proposed so far to deal with this range-
dependence. The “Doppler warping” method [3] works well in

nearly-SL MS configurations. The “scaling method” [4] works
fairly well in all non-SL MS configurations, but can only exploit
data at ranges greater than the range of interest. These methods
are sensitive to uncertainties on the antenna crab angle � . The new
methods work for all ranges. The first assumes that � is known.
The second works even if � is unknown.

2. MONOSTATIC GEOMETRY

Figure 1 shows a canonical MS configuration, with a radar � (typ-
ically airborne or spaceborne) and a scatterer � (target or clutter
patch). The origin of the coordinate system �����
	����� is chosen to
coincide with � . The � -axis is aligned with the radar velocity vec-
tor � � and the � -axis points vertically up. The linear array-antenna
is located in the �����
	�� -plane and makes an angle � with respect to
the � -axis. � is located at “cone” angles ��� and � with respect to
the � -axis and the antenna axis, respectively. The range ��� is the
distance between � and � .
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Fig. 1. Elements of a canonical MS radar configuration.

3. DIRECTION-DOPPLER (DD) CURVES

A radar should provide at least three parameters for each scat-
terer of interest: the angular position � , the range ��� and the
relative velocity %'& . These parameters can be computed from
three other parameters that can be extracted from the radar re-
turns: (1) The spatial frequency of the wave pattern along the an-
tenna, ( �*),+.-'/ ��0'132�� where 132 is the carrier wavelength; (2) The



roundtrip delay, � ) � � � 0�� , where � is the speed of the light;
(3) The Doppler frequency, (�� , which for a stationary scatterer
(such as clutter) is given by (�� ) � % � + -'/ � �'0 1 2 , where % � is the
(signed) speed of � along the � -axis.

In STAP, it is instructive to map all stationary scatterers at a
given � � on an � ( � � (�� � graph. The resulting locus is called a
“direction-Doppler (DD)” curve. The graph’s axes are typically la-
belled in terms of the normalized spatial and Doppler frequencies� � ) � 132.0 � ��( � and � � ) � 132 0��'% � ��(�� . Figure 2 shows a number
of such graphs, each corresponding to a different � . Within each
graph in Fig. 2, each curve corresponds to a different � � . Note that
the DD curves are range-dependent for all MS configurations other
than SL ( � )�� ). The only other parameter influencing the shape
of the curves is % � . The parameter that runs along each curve is
the angle

�
of Fig. 1.
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Fig. 2. Example DD curves for different combinations of crab
angles � and ranges � � ( ��� , � � and � � km); % � )���� m/s.

4. OPTIMUM PROCESSOR

� transmits � coherent pulses. The signals received at each of �
antenna-array elements are sampled, for each of the � pulses, at a
series of discrete ranges, called range gates. We treat these samples
in space, time and range as a sequence in range of ����� data
arrays called “snapshots”. Each ����� snapshot corresponding
to a single scatterer (target or clutter patch) with parameters � � , � �
and ��� can be expressed as an ������� vector [2]� � � � � � � � )! & � � � � � � � � �
where  & is a factor obtained from the radar equation and � � � � � � � �
is the �"����� steering vector

� � � � � � �'� )�# � � � �%$'& � � �.� � (1)

where $ is the Kronecker product and & � � � � and # � � � � are the�(��� spatial and �)��� temporal steering vectors given by

& � � � � ) �*�,+-+�+/.1032*465/7189+:+�+/.10:2*465/7-;=<?>A@CB
�*D (2)

# � � � � ) �*�,+-+�+/. 032*465/E-F +�+-+/. 0:2*4�51EG;IHJ>K@CB � D + (3)

The ���L�'� clutter snapshot � 2 � � � � � � � is found by integrating� � � � � � �'� over the isorange curve defined by the intersection, pa-
rameterized by

�
, of the isorange sphere with the ground,

� 2 � � � � � � � )
M 2*4N  2 � � ��� � � � � � � � � � � � ���PO � +

Since  2 � � � is a random process, � 2 is a random vector. We as-
sume it is stationary. To find the power spectral density (PSD)
associated with � 2 , we use spectral estimation methods. The min-
imum variance estimator (MVE) works well in STAP [1]. Clutter
PSDs show a concentration of energy along a particular curve in
the PSD array. The support of this “clutter ridge” is in direct cor-
respondence with the related DD curve.

The weights of the optimum processor (OP) providing optimum
clutter rejection are given by the ���(��� vector [5]

Q
opt � � � � � � � )�R >A@ � � � � � � � � � (4)

where R )�SUT � � V3W is the sum of the covariance matrices R 2 )SUT � 2 � V2 W for the clutter and R 8 )XSUT � 8 � V8 W )XY for the noise,
assumed to be spatially and temporally white. (Jammers are not
considered here.) In practice, R must be estimated for each ��� .
The maximum-likelihood estimator ZR for range (gate) [ is [6]

ZR �\[�� ) ��^]U_`ba6c�d R �\e3� with R �\e3� ) � �\e�� � V �\e3� � (5)

where � ] is the set of surrounding-snapshots indices e defined by[gf � + � �\� ] f^���ihjekhj[\l � + � �\� ] f^��� , � ] is the size of � ] and � �\e3�
and R �\e3� the snapshot and the sample covariance matrix for rangee . ZR �\[�� is unbiased only if the clutter ridge is range-independent.
This happens only for SL configurations.

The performance of a processor using arbitrary weights Q is mea-
sured by the signal-to-interference-plus-noise ratio loss

SINR m ) SINR
SINR N ) nn

Q V � nn 2� Q V R Q �.��� V � � �
where SINR N is the SINR in the absence of clutter. Values of
SINR m range from the noise-to-clutter ratio to one. In practice,
processor performance is degraded by estimation losses and by the
fact that the R �\e3� ’s in Eq. (5) are range-dependent. The goal of
the new compensation methods described below is to eliminate or
reduce the losses due to this range-dependence.

5. NEW RANGE COMPENSATION METHODS

The new methods replace Eq. (5) by

ZR �\[�� ) �� ] _`baPc d:o `qp R �\e3�sr��
where the o `ut +*v ’s are designed to compensate for the range-depen-
dence and to approach the performance of the OP.
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Because of stationarity, R is Toeplitz-Block-Toeplitz and thus has
redundant elements. It is thus possible to replace the �"� �k�"�
matrix R by a � � � fU���u��� � � fU��� matrix

�
entirely equivalent toR . In fact,

�
is the matrix representation of the 2D autocorrelation

function ����� , where 	 t � ���kv is the 2D sequence representation of� . Note that the dimensions of
�

correspond to space and time.
Focusing on

� �\e3� ’s with corresponding transformations o 	` t +*v , we
have

Z� �\[�� ) �� ] _`ba6c d:o 	` p � �\e�� r +
5.1. Exact range-compensation (ERC) method

The parameters 
 influencing the shape of the DD curves are % � ,� and ��� . Here, we assume that % � and � are known. Of course,
the various values of ��� are also known, since we select the range
gates. The design of o 	` t +*v is based on the fact that all the non-SL
DD curves for a given configuration are scaled versions of each
other. In the exact range-compensation (ERC) method, we first
determine, for each range e , the scaling transformation� � 	� �\e3�� 	� �\e��� )

� � � �\e�� �� ��� �\e��� � � � �\e��� � �\e���� (6)

that scales the � � � � � ��� -axes of the DD curve at range e to bring it
into registration with the DD-curve at the reference range [ . Thus,
the � 	� , � 	� at range e correspond exactly to the � � � � � at range [ .
The scale factors in Eq. (6) can be determined exactly from the
geometry. For a flat earth at height

 
, we find

� � �\e�� ) � � �\e3� )�� � f �  0 � � �\[���� 2 0 � � f �  0 � � �\e���� 2 �
(7)

where ���'��� � is the true range corresponding to range gate � . The
transformation is then applied, not to the DD curve plots, but to
the corresponding PSDs. The main processing steps are shown in
Fig. 3 and are now described.
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Fig. 3. Processing steps of the ERC method.

5.1.1. Processing steps

Zero padding (if required): Special care is required for rangese�h [ . In these cases, the ultimate scaling of the PSD " is a
dilation. This implies a contraction in the inverse Fourier domain,
i.e., of

�
. To allow for this contraction, we must increase the size� � �!fJ��� � � � � fJ��� of

�
by factors of � � and ��� in the � � and � �

dimensions, respectively. This expansion is performed using zero
padding. Of course, no padding is done for e$# [ . The output is
denoted by

� %
, whether it is padded or not.

Fourier transform: The FFT of
� %

gives the PSD " .

Peak extraction (I): Our goal is to dilate or contract (as required)
the clutter ridge in " . To avoid scaling points that are outside
the clutter ridge or on its sidelobes, we find the position of the
significant peaks in " . We can easily track these peaks down along
the theorical DD curve since the configuration is known exactly.

Scaling: First, we compute � � and � � according to Eq. (7).
Then, we compute the new position � � 	� �\e3� � � 	� �\e3��� of the extracted
peaks. The original peak intensities are assigned to the nearest pix-
els in " 	 .
Interpolation: When e h [ , linear interpolation is performed to
ensure the “continuity” of the dilated ridge in " 	 .
Inverse Fourier transform: The IFFT of the PSD " 	 gives

� 	%
.

Windowing: If e hL[ , � 	% is larger by a factor � �J� � � than

the desired
� 	

. Thus, we must window
� 	%

to recover the desired

� � � f ��� � � � � fj��� � 	 .
5.1.2. Example

The desired R 	 �\e�� can easily be reconstructed from
� 	 �\e�� . Fig-

ure 4 shows the MVE of R �\e�� (before compensation) and the
MVE of R 	 �\e3� (after compensation).

−0.5

0

0.5

−0.5

0

0.5
−50

−40

−30

−20

−10

0

−0.5

0

0.5

−0.5

0

0.5

−50

−40

−30

−20

−10

& ' &'

before compensation after compensation
PSDPSD

Fig. 4. Effect of ERC-designed transformation o 	` t +gv .
5.2. Blind range-compensation (BRC) method

In practice, we can assume that % � is known, in particular if the
processing is done on R . However, the angle � is not generally
known with accuracy, especially in the presence of lateral wind and
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wind gusts. The blind range-compensation (BRC) method does
not require that � be known. The BRC method is build on top of
the ERC method, as shown in Fig. 5. The new processing step is
the estimation of the parameters 
 , i.e., � in the present case. The
new processing steps are as follows.

!
2D FFT�

� ����� � ����� �
Peak extraction (II)

Curve fitting

Parameters
estimation

ERC method

Parameters �
Fig. 5. Processing steps of the BRC method

Fourier transform: The FFT of
�

gives the PSD " from
�

. (No
padding is performed here.)

Peak extraction (II): We need to find the most significant peaks
in " . However, since � is not known initially, we cannot use the
“peak extraction” algorithm of Fig. 3. Instead, we use a thresh-
olding algorithm. This algorithm uses the histogram of the peak
amplitudes to find the optimal threshold. Figure 6(b) shows a typ-
ical example of such a histogram. Not surprisingly, the histogram
is bimodal. The high intensities (on the right) correspond to the
ridge and the low intensities (on the left) to the rest of the values
in " , some of which correspond to the sidelobes of the FFT. To
identify the peaks, we need to find the threshold that best sepa-
rates the two lobes of the histogram. Here, this is done by taking
the first bin for which the number of occurrences observed is less
than five percent of the maximum number of occurences. More
sophisticated algorithms could be used if necessary. The resulting
thresholded Fourier transform is shown in Fig. 6(c).

Curve fitting: In MS configurations, � is the only unknown pa-
rameter. However, the parameter estimation problem can be for-
mulated in term of a general vector 
 of unknown parameters. 

is found using the position of the detected peaks. This is a fitting
problem: we have the equation of the parametric DD curve and a
set of experimental points � � � ����� � � � ������� . The optimum value of
 is found by minimizing the MSE given by

< �_0�� @ O 2 ��� � 
 � ��� � � ����� � � � ��������� �
where � % is the number of detected peaks, O���� ��� � is the dis-
tance between curve � and point � . � � 
 � is the DD curve cor-
responding to 
 . Its equation is � 2� l � 2� l f � � � � � + - / � )� + � � /
	�� 2 � �*� f �  0 � � � 2 � . Using samples � � � ����� � � � ������� , we con-

struct an overdetermined system  � )"# , where

 )
��� � � � � � � � � � � � @� �*�?f �  0 � � � 2 �

...
...� � �'�\� % f ��� � � �\� % f ��� @� �*�?f �  0 � � � 2 �

���� �
# ) � � 2� � � �Al � 2� � � �9+-+-+ � 2� �\� % f ���%l � 2� �\� % f ����� D �� ) � + -'/ � /
	�� 2 ��� D +

The least-mean-square solution � � is� � ) �� D  � >K@  D # +
Note that we have to treat + - / � and /
	�� 2 � as distinct unknowns.
Among the two values of � ,

� @ )����+ + - / � � �'� � ��� and � 2 )"! ���+ /
	�� � � ���*����� �
we choose the one with the smallest residue.
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Fig. 6. Peak-extraction algorithm used for parameter estimation in
the BRC method.

6. PERFORMANCE COMPARAISON

Figure 7 compares the performances of the ERC method to those
of the straight averaging (SA) technique and the OP. ERC is much
better than SA and nearly as good as OP. Fig. 7 also compares ERC
to BRC (and OP). BRC is nearly as good as RC in this particular
case. Similar performance is achieved with directive sensors.

7. CONCLUSION

We have proposed two new methods for compensating the
range-dependence of PSDs in non-sidelooking monostatic STAP.
Whereas the ERC method assumes that the configuration param-
eters are known, the BRC method estimates the unknown param-
eters ( � in MS configurations) prior to applying the ERC method.
The ERC and the BRC methods provide near optimal performance.
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