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Abstract—Weaddressthe problemof detectingslow-moving
targets using a space-timeadaptive processing(STAP) radar.
The construction of optimum weights at each range implies
the estimation of the clutter covariance matrix. This is typi-
cally doneby straight averagingof neighboring data snapshots.
However, in bistatic configurations, thesesnapshotsare range-
dependent. As a result, straight averaging resultsin poor per-
formance. After reviewing existing methods for handling the
range-dependence,wepresentnewmethodsexploiting the pre-
ciseshapeof the bistatic dir ection-Doppler curves.

I . INTRODUCTION

PulsedDoppler radars areusedto detectmoving targets
andto measuretheir range andspeed.They typically trans-
mit a train of coherent pulses.Equippedwith a lineararray
antenna, they areparticularly well suitedfor detectingslow-
moving targetsin thepresence of clutterandjammers. The
technique of choicefor dealingwith this problem is space-
time adaptiveprocessing(STAP) [1], [2].

Radarstypically operatein monostatic (MS) configura-
tion, i.e., with the transmitterand the receiver colocated.
While initial STAP researchwasfocusedon MS configura-
tions,attentionis now turning to bistatic(BS)configurations
[3], [4], wherethetransmitterandthereceiver arelocatedon
distinct,independently-moving plateforms.

The datacollectedby STAP radars can be viewed as a
sequenceof 2D space-time arrays,called“snapshots”. Ba-
sic STAP methods compute a weightedlinear combination
of the snapshotelements.The calculation of the optimum
weightsgenerallyinvolves the inversion of the covariance
matrixof thesnapshot. Thiscovariancematrixmustbeesti-
mated.This is typically doneby averaging thesnapshotsat
a seriesof neighboring ranges.

Therange-dependenceproblem resultsfrom thefact that
the clutter energy wandersin the power-spectral-density
(PSD)domainasthe range changes.This “range-walking”
manifestsitself by thedeformationof theubiquitous“clutter
ridge” with range.This resultsin a degradationof detection
performance.Theobjectof this paperis to compensatefor
this range-dependenceof the clutter ridge to bring perfor-
manceascloseaspossibleto its optimumlevel.

We begin by reviewing existing range-dependencecom-
pensationmethods.Then, wepresentnew methodsbasedon
the ideaof estimatingthe covariancematrix at somerefer-
encerangegate(indexedwith

�
) by first applying transfor-

mationsto thecovariancematricesataseriesof neighboring

rangegates(indexed with � ) andthenaveraging the trans-
formedmatrices.However, the transformationis appliedto
the correspondingPSDs,i.e., to the spectraldomain. The
PSDcorrespondingto somerange(gate)� is transformedto
bring its clutter ridge into registrationwith thatof thePSD
at the referencerange

�
. All thesemethods arethusbased

uponamapping of theelements of thePSDateachrange � .
The registrationof the clutter ridgesobserved in experi-

mentaldatais guidedby analyticalformulasdescribingthe
form of related“direction-Doppler (DD) curves”,which are
mathematical curves fully determined by the configuration
parametersandtherangeof interest.Wedistinguishbetween
two typesof range-dependencecompensationmethods: (a)
“true-parameters(TP)” methodsassumeexactknowledgeof
the parametersand(b) “estimated-parameters (ET)” meth-
odsestimatethe parametersfrom the data. Below, we de-
scribethesemethods anddiscusstheirperformance.

I I . BISTATIC (BS) RADAR-MEASUREMENT

CONFIGURATION

Figure1showsatypical BSconfigurationwith transmitter�
andreceiver � . Theorigin of the �����
	��
��
 coordinatesys-

temcoincideswith
�

. Its orientation is suchthat the � -axis
pointsin thesameway asthetransmittervelocityvector � �
andthat the � -axis points vertically up. We assumethat the
receiver velocity vector � � is locatedin a horizontalplane.
The anglebetween� � and � � is denotedby � � . The an-
tenna � is assumedto be linear andin a horizontal plane.
Defining � astheanglebetweenthe � -axisand � � , ����� �
fully describes the orientation of � . The sidelooking (SL)
configurationcorrespondsto ����� . Thebistaticrange���
is thedistancefrom

�
to � to � . Defining  � �"! � � ! and � �#! � �$! , any BS configuration is fully characterized by

thevectorof parameters% �&�(')�*� � �*	 � �
� � �* � �
 � �+� � �
�,
.- (1)

I I I . DIRECTION-DOPPLER CURVES AND SURFACES

A. Important parameters

The radars of interestareexpectedto determine at least
threebasicparametersfor eachscatterer� : the BS range� � , theangularposition /10 andtherelativevelocity  32 (with
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Fig. 1. BS configuration. (a) Transmitter( B ) - Receiver ( C ) - Scatterer
( D ) geometryandrelatedparameters.(b) AntennaE andrelatedangles.

respectto � ). Therelatedparameters thataremore directly
measuredfrom theradarreturns aretheroundtrip delay F�2*G ,
thespatialfrequency H�0 andtheDoppler frequency HJI . For
a stationaryscatterer, they arerespectively given byF 2
G � �K�ML,NH 0 � OQPSRTVUXWZY / 0H,I[� OQPSRT  � U.WZY / �I �\OSPQRT  � U.WZY / �I �
whereO T is thecarrierwavelengthandN is thespeedof light.� � , /:0 and  12 areeasilycomputedfrom F12
G , H,0 and HZI .
B. Isorange curves

All scatterers� characterized by the samerange �]� are
locatedonanisorangesurface,whichis anellipsoidof revo-
lution with foci at

�
and � . Theintersectionof this surface

with theground, modelledasahorizontalplaneat �^�`_a' ,
is calledanisorange curve. It is in factanellipse,which we
parameterize with thepolarangleb .

C. Direction-Doppler (DD) curves

For any given configurationandrange � � , all stationary
scatterersat this range maponto a curve showing the rela-
tion betweenH 0 and H I for any suchscatterer. Eachcurve
is calleda “direction-Doppler (DD)” curve. DD curves are
typically represented in termsof thenormalized spatialfre-
quency c 0 equalto �(O T L,dZ
*H 0 and the normalized Doppler
frequency c I equal to �(O T L,de�f � �� � 


*H I . Figure2 shows
that BS DD curves vary significantly with configuration
and range. The fact that thesecurves vary with range for
any particularBS configuration is the sourceof the range-
dependenceproblemconsidered in this paper.

Deriving the equations of BS DD curves is a challenge.
Ourapproachisasfollows.First,weexpressceI asafunction
of c10 . SincemostBSDD curveshavetwo possiblevaluesofc,I for eachvalueof c30 , any BS DD curve is bestdescribed
by two functions c3Ig�hH R �(c,0X
 and cZIg�hH,i1�(c10.
 . Second,
if we expresscZ0 and cZI in termsof b , we find a parametric
descriptionof theDD curve, i.e.,c,0$�kj R �fb$
 and cZI���j1iZ��bl
M- (2)
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Fig. 2. ExampleBS DD curves. Units of �:� , �X� and �
� arekm; units
of �e� and � aredegrees. In all cases,�����M� km, �v���k�M� m/s and�M�}���M� m/s.Ranges CS� are �
�q� , �:�*� , �M�M� and �.�M� km.

Thederivation of the functions H R �(c10.
 and H,iZ�(c,0M
 or j R �fb$

and jZi1��b$
 is complicatedandlengthyandis thusomitted.

D. Direction-Doppler (DD) surfaces

The surfaceobtained by stackingDD curvesfor various
valuesof ��� is calleda “direction-Doppler (DD)” surface.
By construction, asliceof theDD surfaceatagiven �]� pro-
ducestheDD curve for thatrange.

E. Recoveryof DD surfaceparameters

Consider the BS DD surface � corresponding to
an arbitrary BS configuration characterized by

% R ��(')�*� � �*	 � �
� � �* � �
 � �+� � �+�,
 andto all applicable values
of �{� . Onecanshow that the only othersetof parameters
thatproduces� is% i �`�(')�*� � �X_�	 � �+� � �
 � �* � ��_a� � ��_a�,
M-

Thus,we know that the inverseproblem of recovering
%

from � doesnot have a unique solution, but that thereare
only two relatedsolutions. Fromthis, we caninfer that the
inverseproblemof recovering

%
from asinglesliceof � has

at leasttwo relatedsolutions.

IV. DATA SNAPSHOT AND OPTIMUM PROCESSOR

A train of � coherent pulsesis transmitted,the returns
are sensedat eachof the � elementsof a linear antenna
array, andthesensedreturnsaresampledatanumberof dis-
creteranges(calledrangegates)covering therange interval
of interest. We regard the dataas a sequenceof � �¡�



dataarraysat successive ranges. Eachsucharrayis calleda
“snapshot”.The �¢�£� snapshot corresponding to asingle
scattererwith specific cZ0 , c,I and � � canbe written as the�¤�V�¦¥ vector[2]§ �pc,0n�qc,I�
¨�ª©«2X� �(c,0¬�+c,I:
­�ª©J2�® �(c,In
�¯\° �(c,0.
.� (3)

where © 2 comesfrom the radarequation, � �(c 0 �qc I 
 is the�¤�±�ª¥ steeringvector, ¯ is the Kronecker product and° �(c,0.
 and ® �(cZIn
 arethe �#�²¥ spatialand �³�²¥ temporal
steeringvectors givenby° �(c,0M
´� �z¥µ-�-X-+¶.· i+¸ w Az¹ -X-�-
¶X· i+¸ w A m�º PQR r 
 � (4)® �(c,In
´� �z¥µ-�-X-+¶.· i+¸ w ?q» -�-X-
¶X· i+¸ w ? m½¼ PQR r 
 � - (5)

The clutter snapshot § T �(c 0 �+c I 
 is found by integrating§ �pc 0 �qc I 
 over theisorange curve parameterizedby b , i.e.,§ T �(c 0 �+c I 
­� ¾ i+¸u © T ��bl
�� �(c 0 ��b$
.�+c I �fb$


3¿1b�-
Since© T �fb$
 is arandom process, § T is a random vector. We
assumeit is wide-sensestationary. It is thuscharacterized by
a constantcovariancematrix À T �ÂÁ�Ã § T § ÄT�Å . To find the
powerspectraldensity(PSD)associatedwith § T , weusethe
minimumvarianceestimator[1]. ClutterPSDsshow a con-
centrationof energyalongaparticular “curve” in thespectral
plane.Thesupport of this “clutter ridge” is in directcorre-
spondencewith therelatedDD curve.

The �¤�Æ�Ç¥ weight vectorproviding optimum clutter
rejectionis [1] È É �(c10n�+c,I:
µ�ÊÀ PSR � �(c10n�+c,In
.� (6)

wherethe covariancematrix À �hÁ}Ã § § Ä Å is the sumof
thecovariancematricesÀ T �ËÁ}Ã § T § ÄT�Å for theclutterandÀ ¹ ��Á�Ã § ¹ § Ä¹ Å for thenoise.Weassumethatthenoise§ ¹
is spatiallyandtemporally white so that À ¹ �ÍÌ . In prac-
tice, À is not known andmustbeestimatedfor eachrange.

Themaximum-likelihoodestimator ÎÀ for rangegate
�
is [2]ÎÀ � � 
µ� ¥�ÐÏÒÑÓ:Ô 6,Õ À �p�e
M� (7)

where � Ï is the number of snapshotsusedfor estimation,� Ï is the setof snapshotindices � definedby
� _ º Õ PSRi Ö� Ö � � º Õ PQRi and À �(�e
Ð� § �p�e
 § Ä �p�e
 , where § �p�e
 is the

snapshotat range(gate) � . Equation (7) provides an ac-
ceptableestimatefor À � � 
 only if theclutterridgeis range-
independent. This never happens for BS configurations.
Range-dependencecompensationmethodsarethusneeded.

Theperformanceof aprocessorusingweights

È
, whether

optimal or not, is measured by the signal-to-interference-
plus-noise(SINR) lossdefinedas[2]

SINRL � SINR
SINRu � ××

È Ä � ×× i� È Ä À È 
X��� Ä � 
 � (8)

whereSINRu is theSINRin theabsenceof clutter. Valuesof
SINRL range from a minimum equalto thenoise-to-clutter
ratioto amaximum of one,indicatingthattheprocessorper-
formanceis not degradedby clutter. Optimumperformance
is achieved for

È � È É
. In practice,processor perfor-

manceis degradedby estimationlossesandby the range-
dependenceof theclutterridge.

V. EXISTING METHODS BASED ON DOPPLER WARPING

AND TAYLOR SERIES

A. Doppler Warping (DW)method

The Doppler Warping(DW) method wasinitially devel-
opped for nearly-SL MSconfigurations[5] andsubsequently
appliedto BS configurations[4]. Keepingin mindthat § �(�e

is of the form given in Eq. (3), the principle of DW is to
addto c I in Eq. (3) a Doppler shift Ø��(�e
 that is chosenfor
eachrange � in sucha way asto bring all clutter ridgesin
registration. Equation (5) showsthatthiscanbeachieved by
premultiplying § �pc 0 �qc I 
 by thematrixÙ �(�s
­�hÚp¥�¶X· i+¸,Û m Ó r -X-�-e¶X· i
¸ mÜ¼ PSR r Û m Ó rÞÝ ¯¡Ì -
Therefore,applying

Ù �(�e
 to thesnapshot§ �(�e
 resultsin the
Doppler-warpedsnapshot§ Iqß �p�e
]� Ù �p�e
 § �(�s
M- Ù �(�e
 can
provide perfectcompensationat only onespecific cS0 . Per-
formanceis poor for BSconfigurations[4]. Themainadvan-
tageof theDW method is its simplicity of implementation.
However, theconfigurationparametersmustbeknown.

B. High-Order DopplerWarping(HODW)method

The High-Order Doppler Warping (HODW) methodis
a generalization of the Doppler Warping(DW) method [6]
andprovidesperfectcompensationat morethana single c 0 .
This methoddividestheDopplerfrequency range into a fi-
nite number of Dopplerbins. In eachDoppler bin, a differ-
ent range-dependentDoppler frequency shift Ø��p�e
 is cho-
senandusedin the sameway as in the DW method. The
main advantageof the HODW method is that the range-
dependencecompensationis nearly perfect. However, the
configurationparameters mustbe known andthe complex-
ity of theDoppler filtering is significant.

C. Derivative-basedupdating (DBU) method

The derivative-basedupdating (DBU) methodwas pro-
posedto dealwith the range-dependencein BS configura-
tions[4]. Theoptimum weights

È É �(�e
 at range � arecom-
putedusinga Taylorseriesexpansion,typically limited toÈ �(�e
µ� È � � 
����(�^_ � 
ÒàÈ � � 
.� (9)

where àÈ �3-q
 representsthe derivative of

È
with respectto

range,
�

is the reference rangeand � the range of interest.
Thevaluesof

È É � � 
 and àÈ É � � 
 aregivenby [4]



á È É � � 
àÈ É � � 
ãâ �#äÀ PQR á � �(c,0¬�+c,I:
å â � (10)

whereäÀ � ¥�ÐÏ ÑÓ:Ô 6 Õ á À �p�e
 �(�^_ � 
*À �(�s
�p�Ð_ � 

À �p�e
æ�(�ç_ � 
 i À �(�e
ãâ -
The main advantageof the DBU method is that it does

not require any knowledgeof theconfigurationparameters.
Onedisadvantageis thattheperformanceof themethod vary
considerably from oneconfigurationto another, sinceweas-
sumethat

È É �p�e
 varieslinearly with range� . Another dis-
advantageis that thenumberof degreesof freedom is dou-
bled: asa result, the number of samplesrequired for esti-
mating äÀ is doubled.

VI . METHODS BASED ON REGISTRATION OF

DD CURVES

A. Conceptual transformation for À �p�e

In all our range-dependencecompensationmethods,ÎÀ � � 
µ� ¥�ÐÏ ÑÓ:Ô 6 Õ À èp�(�e
¨� ¥�ÐÏ ÑÓnÔ 6 Õ � Ï ÓÐé À �(�e
vêë� (11)

where
� Ï Ó3ì -*í is thetransformationbringing theclutterridge

of À �p�e
 into registration with thatof À � � 
 . We will notpro-
vide an analytical expressionfor

� Ï Ó�ì -zí . Instead,we will
providealgorithmsimplementing this transformation.Thus,� Ï Ó3ì -zí is primarily of conceptual interest. Sincethe mani-
festationof therange-dependenceproblem is in thespectral
domain, range-dependencecompensationmethodsaremore
naturallydesignedin thespectraldomain.

As a resultof stationarity, À �ÂÀ �(�s
 is Toeplitz-block-
Toeplitz [2]. Exploiting redundancy in À , we replacethe�¤�î�g�¤� matrix À by a �(d1�h_Ç¥n
��\�pd1�ï_k¥n
 matrixð � ð �(�s
 entirelyequivalentto À . In contrastwith À ,

ð
hasonedimension devoted to spaceandthe otherdevoted
to time. Expressionsequivalent to Eqs.(11) for À canbe
written for

ð
.

B. Matchingof DD curves

Whendesigningourmethods,wecaneitherthink in terms
of thePSDclutterridgeor in termsof thecorrespondingDD
curves. TheDD curvesarepreferred,sincewehaveanalyti-
cal tools to dealwith suchcurves. Ultimately though, the
thinkingmustbetranslatedinto thePSDplane.

Considera setof DD curves at various rangesfor a spe-
cific configuration.Theideais to bringtheDD curveateach
range�ãñ)� Ï (thesourcerange)into registrationwith theDD
curve at referencerange

�
(thedestinationrange). Sincethe

sourcecurvewill bedeformedinto thedestination curve, the
termsmovingcurve(MC) andfixedcurve(FC) areused.

C. Classesof mapping-basedmethods

We considertwo classesof methods. In “true-parameters
(TP)” methods, we assumethat

%
is known and in

“estimated-parameters(EP)” methods, we estimate
%

from
thedata.Thegeneral architectureof eachclassis shown in
Fig. 3. For BS configurations,therearetwo preferred im-
plementationsof the “mapping-basedcompensation,” each
relying on a particular geometrical transformation. Ta-
ble I summarizesthe various methods discussedbelow.
A “mapping-basedcompensation”specificallydesignedfor
MS configurationsis proposedin [7], wherethe TP or EP
variants arealsoconsidered.

compensation
Mapping-based Mapping-based

compensationò óõô÷öqø ò ó�ôùöqø
estimation

Configuration-parameters

ò ô÷öqøò ôùöqø
Î úú

(b) Estimated-parameters(TP) methods(a) True-parameters(TP) methods

Fig. 3. Comparisonof architecture of (a) true-parameters (TP) methods
and(b) estimated-parameters(EP)methods.

TABLE I
True-parametersmeth. Estimated-parametersmeth.

Affine transformation TP-AT-BS EP-AT-BS

Warpingtransformation TP-WT-BS EP-WT-BS

VII . MAPPING-BASED COMPENSATION METHODS

A. Genericmapping-basedcompensation

Figure4 shows theprocessingstepsof all mapping-based
compensationmethods. Themainstepthatdiffersfrom one
particular method to thenext is the“mapping” step.
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Fig. 4. Block diagramof processingstepsfor generic mapping-based
compensation method.



Expansion and zero-padding (if required): For ranges� Ö �
, the scalingof the PSD � is a dilation, implying a

contraction of
ð

. Thesize �pd,�ª_�¥:
��{�pd1�Â_�¥:
 of
ð � ð �(�s


mustthusbe increased(by padding
ð

with zeros)in the cS0
and c1I dimensions, respectively.
Fourier transform: The2D FFT of

ð �
givesthePSD � .

Peakextraction (1): In orderto dilateor contracttheclutter
ridge in � , we find the positionof the significantpeaksin� by trackingthesepeaksdown alongthe theoretical DD

curveusing
%

or Î % .
Mapping: The point �pc 0 �p�e
M�qc I �(�e


 on MC( � ) is mapped
onto the point �(c è0 � � 
.�+c èI � � 
*
 on FC(

�
). Theparticularmap-

pingof eachmethodis describedlater.
Inter polation: When � Ö �

, linear interpolation is per-
formed to ensurethe“continuity” of thedilatedridgein � è .
InverseFourier transform: The2D IFFT of � è gives

ð è� .
Windowing: If � Ö � , ð è� mustbewindowed to recover the

desired�(d1�Â_�¥:
$� �(dZ�Æ_�¥:
 ð è .
B. Affinetransformationfor BSconfigurations(AT-BS)

In MS configurations,a simplescalingsufficessinceall
MS DD curves area scaledversion of eachother[7]. How-
ever, in BS configurations,a simplescalingdoesnot lead
to goodcompensation.A straightforwardgeneralization of
thescalingtransformationis theaffine transformation(AT).
The coefficients of the AT arefound asfollows. First, we
discretizeb andrecord the relatedsampleson MC( � ) and
FC(

�
). Second, wefind theAT coefficientsthatareoptimum

in a LS error sense.The potential of the AT is illustrated
in Fig. 5. The transformation works well whenthe source
anddestinationcurveshavesimilarshapes.Givenits limited
numberof degreesof freedom,theAT cannot beexpected to
bringinto perfectregistration two curvesthathavequitedif-
ferentshapes.
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Fig. 5. Illu stration of DD curve registrationachievedwith theAT. Dotted
linescorrespondto theFC.Solid linescorrespond to theMC before(upper
diagram)andafter (lower diagram) AT. In all cases, C ������� is �M�M� km andC � ����� is 	M�M� km, �\���M� km and � � ��� � ���M� m/s.

C. Warpingtransformationfor BSconfigurations(WT-BS)

The relations in Eqs.(2) allow us to compute the “flow
line” corresponding to eachspecificvalueof b . This is il-
lustratedin Fig. 6(a). Thevarious pointson eachflow line
correspondto thevarious valuesof �]� . Typically, as ��� in-
creases,we move alongonedirection along the flow line.
Themapping is thensimple: for any given b , we find the
sourcepoint �Ð�pc 0 �qc I 
 onMC( � ) andmapit into � è �(c è0 �+c èI 

on FC(

�
). Rememberthat mapping consistsessentiallyin

finding the “pixel” closestto � in the source PSDandas-
signingits intensityvalueto the“pixel” closestto � è in the
destinationPSD.The concept of mapping is illustratedin
Fig. 6(b).
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Fig. 6. (a) Illustration of flow lines. (b) Flow lines dictating thedeforma-
tion of MC( � ) into FC(� ).

VII I . CONFIGURATION-PARAMETERS ESTIMATION

METHODS

Figure7 shows a block diagramof the processingsteps
in thegenericconfiguration-parametersestimationmethod.
Theinput is

ð �p�e
 andtheoutput is theestimate Î% of
%
. We

assumethat ' ,  � and  � areknown. We have developped
estimationmethods thatwork evenwhen ' ,  � and  � are
unknown. Thesemethods arenotdescribedhere.

Curve fitting
Expansionand
zeropadding

(BSconfigurationsonly)

Peakextraction(2)

at range
ö Î úò ô÷ö+ø

2D FFT �ò ý
Fig. 7. Block diagram of processing stepsfor generic configuration-
parametersestimation method.

Expansion and zero padding: The goal is to increasethe
sizeof

ð �(�e
 for curvefitting below. Experimentationshows
that

ð � �p�e
 shouldhavea minimumsizeof �,�����,� .
Fourier transform: The2D FFT of

ð �
gives � .

Peak extraction (2): Since
%

is not known, we cannot use
the “peakextraction(1)” method. Instead, we usea water-
shedsegmentation algorithm inspiredfrom imageprocess-
ing [8].
Curve fitting: We have analytical equations for the DD
curves. Wealsohavethecoordinates�(cs0 o · �+c,I o · 
 of thepeaks



just extracted.We canthusperform a LS fit of a parametric
DD curveto thepeaks. Theresultis theLS estimateÎ% of

%
.

Thestatisticsthatis minimizedis

Á£� % 
­� º ýÑ· t R ¿ i �+�(c 0 o · �qc I o · 
M��� � % 
*
Q� (12)

where � � is the number of detectedpeaks,¿J��� · ���S
 is the
distancebetweenpoint � · andcurve � , and �µ� % 
 is theDD
curve corresponding to

%
. The parametersto be estimated

are � � , 	 � , � � , � � and � . Curve fitting is basedon geo-
metricalpropertiesof theDD curvesandis now described.

IX. CURVE FITTING METHOD

We first derive fundamentalresultsleadingto constraints
on where � canbe locatedin 3D space. Second, we use
theseconstraintsto develop astrategy for finding � .

A. Constraintson �
1) Relationship between constant-� � ellipsoid and

ground: Below, we carry mostof our reasoningin terms
of theradialcut of the3D spaceby theverticalplanegoing
through

�
and � . In this vertical cut, the ellipsoid �­�f�ã�q


appears asanellipse � è �(�K�+
 .
Therelationship between� è �(� � 
 andthegroundis shown

in Fig. 8. The major axis d�� of � è �(� � 
 must always be
equalto � � . However, the length d�� of the minor axis can
beadjusted.Here, � è �f� � 
 is tangent to theground at some
point � . Sincechanging � amounts to changing thedistanced,N betweenthe foci

�
and � (andvice-versa),therearean

infinite number of ellipsesthat (1) have
�

as oneof their
foci, (2) have d��^�Ç�^� and(3) aretangent to theground.

Via a geometrical argument, one can show that the
ground, which is the tangent to � è �(� � 
 at � , is alsothebi-
sectorof theangle

�� � � è , where
� è is themirror imageof

�
with respectto theground andis thuslocatedat ���Â_ d,'
on the � -axis. Observethat

� è �¤�k�Ò� .
First,assumethatwe aregiven

�
andsomefixedpointof

tangency � on theground. Thus,since
� è � � � � , � is at

the intersection(assumedto be above ground)of the line
�

through
� è and � andthecircle N�� ��� � è �+� � 
 centeredat� è andwith radius� � .

Second,assumethat
�

is given but that � canmovefreely
on the ground. Then, for eachposition � andfor a given�Ò� , � is locatedat the intersectionof

�
and N . Eventhough�

changeswith � , N remains invariantas � moves.We con-
cludethat,for any ellipse � è �(�K�+
 thatcorrespondsto arange�Ò� andthat is tangent to theground, � is constrainedto be
on thecircle N1� � è �+� � 
 . In 3D space,� is thusconstrained
to beona spherecenteredat

� è andwith radius� � .
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T' ó m � $ r

Ground

Fig. 8. (a) Key observationis that tangent to (*) � C �+� at , is bisector of�B-, B ) . (b) Circle . is the locusof all possiblepositionsof C aswe keepB , E E ) �\��/Ð��C � and BëC��\��. constant and (0) � C �*� tangent to the
ground.

2) Maximumradial distance for � : Figure8 showsthat,
as � movesto the right, we reacha point where � and �
coincide. This happenswhen

� �&� �{� � � � or when� �Í� �K� . Since �{� is alsothe lengthof themajoraxisof� è �(�K�+
 , � è �(�K�q
 degeneratesinto thesegment
� � . Thus,the

maximum radialdistancesof � and � are1 »32 9� � 1 »42 9# � 5 � i� _ ' i - (13)

In otherwords,wehave theconstraint1 �76 1 »42 9� - (14)

3) Coarseregion for � : Considerafixedcombinationof�
, � � è ��d����k�Ò� and

� �Ê�Çd1N . Startingfrom thetangent
position,we preserve the intersectionbetween� è �(�K�q
 and
theground whenwe lower � è �f� � 
 andwe looseit whenwe
raise� è �f� � 
 .

The above statementimplies that, for a given combina-
tion of

�
, ��� è � d��Í� � � and

� �ï� d1N , � is con-
strainedto beon thearcsegment

��Ò� # shown in Fig. 9(a),
i.e., on theportion of thecircle ��� � �+d1NX
 limited by thecir-
cle N �8��� � è �
�Ò�

 andthe ground. Rememberthat

��Ò� #
correspondsto a specificvalueof d1N . If we change d1N , we
change the radiusof

��Ò� # . The locus of all possibleposi-
tions of � for a given � � (and ' ) is thusthe dark-shaded
region in Fig. 9(b). This 2D region is boundedby thecircle��� � è �+� � 
 , thecircle ��� � è �+� � _ d1'g
 andtheground.

4) Additional constraint from DD curve: Now, we use
our knowledgeof thepreciseform of DD curvesto further
constrainthe possiblelocationsfor � . Figure10 shows a
top view of the BS radarconfiguration of Fig. 1. � is the
projection of � in the horizontal plane. The ���:9X�*	;9z
 -axes
aredefinedsothat the �<9 -axispoints in thedirectionof the� -axis.

The important parameteris the abscissa�=9> of � in the
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Fig. 9. Locusof all possiblepositionsof C for a given C � (and � ) (a) for
a fixedvalueof ��. and(b) for all possiblevaluesof ��. .
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Fig. 10. Topview of BS configuration shown in Fig. 1.���Y9.�
	;9z
 -axes.Onecanshow that �Z9> is givenby

� 9> ��� �\[] __^ � w �Ç¥d1� w � sign�p� w 
�` á ^ � w �Ç¥d1� w â i _�¥WabË�
(15)

where � w �&c »3c ¹0 �ªc »42 90 and � w �`c »3c ¹0 c »42 90 , c »3c ¹0 andc »42 90 beingthe c 0 -coordinatesof theextremepoints of the
DD curve alongthe c 0 -axis. Notethatwe canalwayscom-
pute �Y9> without any knowledgeof d ! However, we should
not concludethatwe canlocatetheline

� è shown in Fig. 10,
which � must be locatedon. Indeed,we do not know d !
However, thevalueof �-9> canbeusedto constrain thepos-
siblelocationsfor � , and,thus,for � . Indeed,we canshow
that � mustbelocatedon theboundaryor on theoutsideof
a circle � »3c ¹ of radius 1 »3c ¹> �Ë! �Y9> ! , i.e., 1 >7e 1 »fc ¹> . Since� is theprojection of � in the �f���
	3
 -plane,we alsohave1 � e 1 »3c ¹� � (16)

where 1 »3c ¹� �Ë! � 9> !M- (17)

Thenetresultof thisconstraint is to truncatethedark-shaded
regionof Fig. 9 at 1 � 1 »3c ¹� , asshown in Fig. 11.

Figure 11 shows that, for any radial distance 1 � inì 1 »3c ¹� � 1 »42 9� í , thereareconstraintson the possibleheights

B
g � B )�h C�� ��

iiWj-k�l�i j=mon�
C �qp^�.�

�p �
g � B h C � pÐ�.� �

p��.� BZ)
Fig. 11. Resultof applying the constraint of Eq. (16) to the dark-shaded
areaof Fig. 9(b).� � . In practice, � � canbe expressedasa function of the
point underconsiderationon the circle ��� � � 1 � 
 , � w , � �
and ' . Thederivationof this relationis complicatedandis
thusomitted.

B. Finding �
1) Search-spaceannulus for � : The constraints1 � e1 »3c ¹� and 1 � 6 1 »42 9� indicatethat � must be locatedin

anannulus r with radialextent é 1 »fc ¹� � 1 »42 9� ê , asillustrated
in Fig. 12. However, if �f� � �
	 � 
s�¢�f� > �
	 > 
 is the so-
lution of the parameterestimationproblem, we know that�f� � �X_�	 � 
 is alsoasolution.Therefore,searchingeitherthe
upper half or thelowerhalf of theannuluswill yield oneso-
lution. Thesecondis automaticallyfound by symmetry. To
bemoreprecise,if �f	 � �
� � �
�,
 correspondsto onesolution,�*_�	 � �X_a� � ��_a�,
 correspondsto theother, all otherparame-
ters �f� � �+� � �
 � �
 � 
 remaining thesame.

t Õ �tYu l

v

G�wZx�yUG�w%z|{U
t

Fig. 12. Theprojection } of C is constrainedto belocatedin annulus ~ .

2) Searching for � in annulus: At thispoint,wehaveno
choicebut to testeachpoint in, say, theuppersearchregionr�� . Given the annular shapeof r�� , r�� is discretizedus-
ing a polargrid. To find the locationof � in r � , we need
to explore all thepoints on thepolargrid in r � . However,



to savecomputationtime,weuseanadhoc method thatper-
formsthesearchfor themostlikelyvalueof � � ��� > ateach
radius1 between1 »3c ¹� and 1 »32 9� . Thehopeis thatthisvalue
is closeto the true d . Note that thereis no guaranteethat
this adhocmethod will yield theright value of

%
! However,

the methodhasworked perfectly in all casestested. The
algorithmfor finding the estimatesfor d andfor the other
unknown parametersis now described.

C. Curvefitting algorithm

First, using the positions �(c 0 o · �+c,I o · 
 of the extracted
peaks,we compute the estimatesÎ� w � Î c »3c ¹0 � Îc »42 90 andÎ� w � Î c »3c ¹0 Î c »42 90 , where Îc »3c ¹0 � min· c10 o · and Î c »42 90 �
max· c10 o · .

Second,usingtheknown valueof � � andtheestimatesÎ� w
and Î� w , we compute Î1 »3c ¹� according to Eqs.(17) and(15).
Then, using the known valuesof � � and ' , we compute1 »32 9� according toEq.(14). Thesevaluesfor Î1 »3c ¹� and1 »42 9�
definetheannulus r .

Third, we proceedwith oneof thefollowing approaches.
Thefirst approachis asfollows. We discretizer � bothan-
gularly andradially. For eachpoint ��� > �*	 > 
\� �f� � �
	 � 
 ,
theestimateÎ� � of � � is foundusingthepreviouslydiscussed
relationlinking ��� � �
	 � 
 , Î� w , �K� and ' . We solve anesti-
mationproblem at eachcandidatepoint �f� � �*	 � � Î� � 
 . The
parameters to be estimatedare � � and � . Parameter esti-
mationis describedbelow. Thisfirst approachis guaranteed
to provide thecorrect solution,but it is slower thanthesec-
ond, which is as follows. We discretizer � only radially.
We solve an “augmented”estimationproblem at eachcan-
didateradius 1 > � 1 � . Now, theunknown angularposition� > ��� � or, equivalently, d , is included in the estimation
problem. This approach is not guaranteedto provide the
correctsolution, but it is fasterthan the first. However, it
hasprovidedthecorrectsolutionin all casestested.

Unknown parameters are estimatedas follows. We ex-
pressthefactthateachof thedatapoints �(cs0 o · �+c,I o · 
 is on a
BS DD curve parameterizedwith � � , � and,if applicable,� > . This is donerepeatedly for eachgrid point or for each
circle in r�� . In eachcase,theparameters arefound by LS
estimation.Finally, we selectthesolutioncorresponding to
thecandidate�f� � �
	 � � Î � � 
 with thesmallestLS error.

X. PERFORMANCE COMPARI SON

Theperformancesof themethodsof TableI arecompared
in termsof theSINRL. For reference,wealsoshow theper-
formancesof theOPandof thestraight-averagingprocessor
(SAP).We assumeomnidirectionalsensors.Similar results
areobtainedwith directionalsensors.Figure13(a)-(b) illus-
tratestheperformanceof theAT method. Theplotsconfirm
(a) thatTP-AT-BS performsnearlyaswell asOPandmuch
betterthanSAPand(b) thatAT-BS methodsperformnearly
identicallyin boththeir TP andEPmodes.Figure13(c)-(d)

similarly illustratestheperformanceof theWT method. As
expected,WT providesbetterperformancethanAT, bothin
TP andEPmodes.
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Fig. 13. Performance comparaisonof themethods of TableI in termsof
SINRL � 
�� � at 
�
 � � . Performancesof theoptimumprocessor(OP)and
of thestraight-averaging processor(SAP)areshown asreferences.

XI. CONCLUSIONS

We have examined the problem of range-dependenceof
the clutter ridge for BS STAP radars. New compensation
methodsbasedonthemathematical propertiesof DD curves
have beenproposed.Their performanceswerecomparedto
thoseof theOPandSAP. Compensationis nearlyperfectfor
all configurations, both in TP andEP modes. Compensa-
tion is achieved without increasingthenumberof degreesof
freedom required for clutterrejection.
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