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Abstract 
We consider the automatic recognition of non-cooperative airplanes observed with a passive bistatic 
radar, thus using illuminators of opportunity ,and in particular navigation aids (VOR's). The testbed we 
deployed around the Orly airport, France, allowed us to compute the bistatic radar cross-section of 
real airplanes. We then performed the recognition of these airplanes using their radar cross-sections 
and subspace methods, achieving a percentage of correct recognition of about 83%.  

 
Today, air traffic controllers can detect 
airplanes by using primary surveillance radars, 
and identify them by using secondary 
surveillance radars. However, a non-
cooperative airplane – i.e. an airplane without 
an ADS-B transponder (or equivalent) or with 
one that is defective and/or not responding to 
radio calls – flying in, and perhaps intruding 
into, controlled airspace, cannot be identified 
by secondary surveillance radars. It is thus 
important to develop systems that work 
independently from the air traffic control 
system, are easy to deploy, and are 
inexpensive (which excludes microwave 
imaging radars). A potential solution is to use 
passive radar systems using illuminators of 
opportunity, such as radio and TV stations, 
and navigation aids. We address this problem 
and demonstrate the potential of the approach. 
 
In radar applications, targets are mainly 
characterized by their radar cross-section. We 
thus perform the recognition of airplanes by 
using their bistatic radar cross-section (RCS), 
denoted by σ. 
 
We designed, deployed, and successfully used 
an experimental passive radar testbed in the 
vicinity of the Orly Airport, south of Paris, 
France. The initial plan called for using two 
VOR (VHF Omni Range) navigation aids as 
transmitters (Tx's) of opportunity, and a 
software-defined radio (SDR) of our own 
design as receiver (Rx). The VOR's were those 
of Rambouillet (with call-sign RMB, and 
operating at 114.7 MHz) and Epernon (EPR, 
115.6 MHz). However the signal-to-noise ratio 
of the signal received from EPR proved to be 
too small to be usable. Our effective testbed 
thus comprised a single (Tx, Rx) pair. Each 
such pair defines a bistatic (BS) radar. We also 
set up an ADS-B receiver to obtain the identity 
(ICAO call-sign) and position of each airplane 

in view, each time it is interrogated by a 
secondary surveillance radar. By tracking the 
airplane’s position over time, we obtained its 
measured trajectory, which allowed us to 
estimate the heading of the airplane at any 
time, an important piece of information for 
recognition. We recorded the signals received 
by our SDR Rx almost continuously for ten 
days, resulting in measurement data 
corresponding to 1,329 airplanes of 41 
different types, 1,329 trajectories, and 54,154 
sampling points. The first third of this collected 
data constituted the learning set, which we 
used to build the recognition model. The two 
other thirds made up the test set, which we 
used to test our recognition model and to 
quantify its performance. 
 
For each sampling point, we separated, by 
using a Doppler filter in the frequency domain, 
the direct signal coming from the VOR and the 
scattered signal coming from the airplane, 
which allowed us to deduce the BS RCS σ of 
the airplane. It is well-known that this BS RCS 
varies with the BS angle β and with the aspect 
angle α (say, measured from the bisector of β). 
The knowledge of the position of the airplane 
and of its trajectory, and of the positions of the 
Tx and Rx, allowed us to compute the values 
of α and β associated with each sample point. 
Each such point is thus characterized by a 
specific triplet (α, β, σ). One can thus map the 
physical trajectory of each airplane into a 
trajectory in an (α, β) plane, with a value of σ 
associated to each sampling point along this 
parameter-plane trajectory. 
 
A significant feature of our recognition system 
is that we partition the (α, β) plane into regions 
(which are generally rectangular, but can be of 
arbitrary shape), and that we build a specific 
recognizer for each region. It is useful to 
imagine that there is a distinct (α, β) plane for 



each pre-defined class of airplanes (assuming 
supervised learning), each being partitioned in 
the same way. To build the recognizer for each 
specific class and region, we built feature 
vectors (FV's) of RCS's from all trajectories in 
each such region. For each class of airplanes 
and for each region, we computed, via a 
singular value decomposition (SVD), the best 
corresponding subspace. Our recognition 
model thus consists of a list of subspaces, 
each subspace characterizing a class of 
airplanes for one region. During operational 
use, we would also build one or more FV's 
from operationally obtained trajectories, and 
we would project them in the subspaces of all 
classes. The best projection metric would 
determine the class of the observed airplane. 
 
In our recognition experiments, we considered 
the three broad classes of large, medium, and 
small airplanes, most from the two major 
airplane manufacturers. We achieved an 
overall correct recognition rate of 83%, which 
demonstrates the validity of the approach for 
the detection of non-cooperative airplanes 
intruding into controlled airspace. Since the 
correct recognition rate varies according to the 
region of the (α, β) plane, higher recognition 
rates can be achieved by optimizing the 
position(s) of the receiver(s). 

 


