

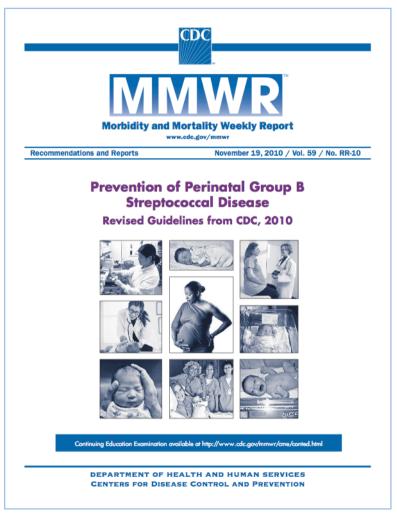


Pierrette Melin

Medical microbiology, CHU-ULg, National Reference Centre for GBS



- Worldwide mortality 0-4 years old (WHO, Cause of death 2008)
  - 8,3 millions
    - 30-40% within first week of life
- Neonatal bacterial sepsis
  - +/- 1 million annually
    - GBS is the leading cause
- Maternal immunization
  - Cornerstone of prevention
    - Neonatal tetanos and influenza
  - Potential to protect young infants




- In industrialized countries, since 1970's
  - Leading cause of pneumonia, sepsis, meningitis
    - 0.5 to 4 /1000 live births
  - EOD, mortality 5-10%
  - LOD, mortality 3-5%
  - Meningitis
    - 50% permanent sequelae
      - From mild learning or motor disabilities to global cognitive impairment
  - Maternal colonization: 15-40%
- In resource-limited countries
  - Many common characteristics with industrialized countries

### Global public health major concern!

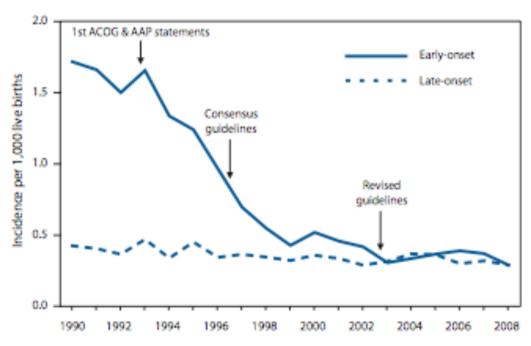
3






CDC, USA, MMWR, Vol 59 (RR-10) Nov.2010

Endorsed by ACOG, AAP, ACNM, AAFP and


ASM

CSS, Belgium July 2003 (Revision ongoing)



4





Incidence of GBS EOD and LOD, 1990 to 2008, ABC surveillance areas, USA

#### Prevention through IAP

- In industrialized countries
  - Substantial declines of EOD
    - Remaining burden
  - No effect on LOD
  - Several concerns
- In resource limited countries
  - Not an option
  - Intrapartum vaginal and newborn chlorhexidine washes proven ineffective



### **European strategies** for prevention of GBS EOD

- Prevention through IAP
  - Screening-based strategy
    - Spain, 1998, revised 2003
    - France, 2001
    - Belgium, 2003, revision ongoing 2011
    - Germany, 1996, revised 2008
    - Switzerland, 2007
  - Risk-based strategy
    - UK, the Netherlands
- No guidelines
  - Bulgaria, ...



#### **GBS Vaccines**

- GBS neonatal disease
  - Mainly CPS type III followed by Ia, V, Ib, II
  - Substantial perinatal morbidity and mortality
    - Especially in the first 48 hrs of life
  - Concern about IAP
  - Higher levels of maternal specific CPS Ab // reduction of risk of neonatal disease
    - GBS Vaccines
      - Uniquely suited for maternal immunization
      - To prevent GBS disease in young infants



### Since the 1980's: GBS Vaccines, Challenges

#### Capsular polysaccharide (CPS) vaccines

- 10 serotypes la, lb IX
  - Variability of CPS distribution
    - Type of infections: EOD, LOD, in adults
    - Geographically and along time
- Conjugated vaccines
- Multivalent vaccines Ia, Ib, II, III, V
- Clinical studies (Phase I and II)
  - Immunogenicity; Safety; Efficacy (scheduled / ongoing)
  - Ia, Ib, III conjugated to CRM197 (Novartis) clinical trials in Belgium
- → Well tolerated and immunogenic

  Functional Abs (opsonization, phagocytosis, killing, protecting)



### Since the 1980's: GBS Vaccines, Challenges

#### **GBS Protein-based vaccines**

- Antigen = common surface protein
  - Cross protection against different CPS
  - Better immunogenicity
    - Humoral response T-cell dependant → Long lasting immunity
- Among several candidates
  - +/- ubiquitous among all GBS
    - BPS (Group B protective surface protein), C5a peptidase
    - Sip (Surface immunogenic protein)

Brodeur B et al, Infect Imm 2000

Pili proteins (PI-1, PI-2a, PI-2b)

Maione D et al, Science 2006

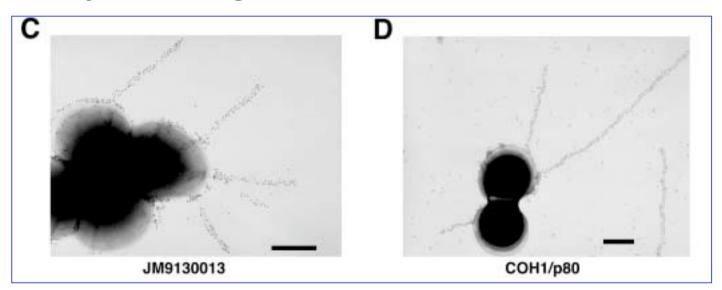


#### **GBS Protein-based Vaccines**

#### Reverse vaccinology approach

Knowledge of complete GBS genome

Comparaison of genomes from 8 different GBS serotypes


D.Maione et al, Science 2006

- 312 surface proteins were cloned
- 4 Provide a high protective humoral response in mouse
  - Sip
  - Three other proteins = « pilus like structures »



#### GBS « pilus like structure »

- Highly immunogenic proteins
- Elicit protective and functional antibodies
- Virulence factor
  - Adhesion
  - Transcytose through cells











#### Vaccine Against Neonatal Infections

Design of a vaccine to immunize neonates against GBS infections through a durable maternal immune response





#### PROJECT (01.2008 - 06.2011)

- Development of a vaccine against pili proteins & major CPS serotypes
- Development of a mouse model of GBS meningitis
- European epidemiology
  - Genito-rectal colonizing strains
  - Invasive neonatal strains and diseases
- Identification of protective levels of specific antibodies

**Consortium of 8 European countries** 





#### **Epidemiology**

### **Material and methods (Targets)**

- 200 GBS neonatal diseases (EOD & LOD)
  - Strain isolated from blood, CSF or another normal sterile site and perinatal mother's serum
    - 25 per country
- 400 GBS negative mothers of healthy babies
  - Serum
    - 50 per country
- 800 GBS positive mothers of healthy babies
  - Strain and perinatal mother's serum
    - 100 per country

For each patient included in the study (2009-2010)

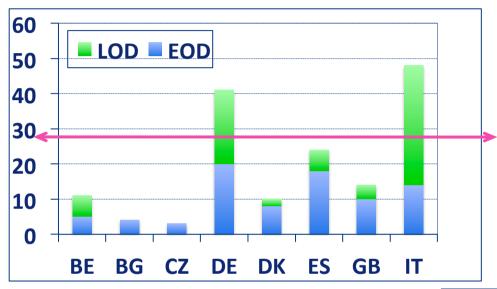
Case Report Form (eplatform web.database)

Signed consent form



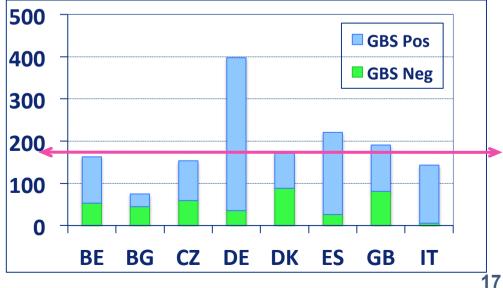
### Epidemiology Material and methods

- Determination of capsular type
  - Serotyping by latex microagglutination (SSI, Dk)
  - Genotyping by multiplex PCR (Poyart C, 2007 and Kong F, 2008 or Imperi M, 2010)
  - Set up of an international EQA (Afshar et al, JCM 2011)
- Assessment of presence of pili genes
  - PCR PI-1, PI-2a and PI-2b (Baldassari L et al, submitted)
- **MLST** (Jones N. et al., JCM 2003)
- FACS analysis
  - Pili expression
- GBS serology
  - Abs Ia, Ib, III and V
  - Abs PI-1, PI-2a and PI-2b




### Descriptive and statistical analysis

- Description and comparison of populations
  - Demographic anamnestic clinical biological data – CPS - Pili - MLST
    - Europe and countries
    - Pregnant women of healthy babies vs mothers of EOD/ LOD
    - Neonatal cases: EOD and LOD
- CPS Pili MLST relations
- Serological relations
  - Protective thresholds




### Subject accountability



159 GBS neonatal infections EOD / LOD = 1.12







#### **PROVISIONAL ANALYSIS**



### "Pregnant women"

|                                                                 | Healthy<br>babies'mothers<br>(1525: 1122 pos) | GBS EOD's mothers (78)                    | P value                            |  |  |
|-----------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|------------------------------------|--|--|
| GBS prenatal screening                                          |                                               |                                           |                                    |  |  |
| %, Number (Pos) Vagino-rectal swab IAP if GBS pos               | 89.5%, 1365 (954)<br>80%<br>60%               | 47.4% (48.6%)<br>33.3%<br>27%             |                                    |  |  |
| GBS intrapartum screening                                       |                                               |                                           |                                    |  |  |
| % (Pos)                                                         | 16.7% (58%)                                   | 16.5% (92.3%)                             |                                    |  |  |
| Maternal age at delivery                                        |                                               |                                           |                                    |  |  |
| Mean (years)                                                    | 30.8 (15-48)                                  | 35.9 (26-40)                              |                                    |  |  |
| Notified Risk Factor for neonatal GBS EOD                       |                                               |                                           |                                    |  |  |
| ROM > 18h T° >= 38°C GBS bacteriuria Previous GBS sibling No RF | 5%<br>1%<br>3.9%<br>0.3%<br>88.7%             | 17.9 %<br>11.5%<br>11.4%<br>1.3%<br>51.3% | <0.001<br><0.001<br>0.02<br><0.001 |  |  |



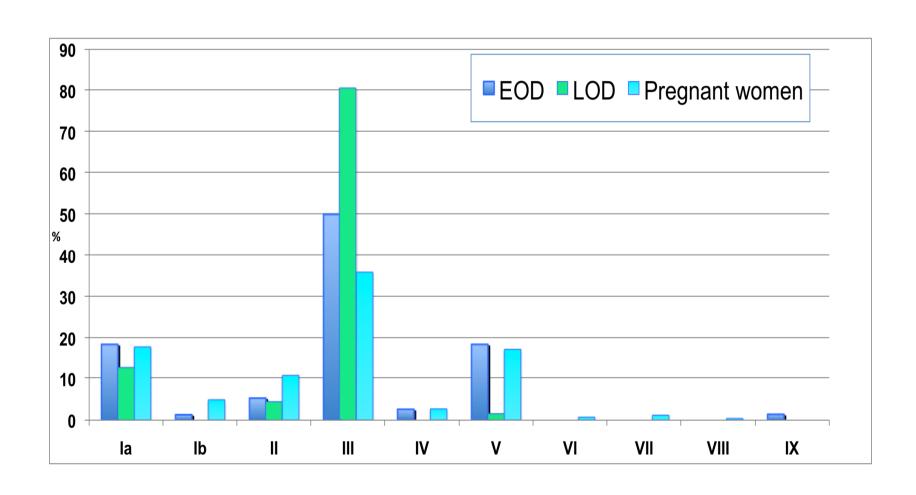
# "Pregnant women" Type of delivery

|                            | Healthy<br>babies'mothers | GBS EOD's mothers     |  |
|----------------------------|---------------------------|-----------------------|--|
|                            |                           |                       |  |
| Vaginal                    | 51.9%                     | 68.1%                 |  |
| Planned C-section          | 12.9%                     | 3.8%                  |  |
| Non-elective C-<br>section | 11.0%                     | <b>27.8%</b> (P<0.01) |  |
| Unknown                    | 24.3%                     | 1.3%                  |  |



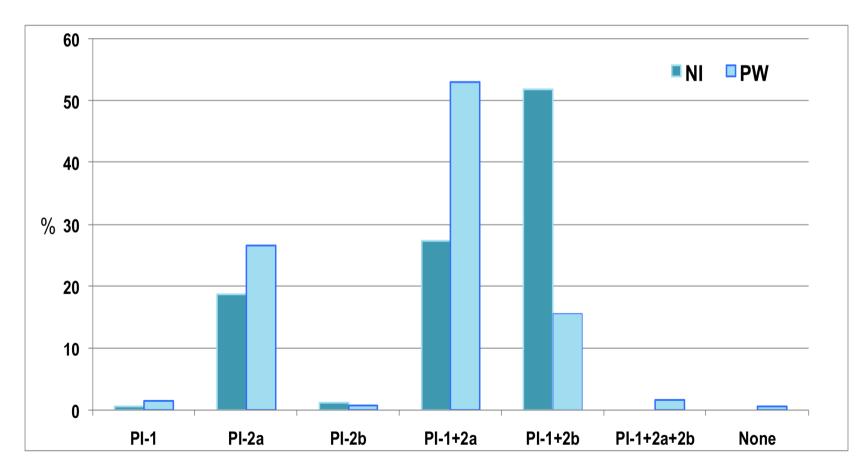
### Mothers of newborns with GBS disease

|                                                                 | GBS EOD's mothers<br>(78)                | GBS LOD's mothers<br>(72)           |  |  |  |
|-----------------------------------------------------------------|------------------------------------------|-------------------------------------|--|--|--|
| GBS prenatal screening                                          |                                          |                                     |  |  |  |
| % (Pos) Vagino-rectal swab IAP if GBS pos                       | 47.4% (48.6%)<br>33.3%<br>27%            | 61,1% (45.5%)<br>56.8%<br>26%       |  |  |  |
| GBS intrapartum screening                                       |                                          |                                     |  |  |  |
| % (Pos)                                                         | 16.5% (92.3%)                            | 14.1% (60%)                         |  |  |  |
| Maternal age at delivery                                        |                                          |                                     |  |  |  |
| Mean (years)                                                    | 35.9 (26-40)                             | 31.2 (20-44)                        |  |  |  |
| Notified Risk Factor for neonatal GBS EOD                       |                                          |                                     |  |  |  |
| ROM > 18h T° >= 38°C GBS bacteriuria Previous GBS sibling No RF | 17.9%<br>11.5%<br>11.4%<br>1.3%<br>51.3% | 8.6%<br>1.4%<br>8.3%<br>0%<br>52.1% |  |  |  |




### **Neonatal Invasive GBS Diseases**

| GBS EOD (5.1% death)                | GBS LOD (1.5% death)                                                                                                                     | Р                                                                       |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 78 (52)                             | 72 (48)                                                                                                                                  |                                                                         |
| < 1 day (88%)                       | 38 d (6-109)                                                                                                                             |                                                                         |
| 2.9 kg (1-4.9!)                     | 2.7 kg (0.7-4.1)                                                                                                                         |                                                                         |
| 37.7 wks (26-42)<br>21.5%           | 36.2 wks (24-43)<br>35.7%                                                                                                                | 0.05                                                                    |
| 1.16                                | 0.89                                                                                                                                     | 0.42                                                                    |
| Respiratory distress (38% of cases) | Fever (63% of cases)                                                                                                                     | <0.001                                                                  |
|                                     |                                                                                                                                          |                                                                         |
| 26.8%                               | 11%                                                                                                                                      |                                                                         |
| 70.7%                               | 75.3%                                                                                                                                    |                                                                         |
| 8.5%                                | 30.1%                                                                                                                                    | <0.001                                                                  |
| 13.4%                               | 2.7%                                                                                                                                     | 0.017                                                                   |
| 2.4%                                | 9.6%                                                                                                                                     |                                                                         |
| 5.1%                                | 15.7%                                                                                                                                    | 0.03                                                                    |
|                                     | 78 (52)  < 1 day (88%)  2.9 kg (1-4.9!)  37.7 wks (26-42) 21.5%  1.16  Respiratory distress (38% of cases)  26.8%  70.7% 8.5% 13.4% 2.4% | death)       death)         78 (52)       72 (48)         < 1 day (88%) |



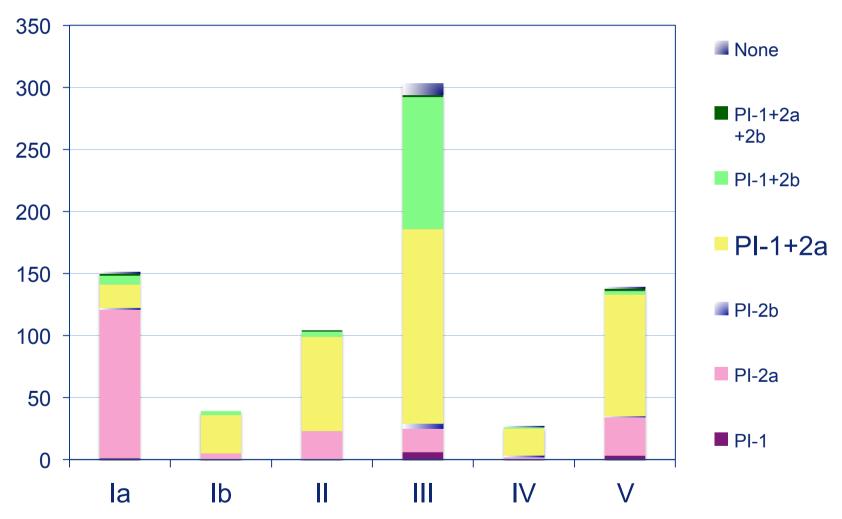

# Distribution of CPS serotypes among GBS from neonatal infections and among healthy babies' mothers





# Distribution of Pili genes among GBS from neonatal infections and among healthy babies' mothers

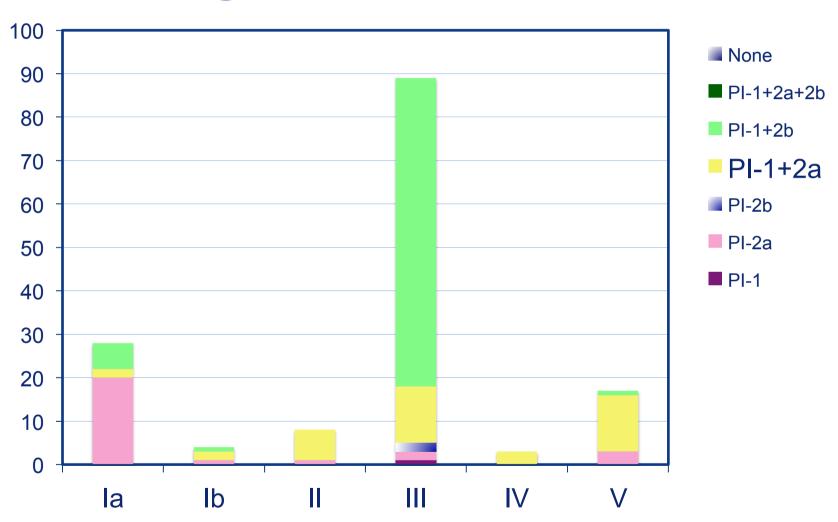



NI: 100% with pili gene(s), most common pattern is PI-1+b2

PW: 0.6% without pili genes, most common is PI-1+2a

24

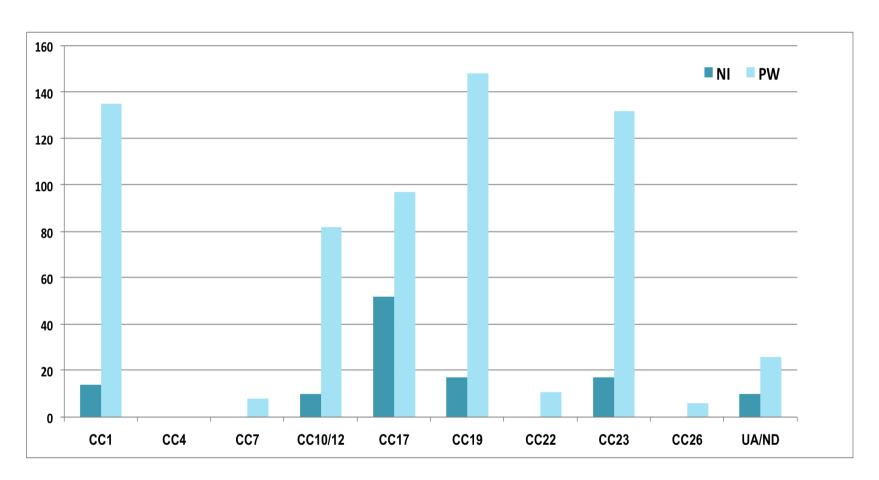



## Relation pili / CPS among GBS from PW



Association between certain serotypes and pili gene pattern




# Relation pili / CPS among GBS from newborns





### **MLST – Clonal analysis of GBS**

646 GBS from PW and 121 from NI



In PW: 66 Sequence types (ST) for 9 clonal complexes (CC)

Five CC include 92% of isolates tested

In NI: 6 CC; the most frequent is CC17, the hypervirulent clone



# DEVANI Project Preliminary conclusions

- Set up of a mouse meningitis model
- In European countries
  - Difference of prevention strategies
  - Difference of resource for routine diagnostic of severe neonatal infection
- In Belgium, difficult to include cases even if they occurred
- Standardization of typing methods
- Among neonatal infections:
  - Higher prevalence of GBS CPS III, pili pattern PI-1+2b and CC17
- Assessment of presence of pili genes
  - 100% in NI et 99% in PW
- MLST et CPS more heterogenous among GBS from PW
- No significant difference in CC distribution /country
- Serological analysis ongoing





#### CHU Liege, National Reference Centre for GBS, Belgium

- P. Melin
- **G. Rodriquez Cuns**
- M. Chantrenne

Respiratory and Systemic Infection Laboratory, **Health Protection Agency Centre for Infections,** London

- A. Efstratiou
- B. Afshar

Istituto Superiore di Sanità, Rome, Italy

- G. Orefici
- L. Baldassarri
- R. Creti

**Center for Pediatrics and Adolescent Medicine. University Medical Center Freiburg, Germany** 

- R. Berner
- M. Hufnagel
- M. Kunze

Servicio Andaluz de Salud, Hospital Universitario Virgen de las Nieves, Granada, Spain

- M. De La Rosa Fraile
- J. Rodriguez-Granger

**National Center of Infectious and Parasitic** Diseases, Sofia, Bulgaria

A. Detcheva

**Aarhus Universitet, Aarhus, Denmark** 

- M. Kilian
- **U. Skov Sorrensen**
- K. Poulsen

**National Institute of Public Health, Prague, Czech** Republic

- P. Krizova
- J. Kosakova
- M. Musilek

**Novartis Vaccines & Diagnostics, Siena, Italy** 

- J. Telford
- D. Majone