

Overview of the geophysical data derived from long-term FTIR monitoring at the Jungfraujoch NDACC site (46.5°N)

Emmanuel Mahieu (emmanuel.mahieu@ulg.ac.be), Benoît Bovy (bbovy@ulg.ac.be), W. Bader, P. Demoulin, B. Franco, B. Lejeune, C. Servais and C. Vigouroux*

> Institute of Astrophysics and Geophysics, University of Liège, Liège, Belgium (*) Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium

INSTRUMENTATION, SITE, OBSERVATIONAL DATABASE AND TOOLS

- -- Very high resolution (up to 0.003 cm⁻¹) infrared solar spectra are recorded year-round, at the high-altitude International Scientific Station of the Jungfraujoch (Swiss Alps, 46.5°N, 8.0°E, 3580m a.s.l.). Clear-sky conditions are mandatory.
- -- Fourier Transform InfraRed (FTIR) monitoring activities are conducted at that site within the framework of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org).
- -- Our FTIR instruments are equipped with cooled HgCdTe and InSb detectors, allowing covering the 650 to 4500 cm⁻¹ region of the electromagnetic spectrum. A set of optical filters (color-coded in Figure 1) are used to maximize the signal-to-noise ratios.
- -- The retrievals are essentially performed with the SFIT-2 algorithm (v3.91) which is based on the semi-empirical implementation of the Optimal Estimation Method of Rodgers [JGR, 95, 1990], allowing in most cases to retrieve information on the vertical volume mixing ratio (vmr) profile of the target species.
- -- Multidecadal FTIR time series are available from the Jungfraujoch (longest FTIR data sets worldwide), with earlier measurements in 1984.

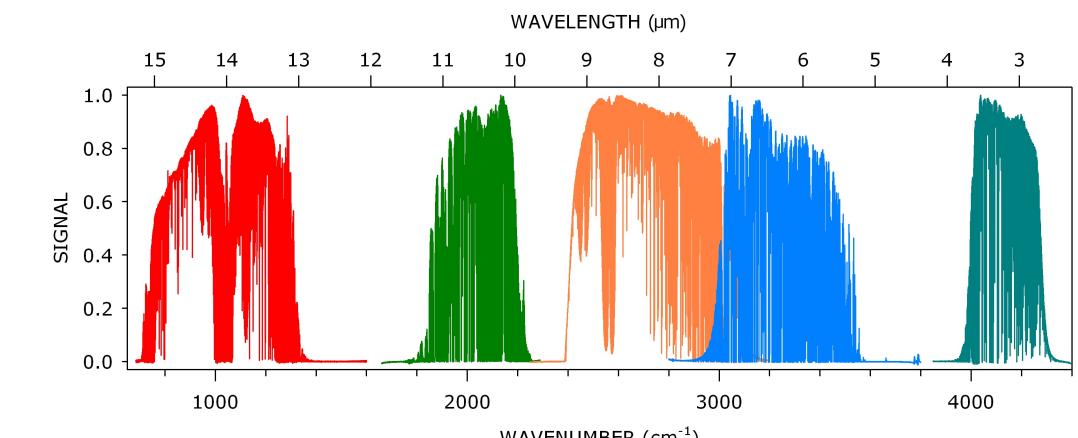


FIGURE 1 - Infrared spectral ranges routinely recorded at the Jungfraujoch station.

FIGURE 2 - NDACC FTIR site locations

TARGET SPECIES OF THE GROUND-BASED FTIR TECHNIQUE

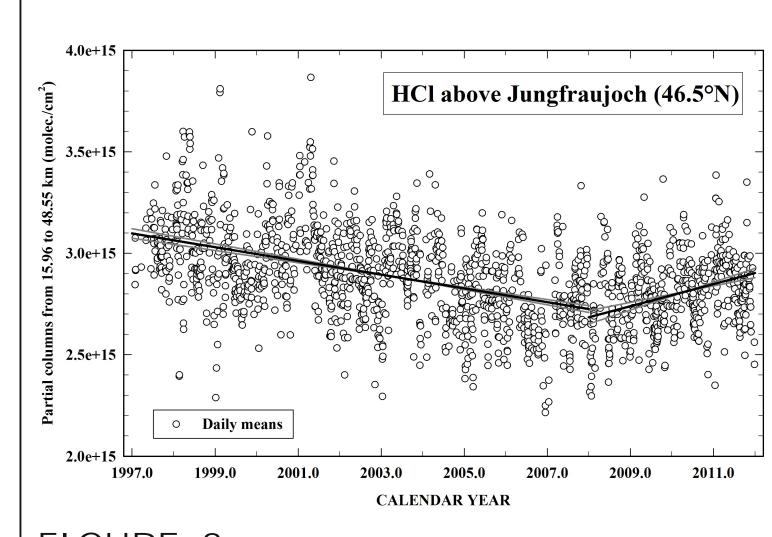
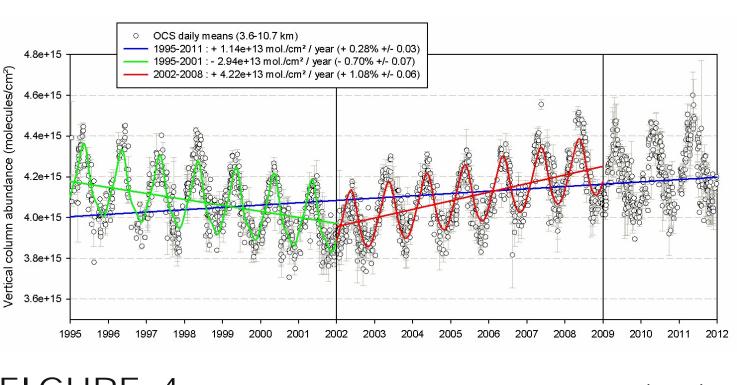
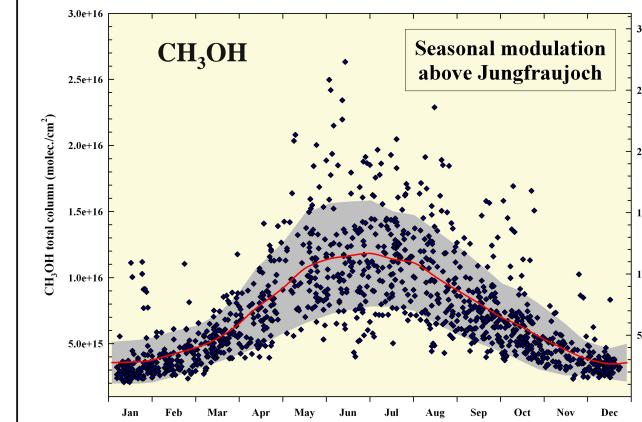
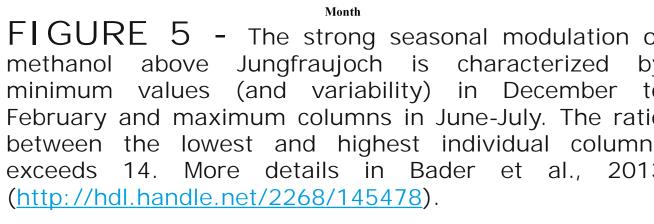
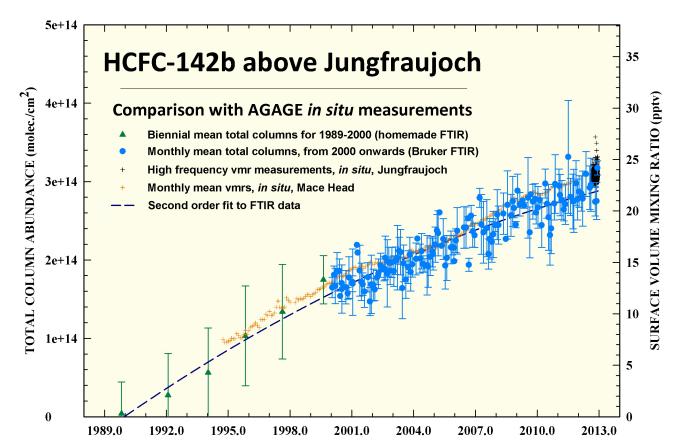



FIGURE 3 - Recent and unexpected upward trend for hydrogen chloride above the Jungfraujoch station. The 2008- routinely retrieved from the Jungfraujoch 2012 increase is significantly positive at the 2-sigma uncertainty spectra: level. This feature is confirmed by ACE-FTS IR solar occultation measurements at northern mid-latitudes. For more details, see Mahieu, 2012 (http://hdl.handle.net/2268/132600).

the troposphere, as deduced from long-term monitoring O_2 ... activities at the Jungfraujoch station. Coal combustion and aluminum production, notably in China, are candidate explanations for the OCS increase as of 2002. For more details, see Lejeune, 2012 (http://hdl.handle.net/2268/123804).


Numerous atmospheric species have exploitable spectral signatures in the infrared region routinely recorded by the NDACC-affiliated ground-based instruments (see map). First priority species include O₃, HNO₃, HCl, HF, CO, N₂O, CH₄, HCN, C₂H₆ and ClONO₂. Total and partial column timeseries of all these species are available in hdf and/or NASA-Ames format from the NDACC database (http://www.ndacc.org].


Altogether, about 30 molecules are now


- -- major greenhouse gases: H₂O, CO₂, CH₄
- -- ozone
- -- halogenated compounds: CCl₃F (CFC-11), CCl_2F_2 (CFC-12), CHClF₂ (HCFC-22), CH₃CClF₂ (HCFC-142b), CCl₄, CF₄, SF₆, HCl, Clono₂, HF and COF₂
- -- nitrogen compounds: N₂, N₂O, NO, NO₂, HNO₃, ClONO₂
- -- organic compounds: CO, C₂H₂, C₂H₆, CH₃OH, HCN, formaldehyde, formic acid,
- FIGURE 4 Timely trends for carbonyl sulfide (OCS) in -- many isotopologues of H₂O, CH₄, CO,

Sample results from the Jungfraujoch geophysical database are shown in **FIGURE** 3 and FIGURE 4.

EXAMPLES OF RECENT ADDITIONS: METHANOL AND HCFC-142b

- The strong seasonal modulation of FIGURE 6 - Monthly mean total column time above Jungfraujoch is characterized by series of HCFC-142b above Jungfraujoch and minimum values (and variability) in December to comparison with AGAGE GC-MS in situ measurements February and maximum columns in June-July. The ratio at Mace Head (53°N). Overall, the long-term evolutions between the lowest and highest individual columns of the two sets are in good agreement. The 5% average exceeds 14. More details in Bader et al., 2013 difference between the 2 sets is within the systematic uncertainty characterizing the FTIR data. See Mahieu et al., 2013 (http://hdl.handle.net/2268/144709)

RETRIEVAL STRATEGIES UNDER DEVELOPMENT: NH₃, PAN, CH₃Cl...

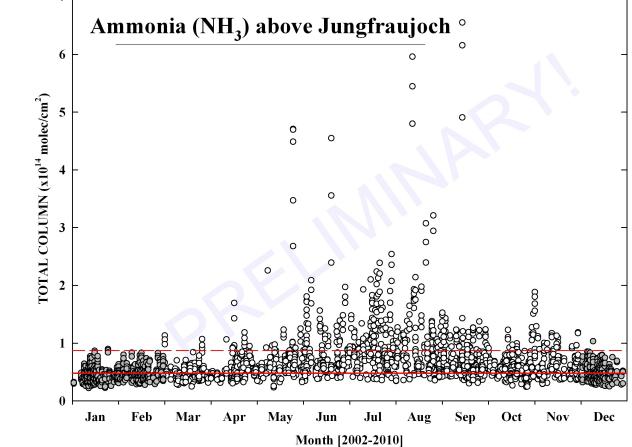


FIGURE 7 - Preliminary time series for ammonia. and summertime seasons show enhanced columns.

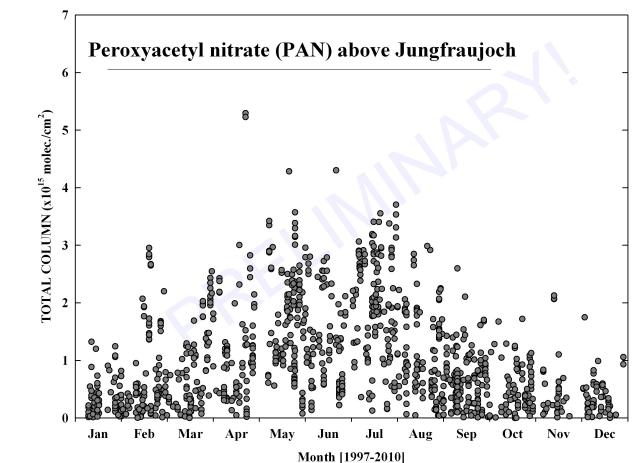
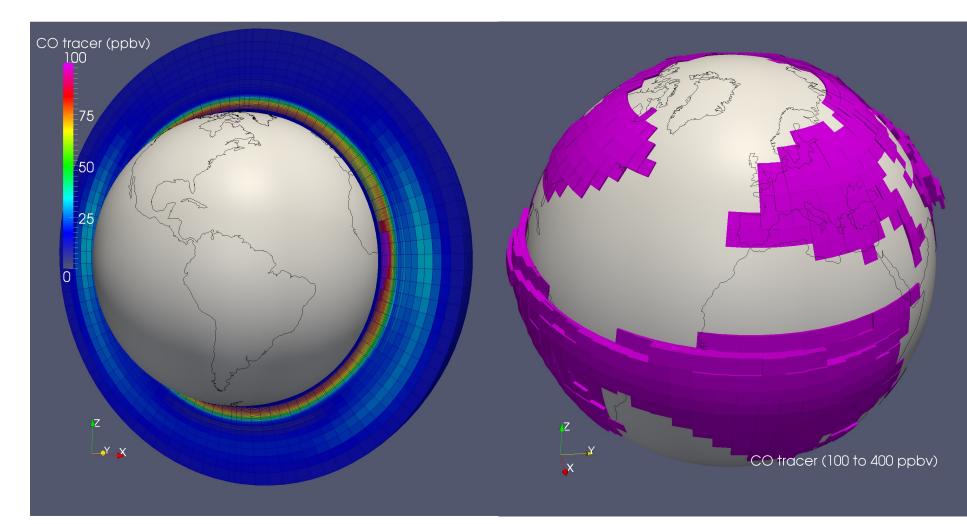


FIGURE 8 - Preliminary time series for PAN, As for other reactive compounds, minimum values are retrieved from the 1154-1173 cm⁻¹ window. Another observed during December-February while the spring spectral interval spanning a more intense PAN feature -but including a strong water vapor line- has yet to be

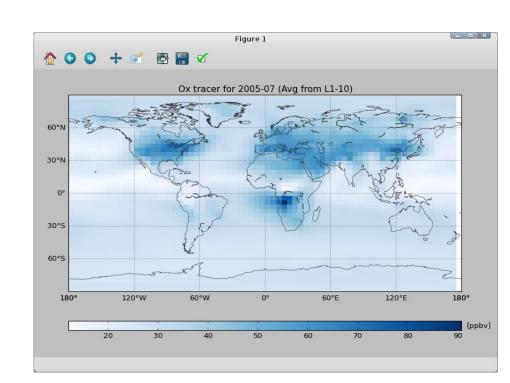
PYGCHEM:

Development of a new Python interface to GEOS-Chem

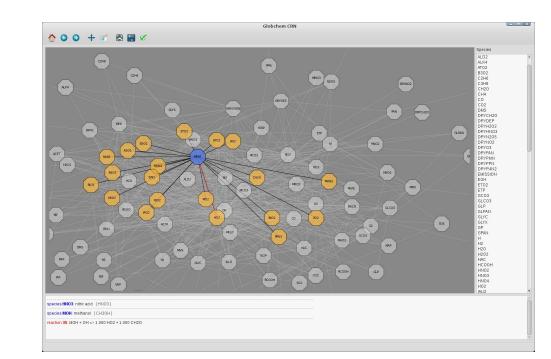
Aim of this project


- provide an alternative to the IDL interface (GAMAP), based on an open-source framework;
- more than a collection of routines, the proposed interface intends to bundle an object-oriented library with several widgets and a customized shell for common or specific tasks related to GEOS-Chem simulations.

Why a Python interface?


- general and powerful open-source programming language, easy to learn. Object -oriented programming support;
- a large, still growing, user and developer community; many extensions including mature scientific libraries;
- easy connection between Python and other languages as Fortran;
- a "Pythonic" interface should allow the GEOS-Chem users to focus on the scientific aspects of their model use without spending too much time on technical details.

Examples of features that are planned for the upcoming first release


- reading/writing files used or generated by GEOS-Chem (e.g., binary punch files, netCDF data files, globchem.dat, tracerinfo.dat, diaginfo.dat...) info/from specific Python data structures or Numpy arrays;
- interactive 1D or 2D plotting of diagnostics (using matplotlib and basemap);
- interactive 3D visualization of diagnostics (using Paraview or Mayavi) after export to the VTK format;
- interactive exploration of the global chemistry mechanism defined for GEOS-Chem simulations, using an independent data structure (with import/export routines) and visualization tools (e.g., creation of a chemical reaction network using NetworkX).

3D Visualizations with Paraview

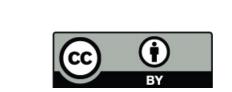
2D map created with matplotlib/basemap

The global chemistry mechanism visualized as an interactive CRN

The project is currently under development. We need your feedback and/or suggestions!

- Do you have any interest in using a GEOS-Chem Python interface for your research activities?
- As a GEOS-Chem user and Python user —, which features do you expect from such an interface ?
- Are you a Python developer? Do you want to join us in the effort of developing this interface?

The Github page of the project :


https://github.com/benbovy/PyGChem

Parts of the code are taken from the "gchem" python package that has been developed by Gerrit Kuhlmann (https://github.com/gkuhl/gchem/)

ACKNOWLEDGMENTS

The University of Liège contribution to the present work has primarily been supported by the PRODEX and SSD programs (A3C and AGACC-II projects respectively) funded by the Belgian Federal Science Policy Office (BELSPO) Brussels. Laboratory developments and mission expenses were funded b the International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG, Bern) for supporting the facilities needed to perforn the observations. E. Mahieu is Research Associate with the F.R.S. - FNRS in performing the Jungfraujoch observations used here.

CONTACT INFORMATION

