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Abstract

Polycrystalline materials, with nanosized grains (<100 nm), exhibit superior strength exceeding those
of their coarse-grained counterparts. With such small grains, the deformation mechanisms taking place at
grain boundaries (GBs) become dominant compared to the intragranular crystal plasticity. Recent studies
have revealed that the deformation mechanisms are influenced by the GB network. For instance, a high
yield stress in nanostructured metals can be obtained by choosing the relevant grain boundary character
distribution (GBCD). In this paper we present an original numerical multiscale approach to predict the
mechanical behavior of nanostructured metals according to their GBCD composed of either high angle
(HA) GBs (HAB) or low angle (LA) GBs (LAB). Molecular simulations using the quasicontinuum method
(QC) are performed to obtain the mechanical response at the nanoscale of GB undergoing simple shear (GB
sliding behavior) and tensile loads (GB opening behavior). To simulate the grain behavior, a mechanical
model of dislocation motions through a forest dislocation is calibrated using a nanoindentation simulation
performed with QC. These QC results are then used in a finite element code (direct numerical simulation-
DNS) as a GB constitutive model and as a grain constitutive model. This two-scale framework does not
suffer from length scale limitations conventionally encountered when considering the two scales separately.

Keywords:
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1. Introduction

The determination of the mechanical properties (e.g. materials strength, ductility, etc.) of nanocrystalline
(nc) materials requires a detailed understanding of the associated deformation processes at the atomic scale.
A material is generally considered to be nc if its mean grain size is smaller than ≈ 100 nm in at least one
dimension [1]. This class of materials behaves differently from their coarse-grained counterparts [2, 3]. More
specifically, their attractive advantageous mechanical and electrical properties [4–10] have received increasing
attention in the scientific community in the last years. In particular, past experimental studies have focused
on the influence of the grain boundary (GB) character distribution (GBCD) on the mechanical behavior of
nc materials. Severe plastic deformations (SPD) or electrodeposition processes, for example, both enable the
presence of high-angle boundaries (HAB) and/or low-angle boundaries (LAB) [11, 12], induce residual micro
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strains emergence in GBs depending on their misorientations [13], and are potentially responsible for the
differentiated ductility of nc metals [14]. By carefully choosing the conditions that minimize the appearance
of micro strains and by ensuring that a high proportion of low-angle boundaries is present, Lu et al. [13]
and Dao et al. [15] have shown that ductility of nc metals can be effectively improved. However, a predictive
understanding remains elusive.

Special boundaries [16–21] are, by definition, primarily of two classes : LAB and coincident site lattice
boundaries (CSL). LAB are generally considered to have a misorientation angle lower than 10 degrees [22, 23],
or between 9 and 14 degrees [24]. The CSL type nomenclature is represented by sigma (Σ) followed by the
reciprocal density of coincident atoms in the GB interface. It has been shown that the CSL boundaries having
a special character are the only ones commonly termed as low-Σ boundaries while the remaining behave
like the random HAB [18, 25]. Moreover, some Σ boundaries in one material could possess completely
different characteristics than in other materials. They may thus be considered to be material dependent. It
is worth noting that a higher-Σ does not necessarily indicate poorer properties [26]. In the present study, all
misorientations lower than 9 degrees will be considered as being LAB.

It is also well known that plastic deformations are commonly considered to change from intragranular
to intergranular when the grain size is decreased below a given threshold [27]. In the past, molecular dy-
namics simulations (MD) have revealed unusual mechanisms at low temperatures, such as GB sliding and
intragranular slip involving dislocation emissions and absorptions at GBs [4, 28–32]. The essence of these
slip mechanisms remains controversial [28] and it is assumed that the slip rate depends on both the grain
size and the GB type involved [33]. MD simulations have been particularly effective in highlighting the
basic deformation mechanisms in nanostructured materials but suffer from the requirement to consider the
dynamics of all atoms one by one, which imposes drastic limitations on the size of the sample simulated.

On the other hand, there have been efforts to describe deformation and failure mechanisms in nc metals
using continuum models. Additional information in this area has been presented in Ref. [34]. Continuum
modeling approaches include the development of mixed-phase constitutive models considering the grain
interior and boundary processes in a homogenized way [35, 36], the explicit consideration of the GBs as
a continuum region with different properties [37, 38] or the use of interface elements in the finite element
mesh [39, 40]. These studies have been limited to two-dimensional analyzes focused on the ability of the
continuum approach to describe the grain size dependency [38, 40], the strain localization [40, 41] and the
failure process [38, 39].

An attempt to determine the effective response of nc materials has been previously proposed [27]. This
approach was based on a finite element formulation of the continuum three-dimensional problem describing
the deformation of polycrystal grains explicitly, and on the consideration of GBs as surfaces of discontinuities
with a finite thickness embedded in the continuum. However, a unique arbitrary constitutive law was used
to characterize all the GBs, despite the different behaviors described above, due to the lack of data available.
Because of this, judicious distributions of properties in GBs based on statistics have been used to describe
the mechanical behavior of GBs in polycrystalline materials [42]. As a consequence, the GB mechanical
behavior description networks have been mainly studied through arbitrary or statistical techniques. A finer
and more accurate description appears as a necessary step for an increased understanding of nanocrystalline
materials deformation mechanisms.

The main objective of this paper is thus to predict polycrystalline solids mechanical behaviors through
a more accurate description of its GB network and of its grain texture by taking into account the specific
orientations of the grains and GBs including the grain size. To achieve this end, we conduct a two-scale study
aiming at predicting the mechanical behavior of nc copper through a polycrystalline representative volume
element (RVE) possessing both a specific GB network and a specific grain texture. First, we begin at the
atomistic scale by using the quasicontinuum method (QC) developed by Tadmor and co-workers [43, 44].
Specific mechanical behaviors of GBs (sliding and opening or decohesion) are characterized through simple
shear loads and tensile loads following Ref. [45, 46], so that the GB network crystallographic orientation is
explicitly taken into account. Then, at the grain level, the critical resolved shear stress (CRSS) of each fcc
slip system is determined by means of nanoindentation tests with QC. The size effect associated to the CRSS
is captured by adding a GB in the vicinity of the indenter and by varying the distance GB-indented surface.
At the mesoscopic scale, we introduce these atomistic laws in a finite element code [27, 47]. On the one hand
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the GB behavior is modeled using adequate interface elements, and on the other hand, we adopt the explicit
formulation described in Ref. [48] for the intragranular fcc polycrystal plasticity constitutive model. In this
framework, each grain is discretized with a fine mesh and its constitutive response is described with a forest
dislocation-based hardening model. Consequently this allows for a prediction of the evolution of the texture
to be captured.

To illustrate the ability of the method to capture the competition between intragranular and intergranular
plastic deformations in nc metals, quasi-static tensile tests are then performed for two cases : nc copper with
a 94% HAB texture, and nc copper with a full LAB texture. Besides the fact that the mechanical behaviors
have been found to behave differently depending on the texture (e.g. higher yield stress for LAB texture,
presence/absence of competition between intragranular and intergranular plasticity, etc.), this two-scale
method captures the reverse Hall-Petch effect in nc metals. Additionally, unlike length scales limitations
encountered in MD frameworks, the method used here does not suffer from such problems and could be used
for larger representative elements whose mechanical behavior remains unreachable today.

The overall computational framework is presented in Section 2 and the main results are followed by a
discussion in Section 3. Finally, Section 4 intends to conclude this argument.

2. Computational method

2.1. Continuum formulation
In this section we expose first the governing equations and kinematic assumptions of the continuum with

embedded GBs, following the study of Ref. [27]. In particular the presence of embedded GB is accounted
for by an adequate discretization (see Figures 1c), and the governing laws of the GBs are described. Finally,
the governing equations in the bulk material, based on the studies in Ref. [47–49] are exposed.

2.1.1. Governing equations of the continuum model with embedded GBs
We assume that the kinematics of the deformation mechanisms taking place at the GBs can be described

as surfaces of discontinuities embedded in a continuummedium. To this end, we use the continuum framework
presented in Ref. [50] that we summarize here. The polycrystalline aggregate initially occupies a region
B0 = ∪gBg0 ⊂ R3, where Bg0 is the region occupied by the grain g. The body undergoes a motion ϕ :
B0 × [0, t] → R3, where [0, t] is the time interval considered. In the continuous regions of the polycrystal,
i.e., the grain interiors, local information about the material deformation is conveyed by the deformation
gradient field ε, whereas the local stress state is described by the Cauchy stress tensor σ. Figures 1c shows a
representative intergranular boundary surface ∂Bg0 , whose unit normal isN , including the externally exposed
∂Bext0 (if any) as well as the intergranular ∂Bgb0 portions of the grain boundary, i.e., ∂Bg0 = ∂Bext0 ∪ ∂Bgb0 .
Regarding the bulk part of the material description, we consider a body B0 subjected to a force per unit mass
b. Its boundary surface ∂B0 is partitioned into a Dirichlet contribution ∂DB0 constrained by displacements
ϕ and a Neumann contribution ∂NB0 subjected to surface tractions t. One always has ∂B0 = ∂NB0 ∪∂DB0
and ∂NB0 ∩ ∂DB0 = ∅. The momentum equation and boundary conditions are

∇ · σT + ρb = ρϕ̈ in B (1)

ϕ = ϕ on ∂DB (2)

σ · n = t on ∂NB (3)

In these relations ρ is the current density, n is the unit surface normal in the current configuration and B
is the body in the current configuration. It is important to note that we do not distinguish between N and
n and between B0 and B under the assumption of small deformations. The strong form (1) of the linear
momentum balance is enforced in a weighted-average sense by being multiplied by a suitable test function
δϕ and integrated in the domain. However, since both test and trial functions are discontinuous due to the
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Figure 1: a) Numbering of the nc grains. b) Illustration of orientation approach to reconstruct nc GBCD.
c) Schematics of geometric model of nc as a continuum with surfaces of discontinuities at GBs.

presence of GBs, the integration by parts is not performed over the whole domain, but on each element
instead, leading to ∑

g

∫
Bg0

(∇ · σT ) · δϕdV +
∑
g

∫
Bg0

ρb · δϕdV =
∑
g

∫
Bg0

ρϕ̈ · δϕdV (4)

which can be rewritten as∑
g

−
∫
Bg0

σ : (∇δϕ)dV +
∑
gb±

∫
∂Bgb0

δϕ·σ·ndS+
∫
∂NB0

δϕ·σ·ndS+
∑
g

∫
Bg0

ρb·δϕdV =
∑
g

∫
Bg0

ρ0ϕ̈·δϕdV (5)
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The ± sign indicates that the surface integral has to be computed on both sides of the GBs. Finally, by
using Equation (3),∑
g

∫
Bg0

ρϕ̈·δϕdV +
∑
g

∫
Bg0

σ : (∇δϕ)dV =
∑
g

∫
Bg0

ρ0b·δϕdV +
∫
∂NB0

t ·δϕndS+
∑
gb±

∫
∂Bgb±

0

δϕ · σ · ndS︸                            ︷︷                            ︸∑
gb

∫
∂B

gb
0

(σ · n)︸    ︷︷    ︸
t

·~δϕ�dS

(6)

This equation shows that, in this polycrystal modeling framework, the deformation power encompasses the
contributions of the internal stresses inside each grain, as in conventional continuous solids, as well as those
of the intergranular tractions, which are work-conjugated to the displacement jumps ~ϕ� describing the
deformation mechanisms at the GBs. The material models required to evaluate the Cauchy stress tensor σ
in the bulk as well as the surface traction t are defined below.

2.1.2. Grain boundary constitutive model
We define the mean deformation mapping as in Ref. [50]

ϕ̃ = 1
2(ϕ+ +ϕ−) (7)

from which the original deformation mapping on both sides of the GB can be recovered as

ϕ± = ϕ̃± 1
2(ϕ+ −ϕ−) = ϕ̃± 1

2δ (8)

where
δ = ~ϕ� = ϕ+ −ϕ− (9)

Consequently, the deformed GB is defined as S ≡ ϕ̃(S0). Starting from a parametrization ϕ̃ = ϕ̃(sα), α =
1, 2, of S, it follows that the initial surface normalN can be obtained directly from the covariant basis vectors
aα = ϕ̃0,α as

N = a1 × a2
‖a1 × a2‖

(10)

The displacement jumps may then be decomposed into an opening separation vector and into a GB
sliding vector respectively as follows

δn = (δ ·N)N = (N ⊗N) · δ (11)

δs = δ − δn = (I −N ⊗N) · δ (12)

These kinematic assumptions lead to a constant state of deformations across the thickness h of the GB, which
can be expressed in the local orthonormal reference frame (N1,N2,N3) = ((a1/|a1|), (N×a1/|N×a1|),N)
as

ε = δn ·N3
h

N3 ⊗N3︸                     ︷︷                     ︸
εn

+ δs ·N1
h

1
2(N1 ⊗N3 +N3 ⊗N1) + δs ·N2

h

1
2(N2 ⊗N3 +N3 ⊗N2)︸                                                                                                     ︷︷                                                                                                     ︸

εs

(13)

The expression (13) also shows that the strain tensor additively decomposes in a sliding part εs and a
normal opening part εn. It should be noted that h introduces a characteristic length scale in the model.
Values ranging from 0.5 to 1 nm, or about 2 to 5 atomic widths, are frequently chosen [51, 52]. In our model,
the GB width h = 1 nm is chosen.

5



Finally the traction is expressed as follows

t = hσ :
∂ε

∂δ
(14)

that can be simplified by using Equation (13) in [27]

t = σ ·N3 (15)

As opposed to Jérusalem et al. [27], we assumed here that only the sliding component undergoes plastic
deformation. However, in a more realistic way, the GB opening mechanical behavior now includes damage
mechanisms (through a damage parameter D) but remains elastic. The sliding part σsl of the effective stress
tensor is computed from εs using the elasto-plastic model characterized by [27]

σp = σ0(1 + ε̄p
ε0

) 1
M (16)

where σp is the yield stress corresponding to the equivalent plastic strain ε̄p, σ0 is the initial yield stress,
and where M and ε0 are parameters of the model. The opening part σop of the effective stress stress tensor
is computed from εn using a simple elastic model. Then, the damage parameter D is evaluated from the
normal opening δn · N. While this opening remains relatively small, the opening stress σop remains smaller
in norm than the critical stress σc and D = 0. Once σc is reached, D increases in an irreversible way, and
eventually reaches 1 for a critical opening δc. Finally the stress tensor is directly computed from

σ = (1−D)(σsl + σop) (17)

2.1.3. Governing equations in bulk
We adopt the explicit formulation described in Ref. [48] for the a fcc polycrystal plasticity constitutive

model. This formulation improves the original implicit formulation of the forest dislocation hardening model
proposed in Ref. [47], enabling large scale computations. A summary of this formulation can be found
elsewhere [49]. We provide here the main assumptions of the model and highlight the relevant parameters
calibrated with the QC method by nanoindentation tests. Note that the forest hardening mechanism and
the evolution of the dislocation density is more appropriate for a metal with grain sizes larger than the
ones considered in this paper. However, as it will be shown, for small grain sizes the mechanical response is
dominated by plastic GB sliding, justifying this approximation for the crystal plasticity model [53].

In this framework the following power-law is used to describe the shear rate deformation of a slip systems
α

γ̇α =

 γ̇0

[(
τα

gα

) 1
m − 1

]
if τα ≥ 0

0, otherwise.
(18)

where γ̇0 is the reference shear strain rate, m is the strain-rate sensitivity exponent, gα and τα are the CRSS
and the resolved shear stress on the slip system α, respectively. Based on statistical mechanics, the evolution
of the flow stresses in the case of multiple slip systems is found to be governed by a diagonal hardening law

ġα =
∑
g

hααγ̇α (19)

where hαα are the diagonal hardening moduli

hαα =
(
ταc
γαc

)(
gα

ταc

)3
{

cosh
[(

ταc
gα

)2
]
− 1
}

(no sum in α) (20)

where ταc and γαc , the characteristic shear stress and strain for the slip system α, respectively, are given by

ταc = rµb
√
πnα and γαc = bρα

2
√
nα

(no sum in α) (21)
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In these expressions, for each slip system α, nα is the density of obstacle, ρα the dislocation density, b the
Burgers vector, µ the shear modulus and r a numerical coefficient equal to 0.3 that modulates the strength
of an obstacle in a slip plane α given by a pair of forest dislocations separated by a distance l. This strength
can be evaluated as follows

sα = r
µb

l
(22)

We also provide the evolution equations for ρα and nα. Intuitively, we guess that nα depends on the
dislocation densities of all the systems. According to Franciosi [54–57], this dependency takes the following
form

nα =
∑
α

aαβρβ (23)

The interaction matrix aαβ has been determined experimentally by Franciosi and Zaoui [54] for 12 slip
systems (planes {111}, directions [110]) in fcc crystals. In this last reference, interactions between dislocations
are classified according to whether they belong to the same system (coefficient a0), fail to form junctions or
form Hirth locks or co-planar junctions (coefficient a1), glissile junctions (coefficient a2), or sessile Lomer-
Cottrell locks (coefficient a3), with a0 ≤ a1 ≤ a2 ≤ a3.

Finally, the evolution of ρα can be expressed analytically as

ρα = ρsat

[
1−

(
1− ρ0

ρsat

)
e

−γα
γsat

]
(24)

where ρsat is the saturation dislocation density and γsat the saturation shear slip.
Table 1 provides the constitutive model parameters used in our simulations for pure copper. The remai-

ning parameter, g0, is the initial value for gα, and depends on the grain diameter d and on the texture type
(HA or LA) considered. In this paper, this key value is calibrated from nanoindentation QC simulations in
the following. C11, C12 and C44 are the elastic constants of the anisotropic model.

Parameter Value Parameter Value
C11 168.4 GPa C12 121.4 GPa
C44 75.4 GPa m 0.005
S 45 ×10−3 J/m2 g0 f(d, texture)
γ̇0 10 s−1 γsat 0.1%
ρ0 1010 m−2 ρsat 1013 m−2

b 2.56× 10−10 µ 54.6 GPa

Table 1: Constitutive model parameters for pure copper.

2.2. Quasicontinuum method simulations
Three categories of QC simulations are considered here : GB sliding, GB decohesion and interaction

dislocation-GB. These simulations will be used to calibrate the models described in Section 2.1. Instead of
assigning a unique arbitrary constitutive GB law that is independent of the crystal misorientation, as done
in Ref. [27, 40], the shearing and decohesion behaviors of each GB are characterized here according to its
structure using QC simulations of tilt bicrystals undergoing simple shear and tensile loads respectively. The
QC method was developed by Tadmor et al. [43, 44, 58] and is used here to simulate the GB behavior in shear
and tension through Molecular Statics (MS) using an energy minimization scheme. The crystalline regions
are treated as a continuum medium by the finite element method, while at the interface, a full resolution
is kept by modeling all atoms. In this scheme, the connection between continuum and full atomistic scales
is made in a seamless manner, i.e., there is no discontinuity in the energy state at the continuum/atomistic
frontier (see Figure 2).

Following Ref. [45, 46], the Embedded-Atom Method (EAM) potential provided by Foiles et al. [59] for
nc copper was used. A summary of the EAM potential characteristics can be found in Ref. [60].
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The QC method software used in the present study (available on www.qcmethod.com) was limited to
2D problems at 0 K. Every calculation was performed by a projection of the 3D crystallography orientations
along the GB tilt axis. It is worth noting that only tilt boundaries have been used here because the QC
software used was limited to 2D problems. This is consistent with nc materials with columnar grains such as
in textured thin films and coatings that should only be made of tilt GBs with random in-plane orientations.
Further, even if fully 3D structures like ECAP nc metals do not only contain tilt GBs, it was demonstrated
that a large number of tilt GBs is statistically present anyway, in addition to more general GBs, see [61].
However, the results of a previous work [62], where a GB network resulting from Voronï construction and
random orientations, differ significantly from the one obtained with full tilt boundaries network of Ref. [40].
Nevertheless, the 2–scale method developed in the present study, limited by the 2D nature of QC, can be
adapted to 3D by using QC 3D. This adaptation in 3D should allow for a better understanding of the
different behaviors of structures composed either of tilt or random orientations boundaries.

2.2.1. GB simulations

Problem description

Figure 2: Quasicontinuum model of GB10−7 in the HA texture. The continuum and the atomistic regions
are indicated. The crystals orientation and GB position after relaxation are also shown. Atoms appearing
in dark color present a perfect fcc stacking. Bright-colored atoms correspond to crystal defects.

The mechanical response of GBs at the nanoscale, and particularly the maximum boundary strength,
is strongly dependent upon the size of the computational cell under applied loading, especially for shear
loading. This is due to the fact that boundary constraints play an important role on the deformation
mechanisms triggered at the interface. Depending on the number of crystal lattice planes parallel to the
GB, the loss of boundary strength can be accompanied by a change of the deformation mechanism ranging
from quasi-cleavage fracture to GB atom shuffling process and, subsequently, to atom shuffling plus bulk
crystal plasticity in the form of partial dislocations emitted from the GB [46]. In the present QC simulations
however, we ensure a GB atom shuffling-only regime by keeping a number of free atom planes near the
GB between 7 and 12. Using more planes could enrich the model to dislocation emissions, but it would
not improve the results of the mesoscopic studies (continuum) as shuffling at GBs always occurs before
dislocation emissions during the QC simulations, thus not modifying the critical stress measured and used
later in the mesoscopic simulations
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Figure 3: Quasicontinuum model of a copper bicrystal with a GB at its center. a) Relaxation step. b) Shear
loading. c) Tensile loading.

Atoms near the GB region were all represented within a distance from the GB plane equal to 7.5 times
the potential cutoff distance 4.950

◦
A (at 0 K). A typical simulation was performed with less than 8,000

nodes. The coincident site lattice (CSL) model and the Bravais lattice cell were used to construct each
bicrystal. In the present version of the QC method, the box calculation has to be quasi-planar with only
one repeated CSL along the tilt vector c (see Figure 3). All GBs present in the microstructure as simulated
later in 3D were tilt GBs with the same out of plane direction (c = [110]) for both HA or LA cases. The
normal to the GB plane is noted n in Figure 3. The CSL cell was then periodically reproduced along the
n and n⊗ c directions. The size of each grain was kept between 50 to 70

◦
A. The mesh aspect ratio δX/δY

of each bicrystal was close to 4 for each simulation and the minimum dimensions of the whole cell were
400× 100× 2.55619

◦
A (for δX × δY × δZ). We introduced a spacing of the order of 3

◦
A between the upper

grain and the lower grain along the n axis before relaxing the structure without applying any stress. This
relaxation step enabled a GB volume expansion and a translation at the grain interface. The energy of
the structure was minimized using a conjugate-gradient method until the out-of-balance forces were found
to be lower than 10−3eV/

◦
A. By using this computational technique, it is possible to obtain metastable

structures. Therefore, all structures were tested by shifting the grains according to the displacement-shift-
complete lattice [63]. Only GB configurations with the lowest energies were conserved. For fcc metals, this
technique is in good agreement with similar simulations using the MD method [64–66].

GB sliding
A simple homogeneous shear test was performed by straining the relaxed bicrystal in a series of incre-

mental shear displacements on the top line of atoms in the upper grain along the n⊗ c direction. In the
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bottom line of the lower grain, all atoms were fixed in all directions in order to avoid crystal rotation (see
Figure 3b). The atoms on the left side and on the right side of the bicrystal were free of constraints. At every
time step, the incremental strain was less than 0.15% before a new energy minimization was accomplished.
The displacement of all atoms was constrained along the tilt direction c. The shear strain γ is thus given by

γ = arctan
(
δ

L

)
(25)

where δ is the imposed shear displacement and where L is the size of the unconstrained atomistic region.
The GB energy was obtained by subtracting the bulk single crystal energy to the bicrystal energy and
dividing the result by the GB area. Only 80% of the bicrystal was considered in the calculation in order
to avoid free surface effects as in earlier studies [45]. In this reference, it has been demonstrated that this
approximation on the average stress calculation is in excellent agreement with MD studies of single crystals,
which is also true for GB structures [67]. Note that at the mesoscopic scale of the model, the decohesion of
GBs starts at triple junctions, where stresses concentrations occur, and it has been assumed herein that GB
sliding and GB decohesion are governed by the same mechanical laws far and near these triple junctions.
Nevertheless, in our QC model, edge atoms were excluded from the force and energy calculations in the
bicrystals, and thus the critical stresses for sliding and decohesion at GBs do not take into account the
edge effects. However, this does not affect the accuracy of our model as it is reasonable to assume that the
mesoscopic response is mainly governed by the GB sliding happening far away from these peculiar junctions,
justifying our approach.

Results of the GB sliding simulations are provided in Section 3.1.
GB opening

The decohesion constitutive mechanical behavior is reached through tensile loads on a bicrystal with
the boundary conditions represented in Figure 3c. In this set of simulations, the side atoms are fixed in the
direction parallel to the GB. This last assumption coupled with the 2D nature of the modeling provides a good
agreement with 3D molecular dynamic simulations applying periodic boundaries. The QC computational
method applied to tensile loads can be found elsewhere [45]. These simulations allow for the critical stress
σc and the strain to failure δc of each GB to be determined.

2.2.2. Interaction dislocation-GB : nanoindentation tests

Problem description

The yield and hardening behaviors of solids have been identified as being strongly dependent upon the
interaction of dislocation motions with GBs. For instance, the well-known Hall-Petch [68] relationship which
relates the yield stress to the grain size can be explained using a pile-up model if we assume that dislocations
are stopped at the GBs [69]. In studies [43, 70], the authors illustrated how the QC method can be used to
build realistic models of the interaction of lattice dislocations with GBs by nanoindentation. For special GBs,
they confirmed that a pile-up indeed occurs, and that no-slip transmission takes place across the boundary.

In the present part of this study, the aim is to relate the CRSS to the size of the grain and to the GB
nature (HAB or LAB). We choose here to follow the approach presented in Ref. [43, 70] and propose to
depart from this study by varying the distance hGB , (see Figure 4), separating the indented surface from
the GB. We can then obtain different values of the CRSS for different pseudo grain sizes.

The indenter was a rigid rectangular block 20.9 nm wide and was driven into a thin copper film. As
in the GB simulations presented above the EAM potential provided by Foiles et al. [59] for nc copper
was used. No significant discrepancies have been observed with the EAM potential for copper provided by
M.I Mendelev et al. [71], as shown later. The indenter geometry was modeled as a displacement boundary
condition applied to the surface atoms lying beneath it. The substrate was modeled as a rigid surface allowing
no displacements. The top surface was left free. Between the indenter and the crystal, both friction free and
perfect stick conditions were applied. In practice, boundary conditions do not influence the results [70]. The
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film was oriented so that the preferred slip system was {111} < 112 > in order to facilitate partial dislocation
nucleation, (see Figure 4), as in Ref. [70]. In this way, the maximum value of the component of the stress
tensor corresponding to the propagation direction < 112 >, i.e. σ{111}<112>, is also the resolved shear stress
on the active slip system which controls dislocation emissions, as discussed in Ref. [70]. Thus, we assume
that a significant criterion (CRSS) controlling the dislocation emission is provided by the nanoindentation
simulation. When this criterion is reached, the dislocation is emitted in the bulk. We propose to add an
obstacle (GB) in the bulk in the propagation direction in order to evaluate its influence on this last criterion.
If this obstacle is sufficiently far from the emission zone, the criterion is expected to be constant. In that
case, the dislocation propagates into the bulk and this will continue until it is stopped by lattice friction,
and, at the equilibrium depth, the force on the dislocation will be balanced by the lattice friction force. In
contrast, if the distance to the obstacle is lower than this last equilibrium depth, the lattice friction value
will change and the criterion is expected to be influenced. In this framework and for a given grain size, the
CRSS needed to nucleate a dislocation from one of its GBs (indented surface) is assumed to be dependent
upon the obstacle (GB on the other side of the assumed circular grain) encountered in the propagation
direction. Moreover, the criterion is expected to behave differently depending on the obstacle nature (HAB
or LAB) encountered during emission.

As for the GB simulations, we introduced a spacing of 3
◦
A between the upper grain and the lower

grain before relaxing the structure without applying any stress. The energy of the structure was minimized
using a conjugate-gradient method until the out-of-balance forces are lower than 10−6 eV/

◦
A. All structures

were also tested by shifting the grains according to the displacement-shift-complete lattice [63] and only
GB configurations with the lowest energies were conserved. This GB relaxation method can be used for
both HAB and LAB no matter what the distance hGB is. By this way, every dislocation emission interacts
with the same GB structure. We then pushed the indenter into the [111] direction and, at each load step,
the indentation depth was increased by 0.1

◦
A for two representative cases HAB and LAB, see Section 3.1.

Other methods to determine the partial dislocation CRSS exist, for instance computed from GBs, but are
extremely difficult to implement and the method used in the present study appears to be the simplest.

GB

XYZ

[110]

P[111]

(111) Slip plane400 nm [112]

300nm 26 ◦
A

h G
B

Figure 4: Schematic representation of the nanoindentation model with a GB.

2.3. Two-scale numerical simulations
In this framework, the two scales considered were the atomistic (QC) and the mesoscopic (continuum)

ones. The calibration of the mechanical behavior at GBs in a nc solid (mesoscopic scale) was reached through
QC simulations (atomistic scale). As seen before, the GB strain can be decomposed into two components,
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a sliding part and an opening part. In order to determine the sliding part, we performed QC simulations
of GBs undergoing simple shear loads. The opening part was calibrated from QC simulations by means
of GBs undergoing tensile tests. In order to avoid precocious decohesion on the RVE edges, we imposed a
larger critical stress on GBs near surfaces. Finally we performed QC nanoindentation tests to calibrate the
grain mechanical behavior. Note that the intragranular decohesion was not allowed in the model. In fact,
according to studies [45] and [72], for a free copper crystal, applying a displacement perpendicular to the
{011} planes leads to a maximum tensile strength of 14.97 and 14.3 GPa, respectively. These last values
are higher than all σc observed for the GB decohesion behavior predicted by QC simulations, so that no
intragranular decohesion should be a priori expected. The nc solid illustrated in Figure 5a, was composed
of 16 grains and 34 GBs, and is the nc that was used in this study. Because this nc was composed of 34
GBs, 136 QC simulations were performed to obtain the GBs mechanical behaviors, 34 for sliding and 34 for
opening, times 2 for the HAB and LAB textures.

Figure 5: a) Mesh with 16 grains used for all simulations, discretized in 7.451 tetrahedral elements. b)
Mesh with 70 grains used to check mesh dependency, discretized in 26985 tetrahedral elements.

2.4. Continuum finite element setups, LAB and HAB
In order to construct nc textures we used a representative volume element (RVE) finite element mesh

consisting of 16 grains (see Figure 5a). This RVE (as the one with 70 grains) followed a Voronoï construction
generated by an algorithm ensuring the homogeneity of the grain sizes through a set of tolerance parameters.
All grains were numbered as shown on Figure 1a so that each GB was fully determined by two numbers.
For example, in Figure 1b, the interface between grains 7 and 8 is defined as GB7−8.

The aim of this part of the study is to illustrate the ability of this two-scale method to model complex
material behaviors. We illustrate this ability through the study of two GBCDs. One contains only LAB
and the other one 94% of HAB, the aim being to capture the mechanical behavior of nc metals according
to their GBCD. Towards this end, a grain orientation was assigned to each grain and plot misorientations
distributions were defined for the determination of LAB and HAB proportions.

Figure 1b illustrates the orientation approach to reconstruct the nc HAB texture of the GB common
to grains 7 and 8. The misorientation between grains 7 and 8 is thus given by ∆ψ7−8 = |ψ7 − ψ8| with
ψ7 = 11.20◦ and ψ8 = 164.01◦. ψ represents the misorientation of the basis vectors [1,1,1][1,1,2] around the
out-of-plane axis [1,1,0]. Rotations are positive in the counterclockwise sens and spread from 0◦ to 360◦.
The quantity ∆ψ represents the GB misorientation, which is here the criterion determining if the considered
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GB belongs either to the HA or to the LA type. Each grain orientation allows us to characterize his GBs
normals. For instance, in the case of the GB7−8, the normals at the interface seen from 7th and 8th grain
points of view are represented by the Miller indexes (9,9,10) and (1,1,3) respectively.

The misorientations belonging to the four intervals : 9◦→81◦, 99◦→171◦, 189◦→261◦, 279◦→351◦ are
considered HAB, the other ones belong to the LAB class. This lies in the fact that the rotation around the
tilt axis [1,1, 0] presents a C4 symmetry so that the structure is the same by rotating it every 90◦. This
symmetry allows us to present the misorientations distribution only from 0◦ to 90◦. Figure 6 shows the
misorientations distributions for both of the textures eventually chosen as representative of HAB and LAB
dominated nanostructures. For the LA texture, all misorientations belong to the interval from 0◦ to 9◦, so
that we can consider a 100% LAB GBCD. In the HAB case, only two GBs are considered as low angles.

Figure 6: Misorientations distributions for both textures HA and LA.

3. Results and discussion

3.1. Calibration of the GB elasto-plastic laws
The QC atomistic results (shear stress vs. shear strain) were fitted to determine the finite-element elasto-

plastic parameters which are then used for the GBs constitutive laws in the direct numerical simulations
(DNS), namely, the shear modulus G and the yield stress σ0. The coefficients ε0 and M are also parameters
but are kept constant for all GBs : 1.0 and 1000.0 4 respectively. As an illustration, the corresponding results
for GB12−9 (LAB texture) are given in Figure 7a. In this case, the shear modulus is found to be G = 53
GPa and the maximum stress to be σ0 = 4.18 GPa. This fitting procedure was employed for each GB of
the two studied textures. The decohesion behavior of each GB was fitted as shown in Figure 7b, where the
critical stress σc and the strain to failure δc were found to be equal to 10 GPa and 0.93 nm, respectively.

Figure 8 represents the GB energy after relaxation vs. misorientation ∆ψ. The interval 9◦→81◦ cor-
responds to the HAB. The other intervals (0◦→9◦, 81◦→90◦) are LAB. We can identify a trend in this
distribution of points. Low misorientations present lower energy compared to high ones, which highlight
their higher stability. Figures 9 and 10 illustrate the sliding QC tests results. Low energy structures have
on average higher yield stresses and higher shear moduli (naturally subjected to variations because of the
elastic anisotropy of copper). Regarding the opening QC tests presented in Figures 11 and 12, it appears
that LAB have higher critical stresses and strain-to-failures on average than in the HAB case.

Dislocation nucleation and CRSS

4. We assume here that the GB sliding mechanical behavior is perfectly plastic.
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Figure 7: a) Evolution of the shear stress as a function of the applied shear strain for GB12−9 (LAB) fitted
from QC simulation. b) Normal displacement vs. tensile stress for a QC simulation.

Figure 8: GB energy vs. misorientation. Figure 9: Yield stress vs. misorientation.

Figure 10: Shear modulus vs. misorientation.

Making use of the bicrystal nanoindentation setup described in Section 2.2.2, two representative cases
(HA and LA) are chosen here to calibrate the CRSS as a function of the grain sizes. The HAB (43.31◦)
was constructed such that the lower grain has a normal to the GB oriented along the direction [117]. In the
LAB (3.24◦) case, it was oriented along the direction [889]. These GBs have been used in accordance with
the common definition of LAB and HAB (LAB < 9◦, HAB > 9◦). Figure 13 shows the shear stress field
(σxy) located below the left part of the indented surface immediately prior to (on the left) and after (on the
right) the dislocation emission. A partial dislocation with a 1/6[112] Burgers vector and a [110] dislocation
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Figure 11: Critical stress σc vs. misorientation. Figure 12: Strain-to-failure δc vs. misorientation.

line direction is nucleated beneath the indenter. The corresponding atomic structure of Shockley partial slip
along the [112] direction is presented on Figure 13. As noticed by Tadmor et al. in Ref. [70], the maximum
shear stress is found near the surface. As the atomic level stresses are only rigorously defined in bulk regions,
the maximum stress must be considered with caution.

Figure 13: Shear stress (Pa) distribution beneath the rectangular indenter (left part) with a HAB in its
vicinity (hGB = 5.345 nm) and with a potential proposed by Foiles et al. [59]. On the left, prior to dislocation
emission. On the right, immediately after the nucleation event.

Note that in Figure 13, the results were obtained using the potential proposed by Foiles et al. [59]. For
comparison purpose, the same simulations were performed using the potential proposed by M.I. Mendelev
[71], and the results are reported in Figure 14. The shear stress distributions under the indenter before
the nucleation events are similar for both cases : the CRSS is found to be 5.086 GPa in the first case and
5.083 GPa for Mendelev potential. Based on this finding, the first potential [59] is used for all subsequent
simulations.

Figure 15 shows the results of the nanoindentation QC tests for both LA and HA cases. The distance
hGB (representative of the grain diameter d) ranges from 3.28 nm to 6.56 nm. In both HAB and LAB cases,
when hGB is larger than 4 nm, the dislocation is emitted without interacting with the GB and the CRSS
remains constant (≈ 5.1 GPa). The discrepancy occurs for lower sizes when the dislocation interacts with
the GB. Dislocations are, in both cases, transmitted to the lower grain. These CRSS values are ultimately
used to calibrate the grain constitutive behavior for grain sizes between 2.0 to 6.56 nm.
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Figure 14: Shear stress (Pa) distribution beneath the rectangular indenter (left part) with a HAB in its
vicinity (hGB = 5.345 nm) and with a potential proposed by M.I. Mendelev [71]. On the left, prior to
dislocation emission. On the right, immediately after the nucleation event.

Figure 15: CRSS evolution with hGB for HA and LA GBs.

3.2. RVE results and mesh dependency
The aim of this part is to check whether the RVE of 16 grains is significantly representative, i.e., that the

response does not change if the number of grains increases. The two RVEs illustrated in Figures 5a and 5b,
are subjected to tensile tests with the boundary conditions depicted in Figure 17. The nodes are constrained
along the z-axis and the deformation is displacement–controlled.

The set of material parameters used are identical for the two simulations. The grain size is the same for
both RVEs (6.56 nm) so that the RVEs widths and heights are equal to 23.26 nm and 48.64 nm for the
16 grains and 70 grains respectively. The same CRSS of 5.096 GPa is thus used for both simulations. The
other constitutive model parameters for copper are presented in Table 1 [47]. Each GB presents the same
parameters. E, the Young modulus, is equal to 86.97 GPa. In the case of the GB sliding behavior, σ0,sliding
is equal to 3.36 GPa, M = 1000, ε0 = 1 and h = 1 nm. The GB opening behavior is calibrated to σc = 9
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GPa and δc = 1 nm.

Figure 16: Strain-stress curves for two RVEs
consisting in 16 and 70 grains and with same me-
chanical laws.

Figure 17: Tensile test boundary conditions. The
vector displacement ~u is imposed on the top face
of the RVE in the y direction. All nodes are
constrained along the z-axis.

Figure 16 shows that the results of the two simulations do not depend on the number of grains of the
microstructure until the softening point is reached, i.e., both meshes used for this illustration show the same
mechanical behavior until the localization bands form at the decohesion zone. However we need to keep in
mind that, generally speaking, after the softening point, the studied cells loose their representative nature,
and no convergence with respect to the cell size can be reached. The convergence for only 16 grains can then
be assessed before localization, which is consistent with the results of a previous study on finite element RVE
grains number convergence in nc metals [73]. Focusing our attention only on the mechanical deformation
mechanisms before softening, the RVE of 16 grains will be used for all subsequent simulations.

3.3. Mechanical responses of HA and LA textures
The microstructure in Figure 5a is subjected to tensile tests. The boundary conditions are those applied

in Section 3.2 (see Figure 17). During the tensile test, we calculate the average stress in the system as a
function of the strain. Figure 18 shows the stress-strain curves of HA and LA textures with grain sizes
ranging from 3.28 to 6.56 nm for three sets of parameters. The first set (set 1) considers only the GB sliding,
GB opening and intragranular mechanical behaviors are totally elastic. The second set (set 2) takes into
account both the GB sliding and the GB opening. In the third set (set 3), intragranular plasticity is added.
In each case, the three sets of parameters produce the same elastic behavior. The discrepancies appear
with the plastic behavior. We have determined the yield stress as being the stress where the residual plastic
strain is 0.002. The resulting yield stress decreases when going from sets 1 to 3. In fact, the more constitutive
mechanical laws inducing plasticity in the model, the earlier the plasticity. Additionally, yield stresses in the
HAB textures are always lower than in the LAB cases. A reduced material strength is also observed when
the grain size decreases.

For a grain size equal to 6.56 nm and considering the third set of parameters, yield stresses of the HAB
and the LAB textures are of the order of 4.45 GPa and 7.7 GPa, respectively and the elastic deformations
reached for these stresses are of the order of 3% and 6%, respectively. These results are in good agreement
with previous MD results [74] where a twin texture reaches more than 12 GPa before entering in the plastic
region appearing for a 7% strain. This comparison with a twin texture confirms the hierarchy of textures
strength based on the GBs, i.e., σy,LA < σy,twin. Althought we find that this hierarchy is respected, a direct
quantitative comparison of the LA texture yield stress for nc copper with the literature remains impossible
because of the lack of study on the subject. Also, in Ref. [75], nc composed of HAB are found to exhibit a
yield stress of 2.7− 3 GPa for a 3% strain. The HA texture yield stress is slightly overvalued compared to
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Figure 18: Stress-strain curves of the nc solid under tension for two grain sizes, two textures (HA or LA)
and three sets of parameters. a) HA, d = 3.28 nm. b) HA, d = 6.56 nm. c) LA, d = 3.28 nm. d) LA, d =
6.56 nm. Set (1) : sliding only. Set (2) : sliding and opening. Set (3) : sliding, opening, intragranular crystal
plasticity.

MD simulations, due to the 2D nature of this framework. In fact, the inputs of the DNS model coming from
2D QC tests are overvalued because no out-of-plane accommodation can happen unlike to what can happen
in MD simulations. Despite these yield stresses discrepancies, we nevertheless observe a definite trend in
their mechanical behaviors in agreement with MD results.

More quantitatively, Figure 19 shows the plastic part of sliding vs total structure strain at four GB
nodes for both HA and LA textures. For each node numbered from 1 to 4 and reported in Figure 19, we
find that HABs slide more than LABs, in agreement with the longer elastic part of the strain in the LA
case, see Figure 18. In the HA case, the sliding of the four nodes increases regularly with the macroscopic
true strain. For the other texture, LAB nodes do not present the same behavior. Here, a sliding inversion
is observed when the macroscopic true strain is of the order of 0.08. The intragranular plasticity threshold
is reached and this sliding inversion corresponds to a GB relaxation. This inversion is not observed for the
HA texture because it is easier for the HAB to slide so that the intragranular plasticity threshold is never
reached. Consequently, this highlights the absence (HA case) and the presence (LA case) of a competition
between intragranular and intergranular plasticity at this grain size. We emphasize here that our finding
concerning HABs, i.e., higher energies (see Figure 8) and prominent/easier sliding (19) compared to LABs,
has also been reported by Warner et al. in Ref. [40]. Similar results are observed with the opening part in
Figure 20. The decohesion appears faster and is much more marked in the HA case as expected given their
lower strain-to-failures and yield stresses.
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Figure 19: Sliding vs. macroscopic true strain for four nodes numbered from 1 to 4 for both HA and LA
textures under tension with grain sizes 6.56 nm.

Figure 20: Opening vs. macroscopic true strain for four nodes numbered from 1 to 4 for both HA and LA
textures under tension with grain sizes 6.56 nm.

3.4. Reverse Hall-Petch effect
Polycrystals with grain sizes in the micron range have long been known to exhibit a strong dependency

of the yield stress on the grain size. This dependency is well characterized by the Hall-Petch [68, 76] relation

σy = σ0 + kd−
1
2 (26)

where k is a positive multiplicative constant and σ0 the lattice friction stress. Based on this observation,
a microstructure refinement has been exploited as a means of producing materials with increased strength.
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However, past experimental evidences [77] have proved that the yield stress decreases when the grain size
is reduced beyond a certain threshold [78–80]. In particular, it has been suggested that the dependence of
the yield stress on the grain size may follow an inverse square root relation, as in Equation (26), but with
a negative coefficient k. However, this aspect of the response of nc solids is still the subject of considerable
debates [34]. As a result, there have been significant efforts to confirm and explain this inverse Hall-Petch
effect in nc solids.

We show here that the two-scale model presented in this paper predicts the reverse Hall-Petch effect.
To this end, we compare our results with past MS results done by Schiøtz et al. [81]. The tests considered
here are tensile tests on nc copper with grain sizes ranging from 3.28 to 6.56 nm and for both textures.
The dimensions of the microstructure seen on Figure 1a are changed for each size of grains in order to fit
to the grain sizes studied in Ref. [81]. Figure 21 represents the results when we consider only the set 3 of
parameters (sliding, opening, anisotropic intragranular plasticity). Both textures present a softening when
the grain size decreases.

Figure 21: Stress strain curves of the nc solid under tension for both HA and LA textures and for grain
sizes ranging between 3.28 to 6.56 nm. a) HA texture. b) LA texture. c) Zoom near the yield stress zone for
the HA texture.

The reverse Hall-Petch effect results are presented in Figures 22a and 22b. The LA texture yield stresses
are roughly twice larger than their HA counterparts, as it could be expected. This apparent softening (albeit
not converged) is due to the increased presence of GBs proportion (h, the width of GB being constant for
all simulations), thus leading to a decrease of the yield stresses with the grain size. Figure 22b compares the
model (HA texture, set 3) against MS study [81]. A factor of 3 is observed while we were expecting similar
results for both models. This last discrepancy is mainly due to the 2D nature of the quasicontinuum method
used to calibrate our model. This induces the over-evaluation of the nanostructure yield stress.

However, despite the fact that the model captures the reverse Hall-Petch effect predicted by atomistic
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simulations with regard to the yield strength, this is not true with regard to the flow strength or peak strength
that should follow inverse Hall-Petch scaling as reported for full atomistic simulations. Further some of the
stress strain curves seem much more brittle in the multiscale model compared to the atomistic simulations
[81]. This discrepancy is due, as previously mentioned in section 3.2, to the loss of representativeness of the
RVE, near and during strain softening. Indeed, during the localizations stage, results are expected to depend
on the RVE size, which is herein modified when the grain sizes change.

Figure 22: Hall-petch plots for nc copper predicted by the model under quasi-static loading. a) HA vs. LA
textures. b) two-scale model vs. MS simulations [81].

A direct quantitative comparison between the present simulations and experimental results has to be
done carefully. The main difference between experiment results and these simulations lies in the fact that
the level of the yield stress obtained by our model is overvalued for several reasons. Experimental nc samples
typically contain voids and surface defects [82], reducing the strength of the material by at least a factor of
five [83, 84]. Secondly, because the QC method is —in this present version— a quasi-static technique, the
procedure used here corresponds to a slow strain-rate at zero temperature. Therefore, there is no thermally
activated process in our simulations, which also contributes to increase the nanostructure yield stress.

4. Conclusions

In this work, a two-scale method accounting for the specific GBCD of nc copper was developed. Such
method does not suffer from the length scale limitations commonly encountered in atomistic simulations.
Based on a statistically-relevant sample of 136 QC simulations of shear and tension tests in copper bicrystals,
we have found that the critical stresses for sliding and decohesion, as well as the strain-to-failure, are
significantly higher in LAB than in HAB. Therefore we demonstrate that sliding and decohesion of random
GBs in nc metals subjected to plastic deformation cannot be modeled by a unique constitutive law, unlike
the prevailing assumption made in past studies. The model also captures precisely the reverse Hall-Petch
effect predicted by atomistic simulations. This methodology can also be used for other materials such as
brittle ceramics, where the GBs deformation plays an important role on their mechanical responses.

It must also be emphasized that the results are overvalued compared to dynamics simulations. The
discrepancy can easily be rationalized by the 2D nature of the QC method but also by the fact that voids
and surface defects and thermally activated processes are not accounted for in the simulations.

As a conclusion, a new multiscale continuum framework, more efficient than atomistic simulations and
accounting for mechanical mechanisms until now unavailable to continuum frameworks, has been successfully
proposed. Such a model opens the way to simulation frameworks able to automatically characterize GBs
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behaviors as a function of intergranular evolutions, while not necessarily fully modeling them. Such feature
could be of drastic importance in the simulation of a recently discovered substitute for nanocrystals, namely
nanotwinned ultrafine crystals.
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