
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Available online at www.sciencedirect.com

Journal of Approximation Theory 172 (2013) 23–36
www.elsevier.com/locate/jat

Full length article

Characterizations of the elements of generalized
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Abstract

In this paper, we give three characterizations of the elements of generalized Hölder–Zygmund spaces.
The first one, based on the Littlewood–Paley decomposition is already known, but the proof given here
is much simpler. The second one, based on the wavelet decompositions generalizes a result obtained by
Jaffard and Meyer. The third one uses generalized interpolation spaces. These results naturally extend the
ones holding for the classical Hölder–Zygmund spaces.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

As in [9], we define the generalized Hölder–Zygmund spaces starting from the generalized
Besov spaces Bσ∞,∞(Rd), where σ is an admissible sequence [5,12]. The set of natural numbers
is denoted by N (and does not contain 0) and N0 = N ∪ {0}.

Definition 1. A sequence σ = (σ j ) j∈N0 of real positive numbers is called admissible if there
exists a positive constant C such that

C−1σ j ≤ σ j+1 ≤ Cσ j ,

for any j ∈ N0.
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If σ is such a sequence, we set

Θ j = inf
k∈N0

σ j+k

σk
and Θ j = sup

k∈N0

σ j+k

σk

and define the lower and upper Boyd indices as follows:

s(σ ) = lim
j

log2 Θ j

j
and s(σ ) = lim

j

log2 Θ j

j
.

Since (log Θ j ) j∈N0 is a subadditive sequence, such limits always exist [6].
For a function f : Rd

→ R and x, h ∈ Rd , the first order difference of f is

∆1
h f (x) = f (x + h)− f (x)

and the difference of order n, where n is an integer greater than 1, is iteratively defined by

∆n
h f (x) = ∆n−1

h ∆1
h f (x).

The generalized Hölder–Zygmund spaces can then be introduced.

Definition 2. Let α > 0 and σ be an admissible sequence; a function f ∈ L∞(Rd) belongs to
the space Λσ,α = Λσ,α(Rd) if there exists C > 0 such that

sup
|h|≤2− j

∥∆[α]+1
h f ∥∞ ≤ Cσ j ,

for any j ∈ N0.

One sets Λσ = Λσ,s(σ
−1). For example, the classical Hölder–Zygmund space Λα (α > 0)

is the space Λσ with σ = (2− jα) j . The basic properties of these generalized spaces have been
studied in [9].

In this paper, we give three characterizations of the spaces Λσ , using the Littlewood–Paley
theory, the discrete wavelet transform and generalized real interpolation spaces. Each result
generalizes a well-known characterization of the classical Hölder–Zygmund spaces Λα , with
α > 0. The first one can be found in [12] with a more difficult proof, while the second
characterization extends results obtained in [12] (to the case Bσ∞,∞), using ideas introduced in [8]
for the specific case of the modulus of continuity-defined Hölder–Zygmund spaces. It can also be
deduced from results obtained in [14,12], but the present version is shorter and only uses classical
techniques. The last characterization is new. Let us also notice that the spaces considered here
are closely related to those dealt with in [13], where the continuous wavelet transform is used.
Finally, let us mention that the study of such spaces takes its roots in the early Russian literature
(such as [2]).

The results presented here contribute to a better understanding of the reasons why the proofs
should work, even in the classical case. In particular, the notion of strong admissible sequence
underlines the fundamental difference between the Hölder spaces Λα with α ∉ N and the
Zygmund spaces Λn with n ∈ N.

Throughout the paper, we use the letter C for a generic positive constant whose value may be
different at each occurrence.

2. Previous results

We will need some of the results obtained in [9]. In this section, B denotes the open unit ball.
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2.1. Two characterizations of the generalized Hölder–Zygmund spaces

The following characterizations generalize well-known results for the classical Hölder–
Zygmund spaces. They will be used in the sequel.

Proposition 1. Let σ be an admissible sequence and f ∈ L∞(Rd); f belongs to Λσ if and only
if there exists a positive constant C such that

inf
P∈P

∥ f − P∥L∞(2− j B+x0)
≤ Cσ j ,

for any x0 ∈ Rd and any j , where the infimum is taken over all polynomials of degree at most
s(σ−1).

Proposition 2. Let σ be an admissible sequence and n,m ∈ N0 such that n < s(σ−1) ≤

s(σ−1) < m; if f ∈ Λσ , then f is equal almost everywhere to an element of Cn(Rd), Dα f ∈

L∞(Rd) for any multi-index α such that |α| ≤ n and

sup
|h|≤2− j

∥∆m−|α|

h Dα f ∥∞ ≤ C2 j |α|σ j , (1)

for any j ∈ N0 and α such that |α| ≤ n.
Conversely, if f ∈ Cn(Rd) ∩ L∞(Rd) satisfies inequality (1) for any j and any multi-index

α such that |α| = n, then f ∈ Λσ .

2.2. About the admissible sequences

If σ is an admissible sequence, for any ε > 0, then there exists a positive constant C such that

C−12 j (s(σ )−ε)
≤ Θ j ≤

σ j+k

σk
≤ Θ j ≤ C2 j (s(σ )+ε),

for any j, k ∈ N. The following properties will be often used (lemmata 2.4, 2.8, 2.9 and 2.10
in [9]).

Lemma 3. Let σ be an admissible sequence.

• If s(σ−1) > 0, then there exists a positive constant C such that for any J ∈ N,
j≥J

σ j ≤ CσJ .

• If s(σ−1) < n with n ∈ N, then there exists a positive constant C such that for any J ∈ N,
J

j=1

2 jnσ j ≤ C2JnσJ .

We will sometimes need to impose additional assumptions on the admissible sequences. We
transpose here the concept of strong modulus of smoothness [8] to the admissible sequences [9].

Definition 3. An admissible sequence σ is a strong admissible sequence of order n ∈ N if there
exists a constant C such that

J
j=0

2 jnσ j ≤ C2JnσJ (2)
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and
∞

j=J

2 j (n−1)σ j ≤ C2J (n−1)σJ , (3)

for any J ∈ N.

For example, the sequence (2− jα) j defining the usual Hölder–Zygmund space Λα is strong
(of order [α] + 1) if and only if α ∉ N (see e.g. [9]).

This notion is closely related to the Boyd indices of the inverse sequence.

Lemma 4. A strong admissible sequence σ of order n is such that

n − 1 ≤ s(σ−1) ≤ s(σ−1) ≤ n.

Conversely, if σ is an admissible sequence satisfying

n − 1 < s(σ−1) and s(σ−1) < n

for some n ∈ N, then σ is strong of order n.

The following easy result shows that a strong admissible sequence of order n lies in between
the sequences (2− jn) j∈N and (2− j (n−1)) j∈N.

Lemma 5. If σ is a strong admissible sequence of order n, then there exists a positive constant
C such that

C−12− jn
≤ σ j ≤ C2− j (n−1),

for any j ∈ N.

When considering strong admissible sequences, the proof of Proposition 2 (see [9]) gives the
following result.

Proposition 6. Let σ be a strong admissible sequence of order n; if f ∈ Λσ , then f is equal
almost everywhere to an element of Cn−1(Rd), Dα f ∈ L∞(Rd) for any multi-index α such that
|α| ≤ n − 1 and

sup
|h|≤2− j

∥∆n−|α|

h Dα f ∥∞ ≤ C2 j |α|σ j , (4)

for any j ∈ N0 and α such that |α| ≤ n − 1.
Conversely, if f ∈ Cn−1(Rd)∩ L∞(Rd) satisfies inequality (4) for any j and any multi-index

α such that |α| = n − 1, then f ∈ Λσ .

Remark 1. One cannot deduce Proposition 6 from Proposition 2 and Lemma 4. Instead, one
directly uses inequalities (2) and (3) in the proof of Proposition 2; no further change is necessary.
This procedure allows one to obtain stronger results (than the ones obtained with Lemma 4) and
will be used several times in the sequel.

3. Littlewood–Paley characterization

As usual, S(Rd) denotes the Schwartz class and f̂ the Fourier transform of f . In this section,
ϕ ∈ S(Rd) is a function such that ϕ̂(ω) = 1 if |ω| ≤ 1/2 and ϕ̂(ω) = 0 if |ω| ≥ 1 and ψ
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is defined by ψ = 2dϕ(2·) − ϕ. The convolution operators with 2d jϕ(2 j
·) and 2d jψ(2 j

·) are
denoted by S j and ∆ j respectively:S j f = ϕ̂(2− j

·) f̂ and ∆ j f = S j+1 f − S j f,

for any f ∈ S ′(Rd). The following relation, holding in S ′(Rd), is known as the Littlewood–Paley
decomposition of the unity [16]:

I = S0 +


j≥0

∆ j .

In this section, we give (under some weak additional hypothesis) a sufficient condition and a
necessary condition for a function to belong to Λσ .

Theorem 7. Let σ be an admissible sequence such that s(σ−1) > 0. If there exists a constant C
such that f ∈ L∞(Rd) satisfies

∥∆ j f ∥∞ ≤ Cσ j , (5)

for any j ∈ N0, then f ∈ Λσ .
Conversely, let σ be an admissible sequence and n ∈ N0 such that

n < s(σ−1) ≤ s(σ−1) < n + 2.

If f ∈ Λσ , then there exists a constant C such that (5) holds.

Remark 2. The assumption n < s(σ−1) ≤ s(σ−1) < n+2 is a technical condition and although
the authors strongly believe that it is superfluous, no straightforward improvement of the proof
allows to get rid of this assumption.

For the strong admissible sequences, minor changes in the proof lead to the following version.

Theorem 8. Let σ be a strong admissible sequence of order n ∈ N; f ∈ L∞(Rd) belongs to Λσ

if and only if there exists a constant C such that f satisfies

∥∆ j f ∥∞ ≤ Cσ j ,

for any j ∈ N0.

This result generalizes the one obtained in [8] for the Hölder–Zygmund spaces defined via a
modulus of smoothness (see [9]).

Remark 3. Under the condition S0 f ∈ L∞(Rd), the assumption f ∈ L∞(Rd) in Theorems 7
and 8 can be relaxed to consider distributions f ∈ S ′(Rd).

3.1. Proof of the sufficiency of the condition

Let us set ∆−1 = S0 and choose n > s(σ−1). Using the Bernstein inequalities, we get
∆ j f ∈ C∞(Rd) and

∥Dα∆ j f ∥∞ ≤ C2|α| jσ j ,

for any multi-index α such that |α| ≤ n and any j ∈ N0. Therefore the series


j≥−1 ∆ j f
converges uniformly.
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For x0 ∈ Rd and J ∈ N0, let us define

Pj (x − x0) =


|α|≤n−1

(x − x0)
α

|α|!
Dα∆ j f (x0)

and

Px0,J (x − x0) =

J
j=−1

Pj (x − x0).

If x satisfies |x − x0| ≤ 2−J , one has

| f (x)− Px0,J (x − x0)| ≤

J
j=−1

|∆ j f (x)−


|α|≤n−1

(x − x0)
α

|α|!
Dα∆ j f (x0)|

+


j≥J+1

∥∆ j f ∥∞.

The second term on the right-hand side of the last inequality is bounded by CσJ , while the
first term is bounded by

J
j=−1

|x − x0|
n sup

|α|=n
∥Dα∆ j f ∥∞ ≤ C2−Jn

J
j=−1

2 jnσ j ≤ CσJ ,

where the constant does not depend on x or J .

3.2. Proof of the necessity of the condition

Using a classical argument, we can suppose that ϕ and thus ψ are even and using Proposi-
tion 2, we can suppose that f ∈ Cn(Rd), Dα f ∈ L∞(Rd) and

sup
|h|≤2− j

∥∆2
h Dα f ∥∞ ≤ Cσ j 2 jn,

for any multi-index α such that |α| ≤ n. One has, since ψ is even with a vanishing integral,

∆ j Dα f (x) = 2 jd


Dα f (x − y)ψ(2 j y) dy

= 2 jd−1

(Dα f (x + y)− 2Dα f (x)+ Dα f (x − y))ψ(2 j y) dy.

Moreover, the Bernstein inequalities imply

∥∆ j f ∥∞ ≤ C2− jn sup
|α|=n

∥Dα∆ j f ∥∞

and therefore

∥∆ j f ∥∞ ≤ C2 j (d−n)


sup
|α|=n

∥∆2
y Dα f ∥∞|ψ(2 j y)| dy

≤ C2− jn


sup
|α|=n

∥∆2
2− j y Dα f ∥∞|ψ(y)| dy.
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One can conclude, since we have
|y|≤1

sup
|α|=n

∥∆2
2− j y Dα f ∥∞|ψ(y)| dy ≤ C2 jnσ j

and 
2m≤|y|<2m+1

sup
|α|=n

∥∆2
2− j y Dα f ∥∞|ψ(y)| dy

≤


2m≤|y|<2m+1

sup
|α|=n

|h|≤2− j

∥∆2
2m+1h Dα f ∥∞|ψ(y)| dy

≤ C22m+2


2m≤|y|<2m+1
sup
|α|=n

|h|≤2− j

∥∆2
h Dα f ∥∞|ψ(y)| dy

≤ C22m+njσ j


2m≤|y|<2m+1

1
(1 + |y|)k

dy

≤ C2m(d+2−k)+njσ j ,

for any k ∈ N.

4. Wavelet characterization

Under some general assumptions (see e.g. [11,10,4]), there exist a function ϕ and 2d
− 1

functions (ψ (i))1≤i<2d , called wavelets, such that

{ϕ(x − k)}k∈Zd ∪ {ψ (i)(2 j x − k) : 1 ≤ i < 2d , k ∈ Zd , j ∈ N0}

form an orthogonal basis of L2(Rd). Any function f ∈ L2(Rd) can be decomposed as follows:

f (x) =


k∈Zd

Ckϕ(x − k)+

∞
j=0


k∈Zd


1≤i<2d

c(i)j,kψ
(i)(2 j x − k),

where

c(i)j,k = 2d j


Rd
f (x)ψ (i)(2 j x − k) dx

and

Ck =


Rd

f (x)ϕ(x − k) dx .

The above formulas are still valid in more general settings; they have to be interpreted as a duality
product between regular functions (the wavelets) and distributions [11,7]. In what follows, we
will suppose that the wavelets are the Lemarié–Meyer wavelets [11] (ϕ and ψ (i) therefore belong
to the Schwartz class S(Rd)) or the Daubechies wavelets [4] (which are compactly supported and
can be chosen arbitrarily regular, let us say r -regular with r > n [11], where n is the order of the
strong admissible sequence).

We aim at showing the following result.
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Theorem 9. Let σ be a strong admissible sequence of order n ∈ N; f belongs to Λσ if and only
if its wavelet coefficients satisfy the following inequalities:

|Ck | ≤ C and |c(i)j,k | ≤ Cσ j ,

for some positive constant C, any j ∈ N, any k ∈ Zd and any i ∈ {1, . . . , 2d
− 1}.

Remark 4. The same argument as in [7] shows that the previous result is still valid for any
r -regular wavelet basis (r ≥ n).

Remark 5. It is natural to ask whether Theorem 9 remains valid for arbitrary admissible se-
quences. Here again, no obvious modification of the proof gives the answer.

4.1. Proof of the necessity of the condition

The proof of the theorem is based on ideas found in [11,7]. We will need the following result
(a proof is given in [9]).

Lemma 10. If f ∈ Cn(Rd), then

f (x + h) =


|α|≤n

Dα f (x)
hα

|α|!
+ Rn(x, h)

|h|
n

n!
,

for any x, h ∈ Rd with

|Rn(x, h)| ≤


|α|=n

sup
|l|≤|h|

∥∆1
l Dα f ∥∞.

Obviously, f ∈ L∞(Rd) implies that Ck is bounded. One has, using the fact that the wavelet
has an arbitrary number of vanishing moments,

|c(i)j,k | = 2 jd
 f


k
2 j +


x −

k
2 j


ψ (i)(2 j x − k) dx


= 2 jd

 Rn−1


k
2 j , x


|x |

n−1

(n − 1)!
ψ (i)(2 j x) dx


≤ C


sup

|h|≤|x |/2 j
|α|=n−1

∥∆1
h Dα f ∥∞|x |

n−12− j (n−1)
|ψ (i)(x)| dx .

Now, one has
|x |≤1

sup
|h|≤|x |/2 j
|α|=n−1

∥∆1
h Dα f ∥∞|x |

n−12− j (n−1)
|ψ (i)(x)| dx ≤ Cσ j

and, for m ∈ N0,
2m≤|x |≤2m+1

sup
|h|≤|x |/2 j
|α|=n−1

∥∆1
h Dα f ∥∞|x |

n−12− j (n−1)
|ψ (i)(x)| dx

≤ C


2m≤|x |≤2m+1
sup

|h|≤|x |/2 j
|α|=n−1

∥∆1
h Dα f ∥∞|x |

n−12− j (n−1) 1
(1 + |x |)p dx



Author's personal copy

D. Kreit, S. Nicolay / Journal of Approximation Theory 172 (2013) 23–36 31

≤ C


1/2≤|x |≤1
sup

|h|≤2m+1− j
|α|=n−1

∥∆1
h Dα f ∥∞2m(n+d−1)

|x |
n−12− j (n−1)2−mp dx

≤ C2m(n+d−p)− j (n−1)


1/2≤|x |≤1
sup

|h|≤2− j
|α|=n−1

∥∆1
h Dα f ∥∞ dx

≤ C2m(n+d−p)σ j ,

where p ∈ N can be chosen arbitrarily large. Putting these inequalities together gives the desired
result.

4.2. Proof of the sufficiency of the condition

Here, we essentially follow the ideas given in [7]. Let us set

f−1 =


k

Ckϕ(x − k) and f j (x) =


i,k

c(i)j,kψ
(i)(2 j x − k),

for any j ∈ N0. These series converge uniformly on any compact, thanks to the decreasing
properties of ϕ and ψ (i). Now, it can be shown that the series

g(x) =


j≥1

f j (x)

also converges uniformly on Rd to f . Using a similar argument for Dαϕ and Dαψ (i), one gets

|Dα f j (x)| ≤ C2|α| jσ j

for any multi-index α such that |α| ≤ n. Therefore, the series


j f j can be derived term by term
n − 1 times, so that g ∈ Cn−1(Rd) and |Dαg(x)| ≤ C for any |α| ≤ n − 1. If α is a multi-index
such that |α| ≤ n − 1, for any h ∈ Rd , let j0 be such that

2−( j0+1)
≤ |h| < 2− j0 .

One has

∥∆1
h Dαg∥∞ ≤


j≤ j0

∥∆1
h Dα f j∥∞ +


j> j0

2∥Dα f j∥∞

≤


j≤ j0

|h| sup
|β|=1

∥Dα+β f j∥∞ +

∞
j= j0+1

2(n−1) j+1σ j

≤ C |h|2nj0σ j0 + C2(n−1)( j0+1)σ j0+1

≤ C2(n−1) j0σ j0 ,

which allows one to conclude.

5. Definition of the space Λσ via generalized real interpolation of Sobolev spaces

In this section, we use the generalized interpolation spaces [1,3] to define the generalized
Hölder–Zygmund spaces, starting from the usual Sobolev spaces W ∞

n .
Let A and B be two Banach spaces continuously embedded into a Hausdorff topological

vector space V so that A ∩ B and A + B are well defined Banach spaces; one defines the
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J -functional by

J (t, x) = max{∥x∥A, t∥x∥B},

for any t > 0 and x ∈ A ∩ B.

Definition 4. If σ = (σ j ) j∈Z and (θ j ) j∈Z are two sequences, then the generalized interpolation
space [A, B]σ,θ,J is defined as follows: x ∈ [A, B]σ,θ,J if and only if it can be written as
x =


j∈Z u j , where the series converges in A + B with u j ∈ A ∩ B and where the sequence

(σ j J (θ j , u j )) j∈Z belongs to l∞(Z).

Let us now define the K -functional by

K (t, x) = inf{∥x1∥A + t∥x2∥B : x = x1 + x2},

for any t > 0 and x ∈ A + B.

Definition 5. If σ = (σ j ) j∈Z and (θ j ) j∈Z are two sequences, then the generalized interpolation
space [A, B]σ,θ,K is defined as follows: x ∈ [A, B]σ,θ,K if and only if x ∈ A + B and the
sequence (σ j K (θ j , x)) j∈Z belongs to l∞(Z).

If σ j = 2− jα and θ j = 2 j , one recovers the classical real interpolation spaces [A, B]α,∞,J
and [A, B]α,∞,K .

If σ = (σ j ) j∈N0 is an admissible sequence, let us define the sequence σ (n) = (σ
(n)
j ) j∈Z by

σ
(n)
j =


2 jnσ−1

− j if j ∈ −N0

(σ
(n)
− j )

−1 if j ∈ N.

With the conditions we are going to work with, the J -method and the K -method defined above
lead to the same spaces. We state the precise result here, but postpone a proof to the next section.

Proposition 11. Let σ = (σ j ) j∈N be an admissible sequence and n,m ∈ N0 be such that
n < s(σ−1) ≤ s(σ−1) < m. If B is continuously embedded in A, one has

[A, B]σ (n),2 j (m−n),J = [A, B]σ (n),2 j (m−n),K .

We now need some basic results about the Sobolev spaces. Let p ∈ [1,∞] and n ∈ N; as
usual, W p

n will denote the Sobolev space

W p
n = { f ∈ L p(Rd) : Dα f ∈ L p(Rd) ∀|α| ≤ n}

equipped with the norm

∥ f ∥W p
n

=


|α|≤n

∥Dα f ∥p.

We will use the following classical result, which is a direct consequence of the Morrey
inequality [15,17]: let p ∈]d,∞] and α = 1 − d/p; one has W p

1 ⊂ Λα and

∥ f ∥Λα ≤ C∥ f ∥W p
1
,

for any f ∈ W p
1 . We will prove the following result, showing that the generalized Hölder–

Zygmund spaces can be defined via generalized interpolations of Sobolev spaces.
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Theorem 12. Let σ = (σ j ) j∈N be an admissible sequence and n,m ∈ N0 be such that n <

s(σ−1) ≤ s(σ−1) < m. One has

Λσ = [W ∞
n ,W ∞

m ]σ (n),2 j (m−n),J = [W ∞
n ,W ∞

m ]σ (n),2 j (m−n),K .

We have the following version for the strong admissible sequences.

Theorem 13. Let σ = (σ j ) j∈N be a strong admissible sequence of order n such that s(σ−1) <

n. One has

Λσ = [W ∞

n−1,W ∞
n ]σ (n−1),2 j ,J = [W ∞

n−1,W ∞
n ]σ (n−1),2 j ,K .

5.1. Proof of Proposition 11

Let f ∈ [A, B]σ (n),2 j (m−n),J . One has f =


j u j with convergence in A and

∥u j∥A + 2 j (m−n)
∥u j∥B ≤ C(σ (n)j )−1,

for any j ∈ Z. Let

s j =

j−1
k=−∞

uk and t j =

∞
k= j

uk .

One has s j ∈ A, t j ∈ B; let us show that

σ
(n)
j (∥s j∥A + 2 j (m−n)

∥t j∥B)

is bounded. For j < 0, one gets

∥s j∥A ≤

j−1
k=−∞

∥uk∥A ≤ C
∞

k=− j+1

(σ
(n)
−k )

−1

≤ C
∞

k=− j+1

2knσ−k ≤ C2− jnσ− j

≤ C(σ (n)j )−1

and

∥t j∥B ≤

∞
k= j

∥uk∥B ≤ C
∞

k= j

2−k(m−n)(σ
(n)
k )−1

≤ C
− j
k=1

2k(m−n)(σ
(n)
−k )

−1
+ C

∞
k=0

2−k(m−n)(σ
(n)
k )−1

≤ C2− jmσ− j + C ≤ C2− j (m−n)(σ
(n)
j )−1.

Now, if j ≥ 0,

∥s j∥A ≤

0
k=−∞

∥uk∥A + C
j−1
k=1

∥uk∥B
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≤ C + C
j−1
k=1

2−kmσ−1
k ≤ C(σ (n)j )−1

and, using the fact that s(σ−1) < m,

∥t j∥B ≤

∞
k= j

∥uk∥B ≤ C
∞

k= j

2−kmσ−1
k

≤ C2− jmσ−1
j .

Now let f ∈ [A, B]σ (n),2 j (m−n),K . For any j ∈ Z, there exist s j ∈ A and t j ∈ B such that
f = s j + t j and

∥s j∥A + 2 j (m−n)
∥t j∥B ≤ C(σ (n)j )−1.

Let us define u j by

u j =


s j+1 − s j if − j ∈ N
t j+1 − t j if j ∈ N0.

One has f =


j u j in A with u j ∈ B for any j . Moreover,

∥u j∥A ≤ C(σ (n)j )−1

and

∥u j∥B ≤ C2− j (m−n)(σ
(n)
j )−1,

which leads to the conclusion.

5.2. Proof of Theorem 12

Let f ∈ Λσ and define

u j =

0 if j ∈ Z, j > 1
S0 f if j = 1
∆− j f if j ∈ Z, j < 1.

The Bernstein inequalities imply that the series


j u j converges in W ∞
n and u j ∈ W ∞

m . It is

easy to check that the sequence σ (n)j J (2 j (m−n), u j ) is bounded.
Let f ∈ [W ∞

n ,W ∞
m ]σ (n),2 j (m−n),J , so that f =


j u j with u j ∈ W ∞

m ; we can suppose that
u j ∈ Cm−1(Rd). Let |α| ≤ n; we have

∞
j=0

∥Dαu j∥∞ ≤ C
∞
j=0

2− j (m−n)(σ
(n)
j )−1

= C
∞
j=0

2− jmσ−1
j .

Since s(σ−1) < m,


∞

j=0 ∥Dαu j∥∞ converges. Moreover,

−1
j=−∞

∥Dαu j∥∞ ≤ C
−1

j=−∞

(σ
(n)
j )−1

= C
∞
j=1

2 jnσ j ,

and so f ∈ Cn(Rd) and Dα f ∈ L∞(Rd) for any α such that |α| ≤ n.
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Let h ∈ Rd be such that |h| ≤ 2− j0 and |α| = n; the Morrey inequality and the mean value
theorem lead to the following inequalities:

∞
j=0

∥∆m−n
h Dαu j∥∞ ≤ C |h|

m−n
∞
j=0

∥u j∥W∞
m

≤ C2− j0(m−n)
∞
j=0

2− j (m−n)(σ
(n)
j )−1

≤ C2− j0(m−n)
≤ C2nj0σ j0

and
−1

j=−∞

∥∆m−n
h Dαu j∥∞ =

− j0−1
j=−∞

∥∆m−n
h Dαu j∥∞ +

−1
j=− j0

∥∆m−n
h Dαu j∥∞

≤ C
− j0−1
j=−∞

∥u j∥W∞
n + |h|

m−n
−1

j=− j0

∥u j∥W∞
m

≤ C
− j0−1
j=−∞

(σ
(n)
j )−1

+ C2− j0(m−n)
−1

j=− j0

2− j (m−n)(σ
(n)
j )−1

≤ C
∞

j= j0+1

2 jnσ j + C2− j0(m−n)
j0

j=1

2 jmσ j

≤ C2 j0nσ j0 ,

which implies

sup
|h|≤2− j0

∥∆m−n
h Dα f ∥∞ ≤ C2nj0σ j0;

hence the conclusion follows.
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