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Abstract. The paper studies the excitability properties of a generalized FitzHugh-Nagumo
model. The model differs from the classical FitzHugh-Nagumo model in that it accounts for the
effect of cooperative gating variables such as activation of calcium currents. Excitability is explored
by unfolding a pitchfork bifurcation that is shown to organize five different types of excitability.
In addition to the three classical types of neuronal excitability, two novel types are described and
distinctly associated to the presence of cooperative variables.

1. Introduction. At the root of neuronal signaling, excitability is a dynamical
property shared by all neurons, but its electrophysiological signature largely differs
across neurons and experimental conditions. In the early days of experimental neu-
rophysiology, Hodgkin [13] identified three distinct types of excitability (nowadays
called Type I, II, and III) by stimulating crustacean nerves with constant current
stimuli. The three types of excitability have long been associated to three distinct
mathematical signatures in conductance-based models. They all can be described
in planar models of the FitzHugh [6] type, which can be rigorously associated to
the mathematical reduction of high-dimensional models (see for instance the planar
reduction of Hodgkin-Huxley model in [29] and the excitability analysis in [30]). Re-
duced models have proven central to the understanding of excitability and closely
related mechanisms such as bursting. However, understanding excitability in detailed
conductance-based models remains a challenge, especially for neurons that exhibit
transition between distinctively different firing types depending on environmental con-
ditions. The present paper proposes a generalization of FitzHugh-Nagumo model that
provides novel insights in the simple classification of excitability types.

The proposed model is a “mirrored” version of FitzHugh-Nagumo model, moti-
vated by the mathematical reduction of conductance-based models including calcium
channels. A central observation in [3] is that the electrophysiological signature of
excitability is strongly affected by a local property of the recovery variable at the
resting equilibrium: if the recovery variable is competitive, that is, provides a neg-
ative feedback on membrane potential variations such as in all planar reductions of
Hodgkin-Huxley model, the qualitative properties of excitability are well captured by
the classical Fitzugh-Nagumo model. In contrast, if the recovery variable is coopera-
tive, that is, provides a positive feedback on membrane potential variations, then the
electrophysiological signature is distinctively different. This is for instance observed
in a planar reduction of Hodgkin-Huxley model augmented with an activating calcium
current. The chief difference between the competitive or cooperative nature of the
recovery variable is responsible for an alteration of the phase portrait that cannot be
reproduced in FitzHugh-Nagumo model and that calls for a generalized model that
motivates the present paper.
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We construct a highly degenerate pitchfork bifurcation (co-dimension 3) that is
shown to organize excitability in five different types. The three first types correspond
to the types of excitability extensively studied in the literature. They are all compet-
itive, in the sense that they only involve a region of the phase plane where the model
recovery variable is purely competitive. In addition, the model reveals two new types
of excitability (Type IV and V) that match the distinct electrophysiological signatures
of conductance-based models of high density calcium channels. We prove that these
two new types of excitability cannot be observed in a purely competitive model, such
as FitzHugh-Nagumo model.

Global phase portraits of the proposed model are studied using singular perturba-
tion theory, exploiting the timescale separation observed in all physiological record-
ings. An important result of the analysis is that Type IV and V excitable models
exhibit a bistable range that persists in the singular limit of the model. This, in
sharp contrast to the Type I, II, and III. The result suggests the potential importance
of Type IV and V excitability in bursting mechanisms associated to cooperative ion
channels.

The paper is organized as follows. The studied planar model, its geometrical
properties, and the underlying physiological concepts are presented in Section 2. In
Section 3, we construct the pitchfork bifurcation organizing the model and unfold it
into the five types of excitability. Types I, II, and III are briefly reviewed in Section
4. Types IV and V are defined and characterized via phase plane and numerical
bifurcation analysis in Section 5. By relying on geometrical singular perturbations,
we provide in Section 6 a qualitative description of the phase plane of Type IV and V
excitable models. Their peculiarities with respect to Type I, II, and III are particularly
stressed. A summary and a discussion of our analysis are provided in Section 7.

2. A mirrored FitzHugh-Nagumo model and its physiological interpre-
tation. The paper studies the excitability properties of the planar model

V̇ = V − V 3

3
− n2 + Iapp (2.1a)

ṅ = ε(n∞(V − V0) + n0 − n) (2.1b)

where n∞(V ) is the standard Boltzman activation function1

n∞(V ) :=
2

1 + e−5V
, (2.2)

The model is reminiscent of the popular FitzHugh-Nagumo model of neuronal ex-
citability: equation (2.1a) describes the fast dynamics of the membrane potential V ,
whereas (2.1b) describes the slow dynamics of the “recovery variable” n that aggre-
gates the gating of various ionic channels.

The voltage dynamics (2.1a) are identical to the FitzHugh-Nagumo model, except
that the quadratic term n2 replaces the linear term n. This sole modification is central
to the result of the present paper. The resulting nullcline V̇ = 0 “mirrors” along
the V -axis the classical inverse N -shaped nullcline of FitzHugh-Nagumo model, as
illustrated in Figure 2.1. The figure illustrates the phase portrait of the model in
the singular limit ε = 0. The left and right phase-portraits are the unfolding of the

1The factor 5 in the exponential ensures that the maximum slope of the activation function is
larger than one, that is maxV ∈R n′

∞(V ) > 1, which is necessary to define V ? as in Figure 2.2 and
for the geometrical construction in Figure 3.1.
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transcritical bifurcation organizing center (see e.g. [32, Pages 104-105]) obtained for
Iapp = I? := 2

3 . This particular value will help understanding excitability mechanisms
at work in the situation Iapp > I?, illustrated in the right figure.
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Figure 2.1. V -nullcline (in black) and singular, i.e. ε = 0, vector field (in red) of system
(2.1) for different values of Iapp. Stable fixed points are depicted as filled circles, unstable as circles,
and bifurcations as half filled circles

The recovery dynamics (2.1b) exhibit the familiar firts-order relaxation of ionic
current to the static sigmoid curve illustrated in Figure 2.2. For quantitative purposes,
the numerator in the right hand side of (2.2) can be picked larger or equal than 2
without changing the underlying qualitative analysis. The parameters (V0, n0) locate
the relative position of the nullclines in the phase portrait. In particular, the region

Sn0 := {(V, n) ∈ R2 : n ∈ (n0, n0 + 2)} (2.3)

is attractive and invariant for the dynamics of system (2.1). The parameter n0 slides
up and down the “physiological window” of the recovery variable, whereas, V0 is the
half-activation potential. The potential V ? < V0 is defined as the voltage at which
n∞(V −V0) has unitary slope. We adopt the conventional notation n for the recovery
variable but will allow n0 < 0, which makes the range of n include negative values.
This is purely for mathematical convenience and should not confuse the reader used
to the physiological interpretation of a gating variable with range [0, 1]. For any value
of n0, the mathematical range [n0, n0+2] of the recovery variable n can be mapped to
the physiological range [0, 1] of a gating variable ñ via the affine change of coordinate
ñ = n−n0

2 .
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Figure 2.2. Dependence of the n-nullclines (dashed line) of (2.1) on the parameters n0 and
V0. The location of the nullcline in the phase plane determines an attractive invariant region Sn0 .
At the voltage V ?, the nullcline has unitary slope.
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Figure 2.3. Nullclines (top) and outward ionic current Iout = n2 (bottom) for different
positions of the n-nullcline and the associated invariant region Sn0 . A) When Sn0 is fully contained
in the half-plane n > 0 the phase portrait is reminiscent of original FitzHugh-Nagumo model and
the outward ionic current is monotone increasing. The recovery variable has a purely competitive
role. B) When Sn0 extends to the half-plane n < 0, the phase portrait exhibits new characteristics.
The outward ionic current is not monotone, corresponding to two antisynergistic (competitive and
cooperative) roles of the recovery variable.

Competitive and cooperative excitability. The recovery variable n of model
(2.1) is competitive in the half plane n > 0, that is it provides a negative feedback on
membrane potential variations, because

∂V̇

∂n

∂ṅ

∂V
< 0.

In contrast, it is cooperative in the half plane n < 0, that is it provides a positive
feedback on membrane potential variations, because

∂V̇

∂n

∂ṅ

∂V
> 0.

A consequence of that observation is that the recovery variable of model (2.1) is
always competitive when n0 > 0. The corresponding phase portrait is illustrated in
Figure 2.3A. It is reminiscent of FitzHugh-Nagumo model and will recover known
types of excitability. In contrast, n is either competitive or cooperative when n0 < 0.
The corresponding phase portrait (Figure 2.3B) is distinctly different from FitzHugh-
Nagumo model and it will lead to the novel types of excitability studied in this paper.
The role of the proposed mirrored FitzHugh-Nagumo model is to study the transition
from a purely competitive model to a model that is neither cooperative nor competitive
through a single parameter n0.

The physiology behind competitive and cooperative behaviors. Compet-
itive and cooperative behaviors model different types of (in)activation gating variables
in conductance-based models. When the recovery variable is purely competitive (Fig-
ure 2.3A), it models the activation (resp. inactivation) of an outward2 (resp. inward)

2With the Hodgkin-Huxley convention, an outward current (i.e. flowing from the intracellular
to the extracellular medium) is negative, and vice-versa for inward currents.
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Figure 2.4. Nullclines and transcritical singularities (half-filled circles) in reduced Hodgkin-
Huxley model with and without calcium currents. In original reduced Hodgkin-Huxley model a tran-
scritical singularity exists in the non-physiological region of the phase plane (shaded area). The
addition of a calcium current makes this bifurcation physiological.

ionic current: a positive variation of V induces a positive variation of n and thus
an increase of the total outward ionic current, i.e. n2, which is monotone increasing
in Sn0 . By contrast, when the recovery variable becomes cooperative (Figure 2.3B),
its role is reversed: it models the activation (resp. inactivation) of an inward (resp.
outward) ionic current: a positive variation of V induces a positive variation of n and
thus a decrease of the total outward ionic current, which is now monotone decreasing.

The seminal model of Hodgkin-Huxley only includes competitive slow gating vari-
ables: inactivation of sodium current and activation of potassium current. That is
why the classical reduction of the Hodgkin-Huxley model leads to a FitzHugh-Nagumo
type of phase portrait (Figure 2.3A). However, conductance-based models often in-
clude cooperative gating variables. An example of the latter is the activation of
calcium currents included in many bursting conductance-based models (e.g. R15 neu-
ron of Aplysia’s abdominal ganglion [27], thalamo-cortical relay and reticular neurons
[24, 2], CA3 hippocampal pyramidal neuron [34]). Adding a calcium current in the
Hodgkin-Huxley model is one natural way to obtain a reduced phase portrait as in
Figure 2.3B. This observation, firstly presented in [3] and reproduced in Figure 2.4,
motivated the present study.

3. A pitchfork bifurcation organizes different excitability types. The
model (2.1) has three free geometrical parameters (Iapp, n0, V0). The parameter n0

is an additional parameter with respect to FitzHugh-Nagumo dynamics. The three
parameters can be adjusted to create a codimension three bifurcation that will provide
an organizing center for excitability.

The degenerate bifurcation is illustrated in Figure 3.1 and is constructed as fol-
lows:

1. The applied current is fixed at Iapp = I?, imposing the existence of the sin-
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gularly perturbed transcritical bifurcation at the V -nullcline self-intersection
(cf. Figure 2.1 center).

2. We fix n0 = n?
0(V0) := −n∞(−1− V0) to force a nullcline intersection at the

transcritical singularity at (−1, 0).
3. We fix V ? = −1, or, equivalently, V0 = V ?

0 := −1+ 1
5 log

(
−6 +

√
35
)
, so that

the n-nullcline is tangent to the V -nullcline at the intersection.

n

V

(-1,0)

Figure 3.1. V - and n- nullclines (solid and dashed lines, respectively) of model (2.1) for
Iapp = I?, n0 = n?

0(V0), and V ? = −1. The bifurcation obtained at the intersection is drawn as a
half-filled circle.

A local normal form of the model (2.1) at this degenerate bifurcation is provided
by the following lemma.

Lemma 3.1. There exists an affine change of coordinates that transforms (2.1)
into

v̇ =
v2(3− v)

3
−
(
k(V0)(v − u) + δ0

)2

+ Iapp − I? (3.1a)

u̇ = −εu+O(v2, vu, u2)), (3.1b)

where k(V0) :=
dn∞
dV (−1 − V0) is the slope of the activation function n∞(V − V0) at

V = −1, and δ0 = n0 + n∞(−1− V0).
Proof. The affine change of coordinates

w̃ := n− δ0,

v = V + 1,

transforms (2.1) into

v̇ =
v2(3− v)

3
− (w̃ + δ0)

2 + Iapp − I?

˙̃w = ε(n∞(v − 1− V0)− n∞(−1− V0)− w̃), (3.2)

where δ0 is defined as in the statement of the lemma. Because ˙̃w|v=w̃=0 = 0, we
extract the linear term in (3.2) and write

v̇ =
v2(3− v)

3
− (w̃ + δ0)

2 + Iapp − I? (3.3a)

˙̃w = ε(k(V0)v − w̃ +O(v2, vw̃, w̃2)), (3.3b)

Finally, the linear transformation u = v − w̃
k(V̄0)

transforms (3.3) into

v̇ =
v2(3− v)

3
− (k(V0)(v − u) + δ0)

2 + Iapp − I?

u̇ = −εu+O(v2, vu, u2)),



AN ORGANIZING CENTER FOR NEURONAL EXCITABILITY 7

which proves the lemma.
The dynamics (3.1) have an exponentially attractive center manifold that is tan-

gent at (v, u) = (0, 0) to center space {(v, u) : u = 0}. Ignoring higher order terms,
the dynamics on the center manifold is given by

v̇ =
(
1− k(V0)

2
)
v2 − v3

3
− 2k(V0)vδ0 − δ20 + Iapp − I?. (3.4)

Codimension 2 transcritical bifurcation for Iapp = I?, n0 = n?
0(V0), V0 6=

V ?
0 . Fixing Iapp = I? (Item 1.) and δ0 = 0 (Item 2.), but V0 6= V ?

0 , we obtain from
(3.4) the following relationships:

v̇

∣∣∣∣∣∣∣ v=δ=0
Iapp=I?

V0 6=V ?
0

=
∂v̇

∂v

∣∣∣∣∣∣∣ v=δ=0
Iapp=I?

V0 6=V ?
0

=
∂v̇

∂δ0

∣∣∣∣∣∣∣ v=δ=0
Iapp=I?

V0 6=V ?
0

= 0, (3.5a)

∂2v̇

∂v2

∣∣∣∣∣∣∣ v=δ=0
Iapp=I?

V0 6=V ?
0

= 2
(
1− k(V0)

2
)
6= 0, (3.5b)

∂2v̇

∂v∂δ0

∣∣∣∣∣∣∣ v=δ=0
Iapp=I?

V0 6=V ?
0

= 2k(V0) 6= 0, (3.5c)

where (3.5b) comes from the fact that, since V0 6= V ?
0 , k(V0) 6= 1, whereas (3.5c)

comes from the fact that k(V0) 6= 0 for all V0 ∈ R. Relation (3.5) are the defining
conditions of a transcritical singularity (see e.g. [32, Page 367]). For any value of
the perturbation parameter δ0 6= 0, there are two fixed points that exchange their
stability at the bifurcation for δ0 = 0. Figure 3.2 A,C illustrates this result. Note
that we have to fix exactly two parameters (i.e. Iapp and δ0) to obtain (3.5), which
confirms that bifurcation described by (3.5) has codimension 2.

Codimension 3 pitchfork bifurcation for Iapp = I?, n0 = n?
0(V0), V0 = V ?

0 .
Adding the condition V0 = V ?

0 (Item 3.), we obtain the extra degeneracy condition

∂2v̇

∂v2

∣∣∣∣∣∣∣ v=δ=0
Iapp=I?

V0 6=V ?
0

= 2
(
1− k(V0)

2
)
= 0,

and the associated bifurcation is in this case a codimension 3 pitchfork bifurcation
(see e.g. [32, Page 367]). In this case, positive perturbation of δ0 leads to a unique
stable fixed point, which split in three fixed points, the outer stable and the central
unstable, at the bifurcation (see Figure 3.2 B).

Unfolding in the plane Iapp = I?. The parameter chart in Figure 3.3 unfolds
the pitchfork bifurcation in the plane (V0, n0) for the fixed critical value I?. This
bifurcation analysis reveals four qualitatively distinct regions denoted by I, II, IV,
and V. The transition from Region I to Region II is through a saddle-node bifurcation
at which the n-nullcline is tangent to the V -nullcline. See how the top right phase
portrait is continuously deformed to the top left phase portrait in Figure 3.3. The
transition from Region I to Region IV is through a transcritical bifurcation at which
a saddle and a node exchange their stability. See how the top right phase portrait
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A. I       = I  , V   > Vapp 0 0

B. I       = I  , V   = Vapp 0 0

C. I       = I  , V   < Vapp 0 0

n   = n0 0 n   < n0 0n   > n0 0

n   = n0 0 n   < n0 0n   > n0 0

n   = n0 0 n   < n0 0n   > n0 0

Transcritical

Transcritical

Pitchfork

V

n

V

n

V

n

V

n

V

n

V

n

V

n

V

n

V

n

Figure 3.2. Nullclines and fixed points of (2.1) for Iapp = I?, different values of V0, and
with n0 as the bifurcation parameter. Stable fixed points are drawn as filled circle, unstable as
circle, and bifurcations as half-filled circle. A,C: When V0 < V ?

0 or V0 > V ?
0 as n0 decreases below

n?
0(V0) a stable and an unstable fixed points exchange their stability in a codimension 2 transcritical

singularity. B: When V0 = V ?
0 the bifurcation degenerates in codimension 3 pitchfork at which a

stable fixed point splits in two stable fixed points (outer) and an unstable fixed point (inner).

is continuously deformed to the bottom right phase portrait in Figure 3.3. A similar
transition occur from Region IV to Region V. See how the bottom right phase portrait
is continuously deformed to the bottom left phase portrait in Figure 3.3. Finally, the
transition from Region V to Region II is through a saddle-node bifurcation. See how
the bottom left phase portrait is continuously deformed to the top left phase portrait
in Figure 3.3.

Region III in Figure 3.3 is illustrated for future reference in the next section, but
it should not be differentiated from Region II in the plane I = I?, i.e. there is no
bifurcation associated to the transition from Region II to Region III.

The pitchfork bifurcation organizes excitability. The relevance of the un-
folding in Figure 3.3 for excitability is that the different regions correspond to different
types of excitability for Iapp > I?. Regions I, II, and III correspond to Types I, II,
and III excitability identified in the early work of Hodgkin [13] and extensively stud-
ied in the literature since then. Those are the only types of excitability that can be
associated to purely competitive models (i.e. n0 > 0) and they all have been studied
in FitzHugh-Nagumo type phase portraits. They are briefly reviewed in Section 4.
In contrast, Region IV and V correspond to new types of excitability that require
the co-existence of competitive and cooperative ionic currents. They are studied in
Sections 5, 6.
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Figure 3.3. Unfolding of the degenerate pitchfork bifurcation in the plane Iapp = I? and
associated nullclines and fixed points. Stable fixed points are depicted as filled circles, whereas
unstable as circles. Saddle points are depicted as crosses. �: pitchfork bifurcation. TC: transcritical
bifurcation. SN: saddle-node bifurcation.

Our analysis assumes a timescale separation ε � 1, reflecting the accepted strong
separation between the fast voltage dynamics and sodium activation kinetics and the
remaining slow gating kinetics. We focus on those bifurcations that persist in the
singular limit ε → 0.

Figure 3.4 summarizes the different types of excitability studied in the next section
and their main electrophysiological signatures.

The case Iapp < I? is less relevant for excitability models and therefore not studied
in details: for Iapp < I?, there always exists a stable fixed point and the only possible
bifurcations are the two “vertical” saddle-nodes (ISN,up in Figures 5.1-5.3) in which
the unstable fixed point of Type IV excitable systems and the up stable steady state of
Type V excitable systems disappear, respectively. In this sense, this case corresponds
to a condition of reduced excitability.

4. Three types of competitive excitability.

Type I (SNIC). Fixing the parameters (V0, n0) in Region I of the parameter
chart in Figure 3.3, the node and the saddle approach each other as the applied cur-
rent Iapp > I? increases and eventually collide in a saddle-node bifurcation at the
critical value Iapp = ISNIC , as depicted in Figure 3.4 (top right). Under the timescale
separation assumption (i.e. ε � 1), the center manifold of the bifurcation forms a
homoclinic loop, as sketched in the figure. This bifurcation is commonly identified as
saddle-node on invariant circle (SNIC). As Iapp is further increased, the fixed point
disappears and the system generates a periodic train of action potentials.

The excitability properties of model (2.1) near a SNIC bifurcation are commonly
referred to as Type I excitability (see e.g. [4, Section 3.4.4], [30], and [15, Section
7.1.3] and references therein). The main electrophysiological signatures associated to
Type I excitability are as follows:

All-or-none spike. The model has a well defined threshold (i.e. Iapp =
ISNIC) to generate action potentials. Above the threshold, the amplitude of
the action potentials does not depend on the stimulus intensity.
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Figure 3.4. Sketch of different types of excitable behaviors in the unfolding of the degenerate
pitchfork bifurcation (� in the central parameter chart) for Iapp > I? and ε � 1. For each type, the
typical voltage time course and the phase portrait are sketched. The abbreviation SNIC denotes the
saddle-node on invariant circle bifurcation. Stable fixed points are depicted as filled circles, unstable
as circles, saddles as cross, and bifurcations as half-filled circles. The stable manifold of saddle
points is depicted in green. The center manifold of the SNIC bifurcation is depicted in blue. The
saddle homoclinic loop in Type IV is depicted in orange.

Low frequency spiking. The frequency of the limit cycle decreases to zero
as Iapp ↘ ISNIC . From a computational point of view, this property permits
to encode the stimulus intensity in the oscillation frequency.

Examples of neurons exhibiting the electrophysiological signature of Type I ex-
citability include: thalamo-cortical neurons with inactivated T-type calcium current
(depolarized steady-state) [38, Figure 3], isolated axons from Carcinus maenas [13,
Class 1], regular spiking neurons in somatosensory cortex [33], molluscan neurons [31].

Type II (Hopf). In Region II of the parameter chart in Figure 3.3, the null-
clines intersect only once at a stable fixed point. As Iapp is increased, this fixed point
looses stability in a Hopf bifurcation at Iapp = IHopf , as illustrated in Figure 3.4
(top left). Above this critical input current, the system possesses a stable limit cycle
surrounding the unstable fixed point.
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Excitability properties associated to a Hopf bifurcation are well known and define
Type II excitability (see e.g. [4, Section 3.4.4], [30], and [15, Section 7.1.3] and
references therein). Fundamental electrophysiological signatures of Type II excitable
systems include:

No threshold. When the bifurcation is supercritical, the amplitude of the
limit cycle decreases to zero as Iapp ↘ IHopf , which makes it hard to define a
threshold for the generation of an action potential. Canard trajectories [35]
are sometime considered as “soft” threshold manifolds between small and
large amplitude action potentials.
Subthreshold oscillations. When the applied current is slightly below the
bifurcation values (i.e. Iapp . IHopf ) the system trajectory relaxes to the
fixed point with damped oscillations at the natural frequency of the Hopf
bifurcation (i.e. the imaginary part of the eigenvalues at the bifurcation).
No low frequency firing. The oscillation frequency is (almost) independent
of the injected current and is equal to or larger than the natural frequency of
the Hopf bifurcation.
Frequency preference. Trains of small (< IHopf ) amplitude inputs can
induce spike if the intra stimulus frequency is resonant with the natural fre-
quency of the Hopf bifurcation. This phenomenon is tightly linked to the
presence of subthreshold oscillations and permits to detect the presence of
resonant harmonics in the stimulus.
Post-inhibitory spike. Transient negative current can induce an action
potential in Type II excitable systems.

Examples of neurons exhibiting the electrophysiological signature of Type II ex-
citability include: isolated axons from Carcinus maenas [13, Class 2], fast spiking
neurons in somatosensory cortex [33], alpha moto-neurons [25].

Type III. Type III excitability was only recently studied [7]. It can be thought
as a less excitable variant of Type II excitability. In Region III of Figure 3.3, the
half-activation voltage V0 is so negative that the stable focus never looses its stability
as the applied current is increased. Nevertheless, the model is still excitable. For in-
stance, as depicted in Figure 3.4 (bottom left), a positive current step instantaneously
shifts the stable fixed point upright and an originally resting trajectory is attracted
toward the right branch of the V -nullcline before relaxing back to rest. On the con-
trary, if the applied current varies slowly no action potential is generated.

Specific neurocomputational properties of Type III excitable systems have recently
been highlighted in [7]:

Slope detection. Because a brutal variation of the applied current is nec-
essary to excite the model, Type III excitable neurons acts as slope detectors
with a high temporal precision
Slope based stochastic resonance. In the presence of noise, Type III ex-
citable models are most sensitive to the stimulus slope and frequency, rather
than to its amplitude. The associated stochastic resonance phenomenon
(slope based stochastic resonance) exhibits distinctly different filtering prop-
erties with respect to the classical stochastic resonance in Type I/II excitable
models.

Examples of neurons exhibiting the electrophysiological signature of Type III
excitability include: squid giant axons (revised model) [1], auditory brain stem [7],
isolated axons from Carcinus maenas [13, Class 3].
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Figure 5.1. Bifurcations in Types IV excitable systems. Top: bifurcation diagram. Branches
of stable fixed points are drawn as solid lines, of unstable fixed points as dashed lines, and of stable
limit cycles as thick lines. SH denotes the saddle-homoclinic bifurcation, SN the saddle-node bifur-
cation. Bottom: phase portraits. The stable manifold of saddle points is depicted in green. Unstable
fixed point are depicted as circles, saddles as crosses, and stable fixed points as filled circles. Limit
cycle attractors are depicted in blue. Sample trajectories are depicted as black oriented lines.

5. Two novel types of cooperative excitability.

Type IV (singularly perturbed saddle-homoclinic). As illustrated in the
bottom right phase portrait of Figure 3.3, Type IV excitability is the first excitability
type that involves the “mirrored” shape of the voltage nullcline in (2.1): the stable
node and the saddle lie on the lower cooperative branch of the V -nullcline. In partic-
ular, the hyperpolarized stable steady state of Type IV excitable models lies in the
cooperative region of the phase portrait, i.e. where

∂V̇

∂n

∂ṅ

∂V
> 0.

As a consequence, excitability properties of this phase portrait cannot be studied in
FitzHugh-Nagumo like models.

Fixing the pair (V0, n0) in Region IV of Figure 3.3, we obtain the bifurcation
diagram illustrated in Figure 5.1 together with the associated phase portraits. The
stable node looses stability in a saddle-node bifurcation at the critical value Iapp =
ISN,down > I?. For Iapp > ISN,down, the model possesses a stable limit cycle that
attracts all solutions (but the unstable focus). The spiking limit cycle disappears in a
(singularly perturbed) saddle-homoclinic bifurcation at Iapp = ISH . The stable node
attracts all solutions (but those on the stable manifold of the saddle) for Iapp < ISH .
Further decreasing Iapp below ISN,up, the unstable focus disappear in a saddle-node,
letting the stable node globally asymptotically stable. Based on geometrical singular
perturbations, we provide in Section 6 a global phase portrait analysis of Type IV
excitable systems.
The chief electrophysiological signatures of Type IV excitable systems are:

Bistability. Type IV excitable models are bistable in the parameter range
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ISH < Iapp < ISN,down: a limit cycle attractor coexists with a stable fixed
point.
Spike-latency. When the applied current is abruptly increased slightly
above ISN , the trajectory necessarily travels the narrow region between the
nullclines. Since the vector field is small in that region, the first action po-
tential is fired with a large latency.
After-depolarization potential. After the limit cycle has disappeared in
the homoclinic bifurcation, the trajectory converges to rest by following the
attractive branches of the voltage nullcline, thus generating robust ADPs (see
[3]).

We stress that bistability, spike-latency, and ADPs are all direct consequences of the
presence of a saddle point on the cooperative branch of the voltage nullcline: the
basin of attraction of the stable node and the limit cycle are separated by the stable
manifold of the saddle; spike-latency reveals the “ghost” of the center manifold of the
saddle-node bifurcation; ADPs are generated along the hyperbolic invariant structure
provided by the saddle stable and unstable manifolds (see Section 6 below).

Examples of neurons exhibiting the electrophysiological signature of Type IV
excitability include: subthalamic nucleus neurons [11], thalamo-cortical reticular and
relay neurons with deinactivated T-type calcium current (hyperpolarized state) [14,
23], dopaminergic neurons [16, 8], superficial pyramidal neurons [9].

Type V (saddle-saddle). Type V excitability relates to Type IV as Type III
does to Type II: similarly to Type IV, the hyperpolarized stable steady state of Type
V excitable models lies in cooperative region of the phase plane. The distinct fea-
ture of the bottom left phase portrait of Figure 3.3 is the co-existence of two stable
fixed points, a “down-state” and an “up-state”. The saddle stable manifold separates
the two attractors. As Iapp is decreased below I?, the up-state eventually looses its
stability in a saddle-node bifurcation at ISN,up, leaving the down-state globally asymp-
totically stable. Similarly, as Iapp is increased above I?, the down-state eventually
disappears in a saddle-node bifurcation at I = ISN,down. But the up-state itself even-
tually looses its stability in a Hopf bifurcation at Iapp = IHopf . The Hopf bifurcation
can either take place beyond the bistable range [ISN,up, ISN,down], a situation illus-
trated in Figure 5.2, or it can take place within the bistable range [ISN,up, ISN,down],
in which case, depending on Iapp, the stable down-state coexists with either a limit
cycle attractor or a stable fixed point, a situation illustrated in Figure 5.3.

The main electrophysiological signatures of Type V excitable models are similar to
those of Type IV and can be summarized as follows:

Bistability Type V excitable models are bistable in the range ISN,up <
Iapp < ISN,down: a stable down-state coexists with an up-state attractor that
can be either a stable fixed point or a stable limit cycle.
Spike latency. Similarly to Type IV, the down-state looses stability in
a saddle-node bifurcation on the lower (cooperative) branch of V -nullcline,
leading to a long latency before the convergence to the up-state.
Plateau potentials. The up-state having a higher voltage with respect to
the down-state, the transition between the two gives rise to plateau potentials
either with or without spikes.

Examples of neurons exhibiting the electrophysiological signature of Type V ex-
citability include: olfactory bulb mitral cells [12] and striatal medium spiny neurons
[37]. More examples are listed at Scholarpedia journal article [36].
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Figure 5.2. Bifurcations in Types V excitable systems. Legend as in Figure 5.1, except HB
denoting the Hopf bifurcation.
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Figure 5.3. Bifurcations in Types V excitable systems. Legend as in Figure 5.1, except HB
denoting the Hopf bifurcation. The same bifurcation is depicted in the phase portrait a half-filled
circle.

6. Singularly perturbed global phase portrait analysis of Types IV and
V excitable models. Under timescale separation assumption (i.e. 0 < ε � 1),
Types IV and V excitable models exhibit four distinct signatures with respect to
Types I and II: (i) the existence of a saddle-homoclinic bifurcation and (ii) ADPs in
Type IV; (iii) bistability and (iv) spike latency in both Types IV and V. A global phase
portrait analysis based on geometrical singular perturbations provides an analytical
explanation for the occurrence of these signatures solely in Types IV and V.

6.1. Singularly perturbed saddle-homoclinic bifurcation and robust ADP
generation in Type IV excitable models. In this section we prove the existence
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of the saddle-homoclinic loop in Type IV excitable systems. We then rely on this
analysis to provide a qualitative picture of the ADP generation mechanism in these
models. In the remainder of the section we assume that the pair (V0, n0) lies in Region
IV of Figure 3.3.

We start by briefly recalling some basic results of geometrical singular perturba-
tion theory, using (2.1) as an explicit example. The interested reader will find in [17]
an excellent introduction to the topic, and in [20, 22, 19, 18] some recent extensions
on which we rely for the forthcoming analysis. The time rescaling τ := εt transforms
(2.1) into the equivalent system

εV̇ = V − V 3

3
− n2 + Iapp (6.1a)

ṅ = ε(n∞(V − V0) + n0 − n), (6.1b)

which describes the dynamics (2.1) in the slow timescale τ . In the limit ε = 0,
commonly referred to as the singular limit, one obtains from (2.1) and (6.1) two new
dynamical systems: the reduced dynamics

0 = V − V 3

3
− n2 + Iapp (6.2a)

ṅ = ε(n∞(V − V0) + n0 − n), (6.2b)

which evolve in the slow timescale τ , and the layer dynamics

V̇ = V − V 3

3
− n2 + Iapp (6.3a)

ṅ = 0, (6.3b)

which evolve in the fast timescale t. Figure 6.1(a) depicts the fast-slow dynamics
(6.2),(6.3). The main idea behind geometrical singular perturbation theory is to
combine the analysis of the reduced and layer dynamics to derive conclusions about
the behavior of the nominal system, i.e. with ε > 0.

The reduced dynamics (6.2) is a dynamical system on the set

S0 :=

{
(V, n) ∈ R2 : V − V 3

3
− n2 + Iapp = 0

}
,

usually called the critical manifold. The points in S0 are indeed critical points of the

layer dynamics (6.3). More precisely, portions of S0 on which ∂V̇
∂V is non-vanishing are

normally hyperbolic invariant manifolds of equilibria of the layer dynamics, whose

stability is determined by the sign of ∂V̇
∂V . Conversely, points in S0 where ∂V̇

∂V = 0
constitute degenerate equilibria. In particular, the layer dynamics (6.3) exhibits, for
Iapp = I?, two degenerate equilibria3. As depicted in Figure 6.1(a) they are given by
the self-intersection of the V -nullcline, which is the transcritical organizing center in
Figure 2.1, and by the fold singularity at the maximum of the upper branch of the
V -nullcline.

The basic result of geometrical singular perturbation theory, due to Fennichel
[5], is that, for ε sufficiently small, non-degenerate portions of S0 persist as nearby

3A third degenerate equilibria is at the minimum of the V -nullcline that is specular to the
maximum with respect to the line v = 0, but it plays no dynamical role and is not considered here.
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Figure 6.1. Phase-portrait of (2.1) for (n0, V0) in Region IV of the parameter chart in
Figure 3.3 and different values of ε and I. (a): fast-slow dynamics of (2.1) for ε = 0 and I = I?.
The attractive (resp. repelling) branches of the critical manifold S0 above/below the transcritical
singularity are denoted by S+

a /S−
a (resp. S+

r /S−
r ). (b): Continuation of the slow attractive Sε

a and
repelling Sε

r manifolds for ε > 0 and Iapp < I?+ Ic(
√
ε), where Ic(

√
ε) is defined as in Theorem 6.1.

(c): Continuation of Sε
a and Sε

r for ε > 0 and I = I? + Ic(
√
ε). (d): Continuation of Sε

a and Sε
r for

ε > 0 and I > I? + Ic(
√
ε).

normally hyperbolic locally invariant manifolds Sε of (2.1). More precisely, the slow
manifold Sε lies in a neighborhood of S0 of radius O(ε). The dynamics on Sε is a
small perturbation of the reduced dynamics (6.2). We point out that Sε may not be
unique, but is determined only up to O(e−c/ε), for some c > 0. That is, two different
choices of Sε are exponentially close (in ε) one to the other. Since the presented
results are independent of the particular Sε considered, we let this choice be arbitrary.
The trajectories of the layer dynamics perturb to a stable and an unstable invariant
foliations with basis Sε.

The analysis near degenerate points is more delicate and goes back to [28, 10, 21].
Only recently some works have treated this problem in its full generality for different
types of singularities [19, 22, 18, 20]. Figure 6.1 (b),(c),(d) sketch the extension of the
attractive slow manifold Sε

a after the fold point, and the three possible ways in which
Sε
a and the repelling slow manifold Sε

r can continue after the transcritical singularity,
depending on the injected current.

The result depicted in Figure 6.1 relies on the following analysis, adapted from
[19].

Let ∆ := {(V, n) ∈ R2 : V− ≤ V ≤ V+, n = ρ}, be the section depicted in Figure
6.1, where ρ < 0 and |ρ| is sufficiently small, and V−, V+ are such that ∆ ∩ S−

r 6= ∅.
For a given ε > 0, let qa,ε := ∆∩Sε

a and qr,ε := ∆∩Sε
r be the intersections, whenever

they exist, of respectively the attractive and repelling invariant submanifolds Sε
a and

Sε
r with the section ∆. The following theorem reformulates in a compact way the
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discussion contained in Remark 2.2 and Section 3 of [19]4 for the system with inputs
(2.1).

Theorem 6.1 (Adapted from [19]). Consider the system (2.1). Then there exists
ε0 > 0 and a smooth function Ic(

√
ε), defined on [0, ε0] and satisfying Ic(0) = 0, such

that, for all ε ∈ (0, ε0], the following assertions hold
1. qa,ε = qr,ε if and only if Iapp = I? + Ic(

√
ε)

2. there exists an open interval A 3 I? + Ic(
√
ε), such that, for all I ∈ A, it

holds that ∆ ∩ Sε
a 6= ∅, ∆ ∩ Sε

r 6= ∅, and

∂

∂Iapp
(qa,ε − qr,ε) > 0.

Figure 6.1 illustrates this result.
Remark 1. The function Ic(

√
ε) is related to the function λc(

√
ε) defined in

[19, Remark 2.2] by Ic(
√
ε) := ελc(

√
ε). Similarly, given ε > 0, the parameter Iapp

appearing in Theorem 6.1 is just the re-scaling Iapp = ελ + I? of the parameter λ
appearing in [19, Remark 2.2 and Sections 3].

Theorem 6.1 implies the existence of the saddle-homoclinic bifurcation in the mir-
rored FitzHugh-Nagumo model (2.1) with parameters (V0, n0) belonging to Region IV
of Figure 3.3. In this case, as illustrated in Figure 6.1(b,c,d), the slow attractive man-
ifold Sε

a (resp. slow repelling manifold Sε
r) coincides with the unstable manifold Wu

(resp. stable manifold Ws) of the saddle point, as it can be proved via simple quali-
tative arguments. Thus, for Iapp < I? + Ic(

√
ε), the unstable manifold Wu continues

after the transcritical singularity on the left of Ws, toward the stable node. See Fig-
ure 6.1(b). For Iapp = I? + Ic(

√
ε), Wu extends after the transcritical point to Ws,

forming the saddle-homoclinic trajectory, as sketched in Figure 3.4 and Figure 6.1(c).
For Iapp > I? + Ic(

√
ε), the unstable manifold of the saddle Wu continues after the

transcritical singularity on the right of Ws, and spirals toward an exponentially stable
limit cycle, whose existence can be proved with similar geometrical singular pertur-
bation theory arguments (see for instance [20]). This situation is the one depicted in
Figure 6.1(d).

The existence of the saddle-homoclinic bifurcation near the singular limit ε = 0
is a direct consequence of the existence of a singular connection between the stable
and unstable manifold of the saddle, as sketched in Figure 6.2. The existence of the
saddle-homoclinic bifurcation can be seen as the persistence of this singular saddle-
homoclinic loop in the non-singular dynamics. The same loop being absent in neuron
models with an N -shaped nullcline, as discussed below, we identify the singularly
perturbed saddle-homoclinic bifurcation sketched in Figure 3.4 (bottom right) as the
signature of Type IV excitable models.

When Iapp < I? + Ic(
√
ε) the above analysis ensures the robust generation of

ADPs. The trajectory relaxation to the stable fixed point is indeed guided by the
normally hyperbolic attractive manifold Sε

a. As illustrated in Figure 6.1(b), the volt-
age is not monotone as the trajectory slides along this manifold, corresponding to an
ADP. The normally hyperbolicity of Sε

a ensures that the ADP generation is robust
to external perturbations. Some consequences for the modeling of neurons exhibiting
ADPs can be found in [3].

Absence of singularly perturbed saddle-homoclinic bifurcation and ADPs
in competitive models. When the stable fixed point and the saddle belong to the

4The first author is thankful to Prof. Szmolyan for his useful comments.
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Figure 6.2. Singularly perturbed non-trivial saddle-homoclinic connection near the transcrit-
ical singularity. This loop persists in the non-singular limit.

upper N -shaped competitive branch of the voltage nullcline (i.e. Type I excitability),
the model cannot exhibit saddle-homoclinic bifurcation. As sketched in Figure 6.3,
in the fast-slow dynamics there are no nontrivial saddle-homoclinic connections. By
persistence arguments [5, 20], this implies that the nontrivial intersection of the stable
and unstable manifolds of the saddle is empty also away from the singular limit.

The prediction of singular perturbation theory of course does not contradict the
existence of a saddle-homoclinic bifurcation in competitive models, it only precludes
it for sufficiently small values of ε. A well-known saddle-homoclinic bifurcation is
described in Morris-Lecar model [26] for the barnacle giant muscle fiber. The model
is purely competitive but a saddle-homoclinic bifurcation is possible around the N-
shaped voltage nullcline (see for instance [4, Section 3.4.3]). However, such a bifurca-
tion cannot persist with a strong timescale separation, which suggests that it might
be less relevant in the context of neuronal modeling.

��� ���

��

��

Figure 6.3. Absence of a non-trivial singularly perturbed saddle-homoclinic connection around
the N-shaped V -nullcline branch. Such connection is absent also for sufficiently small ε > 0.

The generation of ADPs must also be excluded when the stable fixed point belongs
to the upper branch of the voltage nullcline. The relaxation to rest is indeed guided by
the left attractive branch of the voltage nullcline, along which the voltage is monotone.
ADPs can be generated within purely competitive models only by resorting to a non-
physiological state reset mechanism [15, Section 8.3].

6.2. Singularly perturbed bistability in Type IV and V excitable sys-
tems. The geometrical singular perturbation machinery introduced above can be
used to prove the persistence of bistability near the singular limit ε = 0 for both Type
IV and V excitable systems. The analysis is sketched in Figure 6.4. The underlying
key ingredient is the existence of singularly perturbed separatrix W 0

s passing by the
saddle point. This object persists in the non-singular limit as a normally hyperbolic
saddle stable manifold W ε

s that separates the stable down-state from the up-state at-
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Figure 6.4. Existence of a singularly perturbed saddle separatrix W 0
s on the lower branch

of the voltage nullcline in Type IV and V excitable systems for I > I? and different nullcline
intersections. Such object persists in the non-singular limit as the saddle stable manifold W ε

s which
separates the basin of attraction of the lower and upper attractors.

tractor (see the bottom center plot in Figures 5.1, 5.2, and 5.3). The phase portraits
in the non-singular limit can all be deduced by the results in [20, 19, 18].

Absence of singularly perturbed bistability in competitive models. As
opposed to Types IV and V, bistability is not observed in Types I, II, and III excitable
models near the singular limit ε = 0. For Type I this can be deduced by the absence of
a singularly perturbed separatrix (cf. Figure 6.3) and standard persistence arguments.
For Type II, one can invoke the fact that the bistable range of the subcritical Hopf
bifurcation shrinks to zero in the singular limit (see for instance [18, Theorem 3.1]).
Type III excitable models are, by definition, always globally asymptotically stable.

6.3. Singularly perturbed spike latency in Type IV and V excitable sys-
tems. Spike latency appears when the trajectory travels the “ghost” of the center
manifold of the saddle node bifurcation. It is prominent in Type IV and V excitable
models, since in these models this center manifold is attractive. Indeed, the recovery
variable nullcline being strictly monotone increasing, the saddle-node bifurcation lies
on the lower attractive branch of the voltage nullcline (see Figure 6.5). By standard
persistence arguments, this implies that its center manifold W ε

c is strongly attractive
near the singular limit. A consequence of this attractiveness is that, after the bifur-
cation at Iapp = ISN , an originally resting trajectory is attracted toward the ghost of
W ε

c between the two nullclines, where the vector field magnitude is proportional to
Iapp − ISN . The passage time thus diverges to infinity as Iapp ↘ ISN , corresponding
to a prominent and robust spike-latency.

Absence of singularly perturbed spike-latency in competitive models.
As opposed to Types IV and V, the saddle node bifurcation of Type I excitable
models lies on the upper repulsive (right) branch of the voltage nullcline (recall that
the recovery variable nullcline is strictly monotone increasing). Hence, attractiveness
of the bifurcation center manifold, and thus of its ghost, is lost near the singular limit.
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Figure 6.5. Mechanism of spike latency in Types IV and V excitable models. Left: slow-
fast dynamics near the saddle-node bifurcation. Center: stable W ε

s and center W ε
c manifolds of

the bifurcation for ε > 0. Right: the ghost of W ε
c (depicted as the blue rectangle) is attractive for

I > ISN corresponding to prominent and robust spike latency.

Figure 6.6. Absence of spike latency in Type I excitable models. Left: the saddle-node
bifurcation in Type I excitable models with its center W ε

c and stable W ε
s manifolds. Center: the

stable and the saddle fixed points before the bifurcation. Right: the ghost of W ε
c (blue rectangle)

after the biurcation and the behavior of an originally resting trajectory.

Even though for finite ε this center manifold can be attractive (see Figure 6.6), its
ghost (between the two nullclines) does not attract an originally resting trajectory:
the trajectory necessarily travels below the recovery variable nullcline where the vector
field has finite magnitude independently of the distance from the bifurcation. These
simple arguments show that competitive excitable models and, in particular, Type I
excitable models can not exhibit spike latency.

7. Discussion.

Mirroring the FitzHugh-Nagumo equation accounts for cooperative
gating variables. Mirroring the FitzHugh-Nagumo equation was motivated by the
inclusion, in a simple model of neuronal excitability, of the transcritical bifurcation re-
cently observed in a planar reduction of the Hodgkin-Huxley model augmented with
an activating calcium current. This heuristic geometrical construction is actually
tightly linked with the underlying electrophysiology: in the upper FitzHugh-Nagumo
like part of the phase portrait the model recovery variable is competitive, as it is in
all reduced models derived from Hodgkin-Huxley dynamics; in the mirrored part it
is cooperative, accounting for cooperative gating variables, such as the activation of
calcium current. To the best of our knowledge, this unified picture is not present in
existing planar models of neuronal excitability, that are purely competitive.

Cooperativity unravels a pitchfork bifurcation organizing old and new
types of excitability. The distinctive effects of cooperative gating variables on neu-
ronal excitability are widely studied in high dimensional conductance-based models
and in in vitro recordings. However, these same signatures can not be reproduced in
competitive models and the underlying dynamical mechanisms have remained obscure
to date.
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The unfolding of a pitchfork bifurcation organizing the proposed model reveals
how the inclusion of cooperative variables changes neuronal excitability. The obtained
parameter chart recovers the three known types of (competitive) excitability and
unmasks two novel types that we naturally defined as Types IV and V. The defining
condition of Types IV and V excitability is cooperativity, i.e.

∂V̇

∂n

∂ṅ

∂V
> 0,

at the hyperpolarized stable steady state. This sole condition ensures the presence
of the electrophysiological signatures of cooperative gating variables, in particular,
bistability.

Competitive and cooperative excitability in higher dimensional conduc-
tance based models. The planar model discussed in the present paper qualitatively
captures an important switch from competitive to cooperative excitability. Electro-
physiological recordings suggest that this switch actually occurs in the physiological
range of many neurons. In a forthcoming publication, we will show that the switch in-
deed occurs in a number of published higher-dimensional conductance based-models.
A qualitatively identical parameter chart to that in Figure 3.3 is found in those models
and the switch from competitive to cooperative excitability is traced through a tran-
scritical bifurcation in the parameter space. In this sense, the planar model studied
in the present paper is thought to capture a normal form reduction associated to a
transcritical bifurcation that occurs in many quantitative conductance-based models
of neurons.

Bistability and bursting in singularly perturbed excitable models. A
distinct feature of Types IV and V excitable models with respect to the three other
types is the existence of a finite range of bistability. Bistability has been described
in the context of Types I and II excitability as well (see e.g. [30]), but it was shown
in Section 6.2 that, in all these situations, the bistability range shrinks to zero as the
timescale separation is increased. In contrast, the stable manifold of the saddle point
that separates the two basin of attraction in Types IV and V excitability is a robust
(hyperbolic) geometric object that persists in the singular limit. Because neurons do
exhibit a pronounced timescale separation, the robustness of the bistable range in
Types IV and V is thought to be an important feature of excitable models that are
not purely competitive.

The relevance of bistability in excitable models lies in its relevance for model
bursting. Bursting is typically the result of a slow adaptation variable that modulates
the applied current across the bistability range, creating a hysteresis loop between the
stable down-state and the up-state attractor. An important conjecture derived from
our analysis is that bursting will persist near the singularly perturbed limit of model
(2.1) only in Type IV and V excitability, that is only in the presence of cooperative
ionic channels. In other words, Types IV and V excitability would be the essential
sources of bursting in singularly perturbed models.

Methods. The parameter chart in Figures 3.3 and 3.4 have been numerically
drawn using MATLAB5 and modified with the Open Source vector graphics editor
Inkscape6.

5http://www.mathworks.com
6http://inkscape.org
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Phase portrait were hand-drawn with Inkscape.
The bifurcation diagrams in Figures 5.1, 5.2, and 5.3 have been obtained with XPP
environment7.
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