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Proteomic Investigation of Aphid Honeydew Reveals an
Unexpected Diversity of Proteins

Ahmed Sabri*®, Sophie Vandermoten'®, Pascal D. Leroy'®, Eric Haubruge', Thierry Hance?,
Philippe Thonart?, Edwin De Pauw?”, Frédéric Francis'*

1 Laboratory of Functional and Evolutionary Entomology, University of Liege, Gembloux, Belgium, 2 Earth and Life Institute, Biodiversity Research Center, Catholic
University of Louvain, Louvain-la-Neuve, Belgium, 3 Walloon Center of Industrial Biology, University of Liége, Liége, Belgium, 4 Department of Chemistry — Mass
Spectrometry Laboratory, University of Liege, Liege, Belgium

Abstract

Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew
is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report
on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional
Differential in-Gel Electrophoresis (2D-Dige) approach, more than 140 spots were isolated, demonstrating that aphid
honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass
spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the
host aphid and its microbiota, including endosymbiotic bacteria and gut flora). Interestingly, our experiments also allowed
to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu), and flagellin that might
act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we
propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid
ecology perspective.
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Introduction

Insect survival and reproductive success depends on access to
balanced carbohydrate and amino acids food sources. This
requirement is particularly true in most agricultural monocultures,
where nectar and pollen are only available for a short period, or
not at all [1]. In such situations, aphid honeydew might be viewed
as an alternative food source of key importance to insects, as it
contains both plant-derived and aphid-produced sugars and amino
acids [2,3,4,5,6,7,8,9]. In terms of availability, honeydew is the
primary and predominant exogenous carbohydrate source in
many ecosystems [10]. Available as small droplets or as a thin film
on substrates [11], honeydew constitutes a useful food source for
many insects (i.e. honeybees, wasps, predatory insects) and
vertebrates [4,12,13], which consume this aphid excretory product
as a source of carbohydrates both for survival and reproduction
[14,15]. However, in comparison to nectar and pollen, honeydew
is often viewed as an inferior food source, since it is a waste
product [16] that is assumed to only contain a sugar compound
martrix.

Aphids feed on the phloem sap of plants [17,18,19], and are the
most common honeydew producing insects. This excretory
product consists of an aqueous mixture of different chemical
compounds, with sugars (90-95% of the dry weight) and amino
acids being the most important compounds [20]. Many studies
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have demonstrated that the chemical composition of aphid
honeydew varies with (1) host plant species [21,22,23], (2) the
nutritional state of host plants [24,25], (3) aphid species,
developmental stage, and age [22,26,27,28,29], (4) the rate and
duration of aphid infestation [30], (5) the presence of ants
(mutualism) [31,32,33], (6) the presence of bacterial intracellular
symbionts [34], (7) parasitism state [35], and (8) the presence of
secondary plant metabolites [36]. However, plant-derived phloem
sugars (67-89% of the sugar content, including glucose, fructose,
sucrose, and maltose) and free amino-acids (78% of the amino acid
content, including asparagine, glutamine, glutamate, and serine)
seem to be universally present in honeydew [37,38]. The sugar
composition of honeydew reflects the composition of phloem sap;
however, a number of other mono-, di-, and oligo-saccharides are
also synthesized by the sap feeder (through the action of gut
enzymes on plant derived sucrose). Such compounds include
melezitose, erlose (fructomaltose), raffinose, and trehalose
[1,16,22,25]. The amino acid composition of honeydew corre-
sponds to phloem sap content. Especially, asparagine and
glutamine, which are known to dominate in several host plant
species used by aphids, were reported as the two major amino
acids in honeydew [24,39].

It is well established that the endosymbiont Buchnera aphidicola
synthesizes essential amino acids for its aphid host [40]. However,
seven non-essential amino acids (glutamate, aspartate, serine,
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glutamine, alanine, proline and asparagine) are not synthesized by
this obligate bacterial symbiont. And, although it was previously
suggested that Buchnera recycles nitrogenous wastes into essential
amino acids, the publication of Buchnera genome disproved this
hypothesis as neither glutamate dehydrogenase or glutamine
synthetase, the two main enzymes for incorporating ammonia,
were identified [41]. Nevertheless, a recent transcriptomic analysis
provides support for the cooperation of aphid and symbiont gene
products in the production of essential amino acids and suggests a
possible role of the bacteriocyte (i.e. specialized cells containing the
obligatory symbiont Buchnera) in recycling ammonia waste for the
production of glutamine and glutamate [42].

While aphid honeydew is commonly considered as a source of
sugars and amino acids, its importance as a source of proteins has
not been previously documented. Here, we report on the first
proteomic analysis (2D-PAGE) of honeydew released by a single
line of Acyrthosiphon pisum (Harris). Supposing that honeydew is
composed of proteins from both the aphid host and its harbored
bacteria, the identification of honeydew proteins are discussed
from the perspective of the producer organisms (i.e. the host aphid
or its microbiota).

Results

While the presence of free amino acids in aphid honeydew has
already been described [28], the diversity and abundance of
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proteins found in the current study was unexpected. Indeed, total
protein concentration was high, close to 5 ug/ul suggesting that
aphid honeydew might have a nutritional role as source of
proteins. A proteomic approach was developed to better
characterize the composition of aphid honeydew. More than
140 protein spots were visualized on 2D-PAGE gels (Fig. 1), also
represents a diversified source of proteins. To better understand
the nature and origin of this unexpected protein diversity, each
spot from the 2D gels was analyzed using mass spectrometry. Most
of the proteins (67.0%) were identified. A total of 43.8% of
proteins corresponded to insect proteins (Table 1), mainly from 4.
pisum (which is actually the only available aphid species sequenced
genome). A further 22.7% of proteins originated from bacterial
flora (Table 2) associated with the aphid (Fig. 2). The major
component of bacterial flora proteins originated from free living
bacteria associated with the aphid gut (11.4%) and from secondary
symbionts, particularly Serratia symbiotica (8.8%). The contribution
of the primary aphid symbiont B. aphidicola to the honeydew
protein composition was relatively low (2.3%).

Histological analysis confirmed the source of proteins found in
A. pisum honeydew (Fig. 3A-D). The major source of protein in
honeydew originated from the aphid body, appearing to come
from tissue renewal. Ultrastructural analysis of the gut confirmed
that the hindgut epithelium exhibited dynamic renewal, expelling
and degrading tissue into the lumen (Fig. 3B). The gut of 4. pisum

Figure 1. 2D-DIGE gel separation of proteins from Acyrthosiphon pisum honeydew. Numbered spots corresponded to proteins described in

Table 1 and 2.
doi:10.1371/journal.pone.0074656.9001
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Figure 2. Origin of proteins present in Acyrthosiphon pisum
honeydew.
doi:10.1371/journal.pone.0074656.9g002

was colonized by a high density of bacterial flora (Fig. 3C), which
also contribute some honeydew proteins. The total bacterial flora
of honeydew was investigated, and six cultivable bacteria of
different prevalence were isolated. All isolates were identified by
their 16S ribosomal DNA sequences. The isolates included
Acinetobacter calcoaceticus (9.10° CFU/ml; Genbank accession no.
K(C844236), Staphylococcus sciuri (3.10° CFU/ml; Genbank acces-
sion no. KC844239), Staphylococcus saprophyticus (5.10° CFU/ml;
Genbank accession no. KC844240), Serratia marcescens (2.10* CFU/
ml; Genbank accession no. KC905087), Leucobacter komagatae
(7.10* CFU/ml; Genbank accession no. KC844238), and Erwinia
aphidicola (3.10* CFU/ml; Genbank accession no. KC844237).
The third source of proteins found in aphid honeydew was related
to endosymbiotic bacteria. While the aphid primary symbiont
Buchnera aphidicola was present in bacteriocyte cytoplasm (Fig. 3C),
the secondary symbiont, Serratia symbiotica, was located in several
aphid tissues (including the bacteriome, hemolymph, and gut)
(Fig. 3D).

Aphid proteins

One-third of successful protein identifications with well-known
functions were obtained through insect sequence database
investigations. Two-thirds of proteins were found to display
homology with the pea aphid genome; however, accurate
functions were not found. Nevertheless, 19 protein spots were
identified as being similar to A. pisum aphid protein sequences
(Table 1). In addition to several enzymes involved in carbohydrate
(a-amylase [spot number 76], phosphoglycerate mutase [spot
number 70], and a-glucosidase [spot number 42]) and amino acid
(hydroxypyruvate reductase [spot number 74| and cathepsin B
[spot number 89]) metabolism of the aphid, two energy related
proteins were identified, namely one inorganic pyrophosphatase
[spot numbers 13 and 87] and one oxidoreductase [spot number
62]. Several proteins involved in cellular processes were identified
in the aphid honeydew; one peroxidase [spot number 54], one
inositol monophosphatase (IMPase) [spot number 72] and one
dihydrofolate reductase (DHFR) (spot number 80).

Bacterial proteins

Almost half (16/33) of the identified proteins were homologous
with bacterial sequences associated with aphid endosymbiotic
bacteria. These sequences were from the primary symbiont B.
aphidicola [spot numbers 11, 40, 61, and 65] or the secondary
symbiont S. symbiotica [spot numbers 1, 7, 14, 18, 19, 21, 27, 29,
30, 31, 45, 79, and 91] (Table 2, Fig. 1). Other bacterial proteins
were associated to Staphylococcus sciurt [spot number 25], Acinetobacter
calcoaceticus [spots numbers 2, 4, 16, 17, 23, 24, and 97|, Escherichia
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coli [spot numbers 5, 32, and 98], Staphylococcus saprophyticus [spot
numbers 10, 15 and 26], and Serratia marcescens [spots number 68
and 96] (Table 2, Fig. 1).

Most of the identified enzymes were involved in amino acid
synthesis. These enzymes included one acetyl-coenzyme A
synthetase [spot numbers 2 and 17], one ATP phosphoribosyl-
transferase [spot number 23], one phosphoserine aminotransferase
[spot number 61], and one 2-isopropylmalate synthase [spot
number 65] for lysine, histidine, serine, and leucine production,
respectively. Some other enzymes were related to the citrate cycle;
specifically, one phosphoenolpyruvate carboxylase [spot number
7] and one pyruvate dehydrogenase [spot number 19]. A short-
chain alcohol dehydrogenase [spot number 4] and a signal
transduction histidine kinase [spot number 5] were also identified,
which are also involved in energy metabolism. In addition
succinyl-CoA synthetase [spot number 79] was identified, which
is the only mitochondrial enzyme capable of ATP production via
substrate level phosphorylation without oxygen, in addition to
playing a key role in the citric acid cycle. Some of the identified
proteins were shown to be involved in the response of plants to
bioagressors, including several chaperones from B. aphidicola [spot
number 11] and S. symbiwtica [spot numbers 14, 21, 27, and 29].
The major chaperone systems of bacterial cells were identified in
aphid honeydew; including, GroEL [spot numbers 14 and 21],
DnaK [spot number 11], and Hsp70 [spot numbers 27 and 29]
chaperones. Another well-known elicitor of plant defense, flagellin
(flg) [spot number 96] from S. marcescens, was also found in A. pisum
honeydew. Finally, some elongation factors from S. saprophyticus
and E. coli [spot numbers 26 and 32] were also identified.

Discussion

To date, aphid honeydew is considered as primarily comprised
of carbohydrates. Although the experiments reported here have
been executed on a single aphid line and thereby deserve to be
repeated on additional aphid lines and species, our results provide
new insights into a substance previously considered as a waste
product.

First, the current proteomic analysis (2D-PAGE) of A. pisum
honeydew allowed the isolation of more than 140 protein spots,
demonstrating that aphid honeydew represents a diverse source of
proteins. Interestingly, our results reveal that the protein diversity
of aphid honeydew originates from several partners (i.e. the host
aphid and its microbiota, including endosymbiotic bacteria and
gut flora). Indeed, 60 spots matched to insect database sequence
resources, while 36 spots were identified to be homologous to
bacterial sequences. Almost half of the bacterial identified proteins
were homologous to bacterial sequences associated with aphid
endosymbiotic bacteria. Most of the bacterial proteins identified in
honeydew (27.8%) were related to the genetic information process,
while 20% of the bacterial symbiont proteins were related to the
amino acid metabolism.

Second, the current proteomic approach allowed the identifi-
cation of some proteins that might act as mediators in the plant-
aphid interaction. Indeed, the proteins flagellin [spot number 96]
and elongation factor Tu [spot number 32], identified from the
pea aphid honeydew, are known to act as inducers of defenses in
many plant species [43,44,45]. Flagellin (flg) is the main building
unit of the eubacterial flagella while the elongation factor Tu (EF-
Tu) 1s the most abundant protein in a growing bacterial cell [46].
Most plant species (tomato, tobacco, potato and Arabidopsis
suspension cultures) respond to a conserved 22-amino-acid
epitope, flg22, present at the flagellin N-terminus [47] and the
N-terminal 18 amino acids of EF-Tu (elfl18) triggers plant basal
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Figure 3. Localization of the bacterial sources of proteins in
Acyrthosiphon pisum honeydew. A. Semithin section of A. pisum
showing the bacteriome (bm) containing bacteriocytes around the
aphid alimentary canal. B-D; Transmission electron microscopy
micrographs (TEM) of semi-thin sections. In panel (B), the ultrastructure
of hindgut epithelial cells shows the replacement of old tissues, which
are expelled and degraded into the lumen. Panel (C) shows the primary
symbiont Buchnera aphidicola (ps) within a bacteriocyte. Buchnera cells
are round and packed into bacteriocyte cytoplasm. The same panel
shows that the lumen of the hindgut (hg) appears to be filled with
bacteria from gut microbiotae (gf). In panel (D), the secondary
symbiont Serratia symbiotica (ss), which has been indirectly determined
by PCR, is enclosed in the cytoplasm of aphid cells in the bacteriome.
Scale bars =500 um in A, 3 um in B, 5um in C and 1 um in D.
Abbreviations: ac: Alimentary canal; bm: Bacteriome; hg: Hindgut; mg:
Midgut; hl: Hindgut lumen; ps: Primary Symbionts; ss: Secondary
Symbionts; gf: Gut flora; he: Hindgut epithelium; er: epithelium renewal.
doi:10.1371/journal.pone.0074656.g003

defenses [45,46]. Beside its primary role in protein synthesis,
bacterial elongation factor Tu (EF-Tu) was found to induce
defensive responses in plants, mainly in Brassicaceae such as
bacterial resistance in Arabidopsis thaliana to Pseudomonas syringae
bacterial plant pathogen [48]. Major chaperone systems in
bacterial cells, GroEL [spot number 21], DnaK [spots number
11] and Hsp70 [spot number 27 et 29] were found in aphid
honeydew. Molecular chaperones assist the protein folding in the
cell but are also involved in numerous processes in bacterial cells,
including assisting the folding of newly synthesized proteins, both
during and after translation; assisting in protein secretion,
preventing aggregation of proteins on heat shock, and repairing
proteins that have been damaged or misfolded by stresses such as
heat shock [49]. Although their role in plant defense is not well
described, molecular chaperones have been reported to be
components of the hypersensitive response in Nicotiana benthamiana
or to facilitate associations of multiple proteins involved in
pathogen recognition [50]. Chaperonin [spot number 14| from
Buchnera was found to be a major protein in the hemolymph of
several aphid species including A. pisum [51]. However, it should
be noted that the role of aphid honeydew in elicitation of plant
defense responses has not been demonstrated yet, nevertheless, in
light of our results, this deserves to be investigated.

Finally, the current study also raise to question of the nutritional
value of aphid honeydew as well as its role from a multitrophic
perspective. In natural ecosystems, aphids provide an important
link in the food chain. They serve as a food source for many insect
predators, and are essential for the successful reproduction of
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several parasitoids [52]. The aphid honeydew might also
contribute to the local biodiversity by attracting some pollinators
such as syrphids. Indeed, it has been recently demonstrated that
some aphidophagous species (i.e. syrphids and ladybirds) use aphid
honeydew to locate their aphid prey. However, to date, aphid
honeydew has never been considered as an alternative food source
because its excretory product is considered of poor nutritional
quality [16] compared to nectar and pollen [24,37,38,39]. On the
contrary, we report an unexpected diversity of proteins in aphid
honeydew, which has not been previously recorded in the
published literature. Therefore, the protein content of aphid
honeydew might represent a valuable food source for herbivorous
insects, by providing a combination of sugar, amino acids, and
proteins. Indeed, plants covered by honeydew have been observed
to attract a multitude of flying and crawling insects; thus,
promoting high biodiversity in their immediate environment
(Francis, personal communication).

Honeydew is also the keystone on which ant-aphid mutualism is
built. To date the mutualistic interaction between aphids and ants
was only studied from the perspective of the sugar composition of
aphid honeydew, and the use of carbohydrates by aphid-associated
entomofauna. However, some studies suggested that the ratio of
carbohydrate and protein resources available to ants influence
their decision to participate in the mutualism and the longevity of
the colony [53,54]. Thus, considering the proteins/carbohydrates
balanced profile of aphid honeydew might be of interest in order
to gain a more general understanding of how aphid honeydew
might guide ant-aphid interactions.

In conclusion, in addition to provide the first analysis of the
aphid honeydew proteome, the current work invites to not
consider it as a simple waste product and suggests to investigate its
nutritional role as well as its potential implications in multitrophic
interactions.

Materials and Methods

Biological material

In a climate-controlled room (16 hr light photoperiod; 60-70%
RH; 20£2°C), the host plants, Vicia faba L. (var. Major), were
grown in 9x8 cm plastic pots containing a mixture of vermiculite
and perlite (1/1), and were infested with the aphid Acyrthosiphon
pisum Harris. This aphid species was collected from field crops in
1990, and has been reared for years at the University of Liege,
Gembloux Agro-Bio Tech (Department of Functional and
Evolutionary Entomology), Belgium. Aphids are transferred onto
new V. faba host plants once a week, and maintained in the same
climate-controlled room.

Honeydew collection and conditioning

The collection of aphid honeydew was carried out under
aspectic conditions in a laminar flow hood and observing proper
handling procedure. Several V. faba plants that were heavily
infested with the aphid A. pisum were placed 10 cm above a sterile
aluminum foil. Using sterile microcapillaries of 10 ul volume, only
honeydew droplets that fell onto the aluminum sheet were directly
collected as samples of freshly produced honeydew. Honeydew
droplets remaining on leaves were not collected in order to prevent
contamnination by the phyllosphere.

Identification of honeydew and aphid bacterial contents

To investigate the microflora of honeydew, 100 ul of 4. pisum
honeydew was collected as described above. A series of ten-fold
dilutions was made into a saline solution (containing per liter of
distilled water, 0.9 g of NaCl, 1 g of casein peptone and 1 g of
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tween 80). Then, 100 pl of each dilution was plated on 868 agar
medium (containing per liter of distilled water, 1.7% of agar and
10 g of glucose, yeast extract, and casein peptone). Colonies were
visible after 24 to 48 h of incubation at 25°C, and the strains were
then isolated and purified on the same medium.

For bacterial identification, genomic DNA was extracted from
cells grown at 25°C for 48 h, and PCR amplification of the 16S
ribosomal DNA sequences was performed. Genomic DNA was
purified by using the Wizard Genomic DNA purification Kit
(Promega). The primers used for PCR amplification of 16S
ribosomal DNA sequences were the universal primers 16SP0 (5'-
GAAGAGTTTGATCCTGGCTCAG-3") and 16SP6  (5'-
CTACGGCTACCTTGTTACGA-3"). The PCR mixture con-
tained PCR Buffer, 2 mM MgCl,, 1 U of Taq polymerase
(Fermentas), and dN'TP at a concentration of 20 mM (Promega).
The running parameters were 25 cycles of 95°C for 30 s, 55°C for
30 s, and 72°C for 2 min; the denaturing step was 5 min and the
final extension was 10 min. The PCR product was purified using
GFX PCR DNA and a Gel Band Kit (GE Healthcare), then
sequenced using Big Dye v3.1 Kit and 3730 DNA Analyser
(Applied Biosystems). The obtained sequences (400-600 bp) were
assembled with the program BioEdit 7.1.9. Although no new
sequence data was generated, all new data has been deposited in
GenBank.

The secondary symbionts harbored by the A. pisum clone were
checked by diagnostic PCR analysis using the specific primer sets
listed by [55]. Five known secondary symbionts of A. pisum (PASS,
PAUS, PABS, Ruckettsia and Spiroplasma) and two facultative
endosymbionts found in various insects (Wolbachia and Arsenophonus)
were targeted.

2D polyacrylamide gel electrophoresis

Proteins from fresh honeydew were precipitated using the 2D
Clean Up Kit according to the manufacturer’s instructions (GE
Healthcare), and resuspended in a 7 M urea, 2 M thiourea
20 mM Tris pH 8.5 buffer, which contained 1% CHAPS and 1%
ASB14. Quantification of the precipitated proteins was realized
using the RCDC quantification kit from Bio-Rad. The protein
extract (samples of 25 ug) was labeled with one of three CyDyes
(GE Healthcare), following the standard DIGE protocol, and was
adjusted to a volume of 450 pl, which was used to rehydrate
24 cm IPG strips (pH 3-10 NL from GE Healthcare) for 12 h at
20°C, and a constant voltage of 50 V. Isoelectric focusing (IEF)
was carried out at 200 V for 200 Vh, 500 V for 500 Vh, 1000 V
for 1000 Vh, and 8000 V for 60000 Vh at 20°C, and a maximum
current setting of 50 uA/strip in an isoelectric focusing unit from
GE Healthcare. Following IEF, the IPG strips were equilibrated
for 15 min in 375 mM Tris (pH 8.8), containing 6 M urea, 20%
v/v glycerol, 2% w/v SDS, and 130 mM DTT, and were then
kept for a further 15 min in the same buffer, except that D'TT was
replaced with 135 mM iodoacetamide. The IPG strips were then
sealed with 0.5% agarose in SDS running buffer, at the top of gels
polymerized from 12% w/v acrylamide and 0.1% N,N’-methy-
lenebisacrylamide. Second-dimensional electrophoresis was per-
formed at 20°C in an Ettan Dalt-six electrophoresis unit (GE
Healthcare) at 25 W/gel for 5 h. Gels were scanned with a
Typhoon fluorescence imager (Amersham), at wavelengths corre-
sponding to each CyDye. Images were analyzed with SameSpots
software version 3.2 (Non Linear Ltd, Newcastle) according to the
manufacturer’s instructions. Gels were completed in three
replicates.
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Proteins identification

A non-labeled 300 ug sample of aphid honeydew protein was
added to one of the analytical gels, and the protein spots were
excised from the gel using an Ettan spotpicker robot (GE
Healthcare). Selected gel pieces were collected in 96-well plates
designed for the Perking Elmer automated digester. Briefly, gels
pieces were washed with 3 alternative soakings in 100%
ammonium hydrogenocarbonate 50 mM and a mix of 50%
Acetonitrile and 50% ammonium hydrogenocarbonate 50 mM.
Two additional washes were performed with 100% acetonitrile to
dehydrate the gel. A volume of 3 pl of freshly activated trypsin
(Roche, porcine, proteomics grade) 10 ng/pl in ammonium
hydrogenocarbonate was used to rehydrate the gel pieces at 8°C
for 30 min. Trypsin digestion was performed for 3 h at 30°C.
Peptide extraction was performed with 10 pl of 1% formic acid for
30 min at 20°C.

Protein digests (3 ul) were adsorbed for 3 min on prespotted
anchorchips (R) using the Perkin Elmer robot. Spots were washed
“on-target” using 10 mM dihydrogeno-ammonium phosphate in
0.1% TFA-MilliQ) water to remove salts. High throughput spectra
acquisition was performed using an Ultraflex II MALDI mass
spectrometer (Bruker) in positive reflectron mode, with close
calibration enabled, the Smartbeam laser focus was set to medium,
and a laser fluency setting of 65 to 72% of the maximum was used.
Delayed extraction was set to 30 ns. Steps of 100 spectra in the
range of 860-3800 Da were acquired at a 200 Hz LASER shot
frequency, with automated evaluation of intensity, resolution, and
mass range. A total of 600 successful spectra per sample were
summed, treated, and de-isotoped in line with an automated
SNAP algorithm using Flex Analysis 2.4 software (Bruker). The
samples were then submitted in the batch mode of the Biotools 3.0
software suite (Bruker), with an in-house hosted Mascot search
engine [56] (MatrixScience.com) connected to the NCBI non
redundant database with parameters set for Metazoa and Bacteria.
Specific searches toward Buchnera — Serratia — Acyrthosiphon pisum
aphid databases were also performed. A mass tolerance of 80 ppm
with close calibration and one missing cleavage site was allowed.
Partial oxidation of methionine residues and the complete
carbamylation of cystein residues were considered. The probability
score calculated by the software was used as one criterion for
correct identification. Experimental and Mascot results of
molecular weights and pl were also compared.

To categorize the identified proteins based on metabolic
function, searches were performed using the Kegg pathway
database (http://www.genome.jp/kegg/pathway.html) and Ex-
pasy Proteomic tools (http://www.expasy.org/tools/), particularly
the Biochemical-Metabolic pathway sections.

Histological analyses

Semi-thin and thin sections were performed. Aphids were fixed
by direct immersion for 3 h at room temperature in a 2.5%
glutaraldehyde solution, buffered with 0.2 M Na-cacodylate at
pH 7.4. The osmolarity was adjusted to 850 mOsm by the
addition of sucrose (5%). All samples were post-fixed in
glutaraldehyde for 2 h at 4°C in buffered 1% OsO 4, rinsed in
distilled water, dehydrated in an ethanol-propylene oxide series,
and embedded in epoxide (Glycidether 100, Serva). Flat silicone
rubber molds were used to facilitate orientation before sectioning.
Aphids were cut into several semi-thin sections (1 pm thick) using
glass knives (Ultramicrotome LKB or Reichert-Jung Ultracut E).
The sections were then stained with toluidine blue for light
microscopy in 1% toluidine blue at pH 9.0 before observation
under an Olympus microscope. Selected samples were cut into
ultra-thin sections for transmission electron microscopy with a
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diamond knife and contrasted with uranyl acetate and lead citrate
before examination with a JEOL TEM (JEM 100-SX) at 80 kV
accelerating voltage.
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