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Abstract.

Objective: Cortically-controlled motor prostheses aim to restore functions lost to

neurological disease and injury. Several proof of concept demonstrations have shown

encouraging results, but barriers to clinical translation still remain. In particular, fully-

implanted pure cortical prostheses must satisfy stringent power dissipation constraints

so as not to damage cortex.

Approach: One possible solution is to use ultra-low power neuromorphic chips to

decode neural signals for these pure cortical implants. The first step is to explore in

simulation the feasibility of translating decoding algorithms for brain-machine interface

(BMI) applications into spiking neural networks (SNNs).

Main results: Here we demonstrate the validity of the approach by implementing an

‡ Present address: Research Fellow F.R.S.-FNRS, Systmod Unit, Montefiore Institute, University of

Liege, Belgium.



Design and validation of a real-time SNN decoder for BMIs 2

existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering

Framework (NEF), a general method for mapping control algorithms onto SNNs. To

measure this system’s robustness and generalization, we tested it online in closed-

loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman

filter implemented using a 2000-neuron SNN has comparable performance to that of a

Kalman filter implemented using standard floating point techniques.

Significance: These results demonstrate the tractability of SNN implementations

of statistical signal processing algorithms on different monkeys and for several tasks,

suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible

computational platform for low-power fully-implanted prostheses. The validation,

robustness, and generalization of this closed-loop decoder system hold promise for

SNN implementations on ultra-low power neuromorphic chip using the NEF.
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1. Cortically-controlled brain-machine interfaces

1.1. The challenge

Neural motor prostheses aim to help disabled individuals to use computer cursors

or robotic limbs by extracting neural signals from the brain and decoding them into

useful control signals (figure 1). Several proof of concept demonstrations have shown

encouraging results. For example, a cortically-controlled motor prosthesis capable of

quick, accurate, and robust computer cursor movements by decoding neuronal activity

from 96 channel electrode arrays in monkeys [1]-[4]. This prosthesis, similar to other

designs (e.g., [5]), uses a Kalman-filter-based decoder ubiquitous in statistical signal

processing. Such a filter and its variants have demonstrated the highest levels of brain-

machine interface (BMI) performance in both humans [5] and monkeys [4]. Even though

successes with non-linear alternative decoder types, such as the unscented Kalman

filter [6] and the population vector algorithm [7], are reported in the literature, this paper

focuses on the linear version of the Kalman filter because of its ease of implementation

in steady state and the previous experience with the ReFIT-KF [4].

The lack of low-power electronic circuitry to run decoding algorithms is a major

obstacle to the successful clinical translation of cortical motor prostheses. Fully-

implanted pure cortical motor prostheses must meet several criteria: high performance,

robustness, autonomy, biological viability, and a strict power budget. The brain

must not be heated by more than 1◦C to maintain long-term neural cell health. To

remain below this limit, a 6 × 6mm2 implant may dissipate no more than 10mW [8].

Conventional processors cannot meet these power constraints. A modern x86 processor

consumes approximately 1.8mW [9] just to perform 2D Kalman filtering on a 96 channel

array and operates on the order of Watts, hundreds of times above the upper threshold.

This approach will not meet the demands of recording from higher electrode densities
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and controlling more degrees of freedom, which require substantially more computer-

intensive decode/control algorithms.

Alternatively, decoding may be performed outside the brain by a wearable

computer, allowing the 10mW power budget to be dedicated entirely to recording,

signal preprocessing (amplifying, filtering and digitizing), data preconditioning (syncing,

scrambling, and coding), and wireless transmission. For 96 signals sampled at 31.25KHz

and digitized at 10 bits (30Mb/s), a 120nm-CMOS FPGA preconditioner consumes

14mW (scaled from [10]) and a 65nm-CMOS UWB transmitter consumes 0.35mW (8.5

pJ/b) [11]. Assuming a custom preconditioner implementation consumes two orders of

magnitude less power, the preconditioning and transmission power for 96 channels can

be reduced to 0.49mW. Extrapolating this number yields 5mW for the 1000 channels

thought to be needed for fast and robust control of a six degree-of-freedom robotic

arm [12]. This number can be reduced from 50% to 0.005% of the power budget

if decoding is performed inside the brain. The data transmission rate is reduced

from 30Mb/s to 3Kb/s—six signals sampled at 50Hz and digitized at 10bits—with

a proportionate reduction in power. A viable approach if the neural signals can be

decoded using a lot less power than it takes to transmit them in raw form§.

1.2. The neuromorphic alternative

The required power constraints could be met with an innovative ultra-low power

technique: the neuromorphic approach. This approach follows the brain’s organizing

principles and uses large-scale integrated systems containing microelectronic analog

circuits to morph neural systems into silicon chips [16, 17]. It combines the best

features of analog and digital circuit design—efficiency and programmability—offering

§ Previous studies suggest that low-noise amplification, analog-to-digital conversion, and spike sorting

do not prevent scaling to 1000 channels as they can be performed with a total of 3.5µW per channel if

the input-referred noise specification is relaxed from 2.2 to 13µV [13, 14, 15].
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potentially greater robustness than either of them [16, 17]. With as little as 50nW

per silicon neuron when spiking at 100Hz [18], these neuromorphic circuits may yield

tremendous power savings over conventional digital solutions because they use an analog

approach based on physical operations to perform mathematical computations.

Before designing and fabricating such a dedicated neuromorphic decoding chip, we

explored the feasibility of translating decoding algorithms into a spiking neural network

(SNN) in software. Recent studies have highlighted the utility of neural networks for

decoding in both off-line [19] and online [20] settings. Similarly, we encouragingly

achieved off-line (open-loop) SNN performance comparable to that of the traditional

floating point implementation [9]. We also realized simulation algorithm enhancements

that enable the real-time execution of a 2000-neuron SNN on x86 hardware and reported

preliminary closed-loop results obtained with a single monkey performing a single

task [21].

In this study, we extended our preliminary closed-loop tests of the SNN Kalman-

filter-based decoder from one to two monkeys and evaluated its performance on multiple

tasks. We first describe the linear filter we used in our system, the Kalman filter already

presented in [1]-[3], and how it functions as a decoder. Next, the Neural Engineering

Framework (NEF), the method we use to map this algorithm on to an SNN, is outlined,

together with the optimizations that enabled the software-based SNN to operate in a

closed-loop experimental setting. An analysis of the performance achieved in the closed-

loop tests demonstrates the validity of this approach and concludes this paper.

2. Kalman-filter-decoder algorithm

In the 1960’s, Rudolf E. Kálmán described a new type of linear filter that will be

later called the Kalman filter [22]. This filter tracks the state of a dynamical system
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Figure 1. System diagram of a BMI. Electronic neural signals are measured from

motor regions of the brain, converted to spike trains by detecting threshold-crossings,

and translated (decoded) into control signals for a computer or prosthetic arm. Current

implementations record neural signals with an implanted silicon microelectrode array,

threshold and wirelessly transmit these signals with a battery-powered head-mounted

unit, and decode them with a remote desktop computer.

throughout time using a weighted average of two types of information: a value predicted

from the output state’s dynamics and a value measured from external observations, both

subject to noise and other inaccuracies. More weight is given to the value with the lower

uncertainty as calculated by the Kalman gain, K, which is computed as follows.

The system is modeled by the following set of equations:

xt = Axt−1 + wt (1)

yt = Cxt + qt (2)

where A is the state matrix modeling the output state’s dynamics, C is the observation

matrix, and wt and qt are additive, multivariate Gaussian noise sources that are modeled

with wt ∼ N (0,W ) and qt ∼ N (0,Q). The model provides an estimate of the output

at time t by propagating the state at time t− 1. This estimate is then corrected using
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the noisy observations at time t to arrive at a final estimate:

xt = (I−KC)Axt−1 + Kyt = Mxxt−1 + Myyt (3)

where K = (I + WCQ−1C)−1WCTQ−1 is the steady-state formulation of the Kalman

gain. Mx and My are the two matrices in the steady-state Kalman-filter-update

equations. It is this steady-state equation that we implemented in the SNN using the

NEF.

For neural prosthetic applications [1], the system’s state vector, xt, was

the kinematic state of the cursor: xt = [posxt , pos
y
t , pos

z
t , vel

x
t , vel

y
t , vel

z
t ] and the

measurement vector, yt, was the neural spike rate (binned threshold-crossing counts

of measured neural potential) of the recorded neurons. For our system, the state vector

was limited to velocities in two directions (xt = [velxt , vel
y
t ]) to limit the amount of

computational resources required (Kim et al. [5] compare position and velocity decoders

and finds that velocity decoders tend to outperform position decoders in tetraplegic

patients). This velocity was integrated to yield the 2D position. The bin width of the

decoder, a tradeoff between rapidity and accuracy [1], was 50ms long. To allow for a

fixed offset compensation (baseline firing rates), a constant 1 was added to the state

vector: xt = [velxt , vel
y
t , 1]. The neural spike rate observations yt came from 96-channel

silicon electrode arrays implanted in areas of cortex responsible for arm movement (M1

and PMd).

The model parameters (A, C, W and Q) were fit by correlating recorded

neural signals and measured arm kinematics, obtained during training trials. Arm

measurements were captured by a Polaris Optical Measurement System (Northern

Digital Inc), with a passive reflective bead tied to the tip of the monkey’s finger. The

measurements were sampled at 60Hz and were plotted directly to the screen. For our

application, we assumed that neural signals recorded under arm control were similar
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Figure 2. Neural and kinematic measurements (monkey J, 2011-04-16, 16 continuous

trials) used to fit the Kalman-filter model. (A) The 192 channel recordings that

were fed as input to fit the Kalman-filter matrices (grayscale refers to the number

of threshold crossings observed in each 50ms bin, black saturation at 4 spikes/bin).

(B) Hand x- and y-velocity measurements that were correlated with the neural data to

obtain the Kalman-filter matrices. (C) Hand position kinematics of the 16 continuous

trials recorded using a Polaris Optical Measurement System (Northern Digital Inc).

to neural signals recorded under brain control, and that the observed arm kinematics

matched the desired neural cursor kinematics. Therefore, the parameters could be fit

from observed arm kinematics (figure 2).

For neuroprosthethic applications, the Kalman filter converges to its steady-state

matrices, Mx and My, rapidly—typically less than 100 iterations [23]. The steady-state

implementation differs from the full Kalman-filter implementation by less than 1% in

the first few seconds, for both open-loop and closed-loop systems [23]. The steady-state

update equations decrease execution time for typical decoding by approximately a factor

seven [23], a critical difference for real-time applications. Thus, efficiency is improved

without any meaningful loss of accuracy.

To map the steady-state version of this linear neural decoder on to an SNN, we

used the NEF: a formal methodology for mapping control-theory algorithms onto SNNs.
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3. Mapping onto spiking neural networks

The SNNs employed in the NEF are composed of highly heterogeneous spiking

neurons characterized by a nonlinear multi-dimensional vector-to-spike-rate function—

ai(x(t)) for the ith neuron—with parameters (preferred direction, maximum firing rate,

and x-axis intercept) drawn randomly from a wide distribution (standard deviation

comparable to mean) and with connection strengths programmed to perform the desired

computations. To map control-theory algorithms onto SNNs, three principles—neural

representation, transformation, and dynamics—apply [24]-[27].

3.1. Representation

Neural representation is defined by nonlinear encoding of a stimulus, x(t), as a spike

rate, ai(x(t)), combined with optimal weighted linear decoding of ai(x(t)) to recover, in

the stimulus space, an estimate of x(t), x̂(t) =
∑
i ai(x(t))φx

i , where φx
i are the optimal

decoding weights.

3.1.1. Nonlinear encoding The nonlinear encoding process is exemplified by the neuron

tuning curve (figure 3 Representation), which captures the overall encoding process from

a multi-dimensional stimulus, x(t), to a one-dimensional soma current, Ji(x(t)), and

finally to a firing rate, ai(x(t)):

ai(x(t)) = G(Ji(x(t))), (4)

where G() is the nonlinear function describing firing rate’s dependence on the current’s

value. In the case of the leaky integrate-and-fire neuron model (LIF) that we used for

this application, this function G() is given by:

G(Ji(x(t))) =
[
τ ref − τRC ln (1− Jth/Ji(x(t)))

]−1
, (5)
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where Ji is the current entering the soma of the cell, i indexes the neuron, τ ref is

the absolute refractory period, τRC is the membrane RC time constant, and Jth is

the threshold current. The LIF neuron has two behavioural regimes: sub-threshold

and super-threshold. The sub-threshold regime is described by an RC circuit with

time constant τRC. When the sub-threshold soma voltage reaches the threshold, Vth,

the neuron emits a spike δ(t − tn). After this spike, the neuron is reset and rests

for τ ref seconds before it resumes integrating. Ignoring the soma’s RC time-constant

when specifying the SNN’s dynamics is reasonable because the neurons cross threshold

at a rate that is proportional to their input current, which thus sets the spike rate

instantaneously, without any filtering [24].

The conversion from a multi-dimensional stimulus, x(t), to a one-dimensional soma

current, Ji, is performed by assigning to the neuron a preferred direction, φ̃x
i , in the

stimulus space and taking the dot-product:

Ji(x(t)) = αi
〈
φ̃x
i · x(t)

〉
+ Jbias

i , (6)

where αi is a gain or conversion factor, and Jbias
i is a bias current that accounts for

background activity. In the one-dimensional case, the preferred direction vector reduces

to a scalar, either 1 or −1, resulting in a positive or negative slope, respectively (i.e.,

ON neurons that increase their firing rate as the value of the stimulus variable increases

and OFF neurons that do the opposite).

3.1.2. Linear decoding The linear decoding process converts spike trains back into a

relevant quantity in the stimulus space. This process is characterized by the synapses’

spike response, h(t) (i.e., post-synaptic current waveform), and the decoding weights,

φx
i , which are found by a least-squares method [24], described next.

A single noise term, η, amalgamates all sources of noise, as they all have the effect
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of introducing uncertainty into any signal sent by the transmitting neuron. With this

noise term, the transmitted firing rate can be written as ai(x(t))+ηi. That is, the firing

rate that the receiving neuron actually perceives is the noiseless firing rate, ai(x(t)),

plus some variation introduced into that neuron’s activity by the noise sources, ηi.

The noise sources are modeled by a random variable drawn from a normal distribution.

Consequently, the mean square error between the actual stimulus, x(t), and its estimate,

x̂(t) =
∑
i (ai(x(t)) + ηi)φ

x
i , can be written as [24]:

E =
1

2

〈
[x(t)− x̂(t)]2

〉
x,η,t

(7)

=
1

2

〈[
x(t)−

∑
i

(ai(x(t)) + ηi)φ
x
i

]2〉
x,η,t

(8)

where 〈·〉x,η denotes integration over the range of x and η, the expected noise. We

assume that the noise is independent and has the same variance for each neuron [24],

yielding:

E =
1

2

〈[
x(t)−

∑
i

ai(x(t))φx
i

]2〉
x,t

+ σ2
∑
i

(φx
i )2, (9)

where σ2 is the noise variance. This expression is minimized by choosing the decoding

weights such that:

φx
i =

N∑
j

Γ−1ij Υj, (10)

with Γij = 〈ai(x)aj(x)〉x + σ2δij, where δ is the Kronecker delta function, and

Υj = 〈aj(x)x〉x [24]. One consequence of modeling noise in the neural representation

is that the matrix Γ in (10) is invertible despite the use of a highly overcomplete

representation. In a noiseless representation, Γ would be generally singular because,

due to the large number of neurons, there would be a high probability of having two

neurons with similar tuning curves leading to two similar rows in Γ.
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Figure 3. NEF’s three principles. Top row represents the control-theory level

and lower rows the neural level. Representation. Encoded signal, spikes raster,

and decoded signal with a population of 200 leaky integrate-and-fire neurons. The

neurons’ tuning curves map the encoded signal (x) to spike rates (ai(x)); this

nonlinear transformation is inverted by linear weighted decoding to retrieve the

decoded signal (x̂). G() is the neurons’ nonlinear current-to-spike-rate function.

Transformation. SNN with populations ai(t) and bj(t) representing x(t) and

y(t), respectively, with decoding, transformation, and encoding performed via the

feedforward weights ωji = αj

〈
φ̃yj ·Aφxi

〉
. Dynamics. The system’s dynamics is

captured in a neurally plausible fashion by replacing integration with the synapses’

spike response, h(t), and replacing the matrix with its neurally plausible equivalent,

A′ = τA + I, to compensate.

3.2. Transformation

Neural transformation is a special case of neural representation performed by using

alternate decoding weights in the decoding operation. The transformation, f(x(t)),

is mapped directly into transformations of ai(x(t)) by using the appropriate linear

decoders, φ
f(x(t))
i , to extract the function from the encoded information. For example,

y(t) = Ax(t) is represented by the spike rates bj(Ax̂(t)) (figure 3 Transformation),

where unit j’s input is computed directly from unit i’s output using Ax̂(t) =
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i ai(x(t))Aφx

i , an alternative linear weighting.

3.3. Dynamics

Neural dynamics brings the first two principles together and adds the time dimension

to the circuit. This principle aims at reuniting the control-theory and neural levels by

modifying the matrices to render the system neurally plausible, thereby permitting the

synapses’ spike response, h(t), to capture the system’s dynamics.

For example, in control-theory, an integrator is written ẋ(t) = Ax(t) + By(t)

with Laplace transform x(s) = 1/s [Ax(s) + By(s)]. In the neural space, convolution

replaces integration and the system takes the form x(t) = h(t) ∗ [A′x(t) + B′y(t)] and

its Laplace transform is x(s) = h(s) [A′x(s) + B′y(s)]. The synapses’ spike response

takes the form h(t) = τ−1e−t/τ where τ is the synaptic time constant, and the transfer

function is h(s) = 1/ (1 + sτ). The two systems are therefore equivalent if A′ = τA + I

and B′ = τB, so called neurally plausible matrices (figure 3 Dynamics).

4. Spiking neural network decoder

To implement the Kalman filter in an SNN by applying the NEF, we used the three

principles described in the previous section (figure 4). To render the system neurally

plausible as explained in section 3.3, we started from a continuous time (CT) system in

the control-theory space, and we therefore converted (3) from discrete time to CT:

ẋ(t) = MCT
x x(t) + MCT

y y(t) (11)

where MCT
x = (Mx − I) /∆t and MCT

y = My/∆t are the CT Kalman matrices and ∆t

is the discrete time step (50ms).

From (11), by applying the dynamics’ principle, we replaced integration with

convolution by the synapse’s spike response and the CT matrices with neurally plausible
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ones, which yielded:

x(t) = h(t) ∗ (A′x(t) + B′y(t)) , (12)

where A′ = τMCT
x + I = τ(Mx − I)/∆t+ I and B′ = τMCT

y = τMy/∆t.

The jth neuron’s input current (see (6)) was computed from the system’s current

state, x(t), which was computed from estimates of the system’s previous state (x̂(t) =∑
i ai(t)φ

x
i ) and current measurements (ŷ(t) =

∑
k bk(t)φ

y
k ) using (12). These quantities

were decoded from the firing rates of the corresponding neural populations using the

representation principle. This procedure yielded:

Jj(x(t)) = αj
〈
φ̃x
j · x(t)

〉
+ Jbias

j (13)

= αj
〈
φ̃x
j · h(t) ∗ (A′x̂(t) + B′ŷ(t))

〉
+ Jbias

j (14)

= αj

〈
φ̃x
j · h(t) ∗

(
A′
∑
i

ai(t)φ
x
i + B′

∑
k

bk(t)φ
y
k

)〉
+ Jbias

j (15)

This last equation can be written in a neural network form (figure 4):

Jj(x(t)) = h(t) ∗
(∑

i

ωjiai(t) +
∑
k

ωjkbk(t)

)
+ Jbias

j (16)

where ωji = αj
〈
φ̃x
j ·A′φx

i

〉
and ωjk = αj

〈
φ̃x
j ·B′φ

y
k

〉
are the recurrent and feedforward

weights, respectively.

4.1. Efficient implementation

A software SNN implementation involves two distinct steps [21]: network creation

and real-time execution. The network does not need to be created in real-time and

therefore has no computational time constraints. However, executing the network has

to be implemented efficiently for successful deployment in closed-loop experimental

settings. To speed-up the simulation, we exploited the NEF mapping between the high-

dimensional neural space and the low-dimensional control space. This mapping updated
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1

ωji

ωjk aj(t)

aj(t)

ωji

ωjk

bk ( t )

Figure 4. SNN implementation of a Kalman-filter-based decoder with populations

bk(t) and aj(t) representing y(t) and x(t). Feedforward and recurrent weights, ωjk

and ωji, were determined by B′ and A′, respectively.

neuron interactions circuitously, using the decoding weights φx
j , dynamics matrix A′,

and preferred direction vectors φ̃x
j from (15), rather than directly using the recurrent

and feedforward weights in (16). The circuitous approach yielded an almost 50-fold

speedup [21], enabling real-time execution of a 2000-neuron network.

Other improvements to the basic SNN consisted of using two one-dimensional

integrators instead of a single three-dimensional one, feeding the constant 1 into the

two integrators continuously rather than obtaining it internally through integration,

and connecting the 192 neural measurements directly to the recurrent pool of neurons,

without using the bk(t) neurons as an intermediary (figure 4) [9].

4.2. Choice of parameters

Various parameters needed to be set for this network. They are recapitulated

in table 1. Neural spike rates were computed in 50ms time-bins and, therefore, the

sum τRC
j + τ refj + τPSCj had to be smaller than 50ms, which was indeed the case. It was

important for heterogeneity to be included [24, 25]. Therefore, neural parameters were



Design and validation of a real-time SNN decoder for BMIs 16

Table 1. Model parameters.

Symbol Range Description

max G(Jj(x)) 200-400 Hz Maximum firing rate

G(Jj(x)) = 0 −1 to 1 Normalized x-axis intercept

Jbias
j Satisfies first two Bias current

αj Satisfies first two Gain factor

φ̃xj

∥∥∥φ̃xj ∥∥∥ = 1 Preferred direction vector

σ2 0.1 Gaussian noise variance

τRC
j 20 ms RC time constant

τ refj 1 ms Refractory period

τPSC
j 20 ms PSC time constant

randomly selected from a wide distribution. Specifically, the preferred direction vectors,

φ̃x
j , were drawn between -1 and 1. The maximum firing rate, max G(Jj(x)), and the

normalized x-axis intercept, G(Jj(x)) = 0, were drawn from a uniform distribution on

[200, 400] Hz and [-1, 1], respectively. The gain and bias current, αj and Jbias
j , were

chosen to satisfy these constraints. τRC
j was chosen at 20 ms, close to typical membrane

time constant values, and τ refj was set to 1 ms, again a typical value [26] . The time

constant for the synapses’ spike response dynamics, τPSCj , was set to 20 ms, dynamics

consistent with post-synaptic currents [26].

Noise was not explicitly added. It arose naturally from the fluctuations produced

by representing a scalar through the filtering of spike trains, which has been shown to

have effects similar to Gaussian noise [24]. For the purpose of computing the linear

decoding weights (i.e., Γ), we modeled the resulting noise as Gaussian with a variance

of 0.1 [24].

5. Off-line open-loop implementation

We first performed an off-line open-loop validation of our SNN decoder [9] by using

a previously recorded BMI experiment that utilized a standard Kalman filter (SKF)

with floating point computations. An adult male rhesus macaque (Monkey L) was
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trained to perform a point-to-point arm movement task in a 3D experimental apparatus

for a juice reward [1]. All animal procedures and experiments were approved by the

Stanford Institutional Animal Care and Use Committee. A 96-electrode silicon array

(Blackrock Microsystems) was implanted in the dorsal pre-motor (PMd) and motor (M1)

cortex areas responsible for hand movement as guided by visual cortical landmarks.

Array recordings (-4.5× RMS threshold crossing applied to each channel) yielded tuned

activity for the direction of arm movements. For both monkeys (Monkey L and J) the

electrode array used in these experiments spanned approximately 4-6 mm of anterior-

posterior distance on the pre-central gyrus associated with primary motor cortex (M1).

Electrical stimulation and/or manual arm palpation further localized the area to the

upper shoulder region/muscles (monkey J) and forearm (monkey L). It should be kept

in mind that the border between M1 and the dorsal premotor (PMd) cortex is not sharp

neurophysiologically, and it is possible that the anterior aspect of either array could be

within PMd. In addition, for monkey J, we also recorded simultaneously from a second

array which is the same as the first array except that it was implanted 1-2 mm anterior

to the first array, and is thus nominally in PMd (see [28], supplementary figure 5, for

an intraoperative photo of the arrays). For the purposes of the current experiments the

distinction between these two areas is not of primary importance since both areas have

robust movement-related activity and modulation.

As detailed in [1], a Kalman filter was fit by correlating the observed hand

kinematics with the simultaneously measured neural signals (figure 2). The resulting

model was used online to control an on-screen cursor in real time. This model and 500 of

these trials (L20100308) served as the standard against which the SNN implementation’s

performance is compared. Starting with the steady-state Kalman-filter matrices derived

from this experiment, we built an SNN using the NEF methodology and simulated it in



Design and validation of a real-time SNN decoder for BMIs 18

 

 

 

 

Time (s)
0 1 2 3 4 5

 

 

 

 

−0.2
0

0.2

Time (s)

x
−
v
e
lo
c
it
y

 
(m
/s
)

 

 

0 1 2 3 4 5y
−
v
e
lo
c
it
y

 
(m
/s
)

 

 

200 neurons - RMS: 21%(A)

(B)

Standard Kalman Filter Spiking Neural Network

(C)

−0.2
0

0.2

Time (s)
0 1 2 3 4 5

2000 neurons - RMS: 6% 20 000 neurons - RMS: 3%

(D)

(E)

(F)

Figure 5. Comparing the x and y-velocity estimates decoded from 96 recorded cortical

spike trains (5s of data) by the SKF (red) and the SNN (blue). Networks with (A and

B) 200, (C and D) 2000, and (E and F) 20 000 spiking neurons. Absolute RMS (RMS

error normalized by maximum velocity) in indicated above each plot.

Nengo, a freely available software, using the parameter values listed in table 1.

The SNN performed better as we increased the number of neurons (figure 5). For

20 000 neurons, the x and y-velocity decoded from its two 10 000-neuron populations

matched the standard decoder’s prediction to within 3% (RMS error normalized by

maximum velocity) [9]. There was a tradeoff between accuracy and network size. If the

network size was decreased to 2000 neurons, the network’s error increased to 6%; an

even bigger decrease to 200 neurons led to an error of 21% [9]. Even with a 6% RMS

error at 2000 neurons, we believed that this may provide sufficient accuracy to use in

closed-loop experiments.

6. Online closed-loop performance

These off-line results encouraged us to test our SNN decoder in an online closed-loop

setting. Despite the error, we suspected that the monkeys would actively compensate

for any noticeable cursor deviation. Two adult male rhesus macaques (Monkey L and

J) were trained to perform a point-to-point arm movement task in a 3D experimental

apparatus for a juice reward using the ReFIT-KF training protocol as detailed in the
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Figure 6. Experimental setup and tasks. (A) Data are recorded from silicon electrode

arrays implanted in motor regions of cortex of monkeys performing a center-out-and-

back or pinball task for juice rewards to one of eight targets with a 500ms hold time.

(B) Center-out and back task. (C) Pinball task.

methods section of [4] (figure 6 (A)). Unlike Monkey L who only had one array, Monkey

J had two 96-electrode silicon arrays (Blackrock Microsystems) implanted, one in PMd

and the other in M1. The Kalman filter was built as described in prior work [4]. The

resulting models were used in a closed-loop system to control an on-screen cursor in

real-time (figure 6 (A), Decoder block) and once again served as the base performance

against which the SNN’s performance was compared.

A 2000-neuron SNN decoder was built using the simulation algorithm enhancements

mentioned earlier and simulated on an xPC Target (Mathworks) x86 system (Dell T3400,

Intel Core 2 Duo E8600, 3.33GHz). It ran in closed-loop, replacing the SKF as the

decoder block in figure 6 (A). Real-time execution constraints with our hardware limited

the network size to no more than 2000 neurons.

6.1. Center-out and back task

Once the Kalman filter was trained and the SNN was built, we tested the two Kalman

filter implementations (SKF and SNN) against each other. Each test was composed of

200 trials of target acquisition on a center-out and back task. The target alternated

from the center of the workspace to one of eight peripheral locations chosen at random

(see figure 6 (B)). A successful trial is one in which the monkey navigates the cursor to
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the target and holds within the 4 cm square acquisition region for 500 ms during the

alloted 3 seconds. Once a block of 200 trials was completed with one implementation,

the decoder was switched to the other implementation and another block was collected.

This ABA block switching was continued until the monkey was satiated and enabled an

accurate comparison of just the relative difference in implementations. This ABA block

style experimentation was repeated for at least three days with each monkey.

Success rates were higher than 94% on all blocks for the SNN implementation

(94.9% and 99.6% for Monkey L and J, respectively) and 98% for the SKF (98.0%

and 99.7% for Monkey L and J, respectively). Thousands of trials were collected and

analyzed (5235 with Monkey L and 5187 with Monkey J). These reflect only center-out

trials, not those that returned to the center from the periphery. The latter were not

included in the analysis because the monkey anticipated the return to the center after

navigating out to the periphery and thus initiated movement earlier than when the

target location is unknown. About half of the trials, 2615 (2484), were performed with

the SNN for Monkey L (Monkey J) and 2518 (2599) with the SKF. The average time to

acquire the target was moderately slower for the SNN for both monkeys—1067ms vs.

830ms for Monkey L and 871ms vs. 708ms for Monkey J. Around 100 trials under hand

control were used as a baseline comparison for each monkey.

Although the speed of both implementations was comparable, as evidenced by the

traces being nearly on top of each other up until the first acquire time, the SNN has

more difficulty settling into the target (Figure 8). Whereas the time at which the

target was first successfully acquired (average indicated by trace becoming thicker) is

comparable for both BMI implementations, the time at which the target was successfully

last acquired (average indicated by trace’s cutoff) occurs latter for SNN. That is,

the monkey spent more time wandering in and out of the acquisition region, before



Design and validation of a real-time SNN decoder for BMIs 21

Trials: 1748 - 1763

0 12-12
-12

0

12

x-position (cm)

Trials: 2180 - 2195

-12 0 12
-12

0

12

y
-p

o
si

ti
o

n
 (

cm
)

x-position (cm)

(A) (B)
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Figure 8. SNN (red) performance compared to SKF (blue) (hand trials are shown for

reference (yellow)). The SNN achieves similar results as the SKF implementation. Plot

of distance to target vs. time after target onset for different control modalities. The

thicker traces represent the average time when the cursor first enters the acceptance

window until successfully beginning the 500ms hold time. Results for Monkey L (A)

and results for Monkey J (B).

subsequently successfully staying inside it for the required hold time. This longer dial-

in time (indicated by length of thick trace) suggests that the SNN provides less precise

control when attempting to stop.

Towards the end of the day’s experiments, the SNN decoder would occasionally

fall to edge of the workspace and the monkey would lose interest in the task. The

cursor was reset to the center of the screen so the monkey would continue the block.

This happened infrequently and counted against the monkey’s success rate on center-
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out trials. The off-line results shown earlier (see figure 5) suggest that this difference

usability, as well as the difference in performance, is a result of the network’s neuron

count, which was limited by the real-time execution capacity of the x86 hardware. These

performance issues could be improved by using more neurons, as would be the case in

a neuromorphic chip. Nevertheless, even with only 2000 neurons, the success rate and

acquire times of the SNN decoder are comparable to that of the SKF decoder.

6.2. Pinball task

Another important measure when evaluating decoders is generalization and stability. To

test this, we instructed a new pinball task under the SNN decoder. In this task, targets

appeared randomly in a 16 cm square workspace without any systematic structure to

target placement (see figure 6 (C)). The monkey received a reward by navigating to the

target and holding within the 4cm acquisition region for 500 ms. Successfully performing

this task highlights the SNN decoder’s generalization. There was no block structure in

this set of experiments. The monkeys were started on this task and were allowed to

run continuously without interruption until satiated. Successfully performing this task

highlights the SNN decoder’s stability over an extended period of time.

Both monkeys sustained performance at around 40 targets per minute for over an

hour on the pinball task (figure 9). On the day tested, monkey L lost interest in the

task after approximately 61 minutes and monkey J after approximately 85 minutes. The

sustained performance of the SNN decoder across both monkeys in a more generalized

task demonstrates the robust performance of the system over uninterrupted periods,

suggesting that the decoder is capable of sustained performance across long stretches

of time. This performance is comparable to the hit rate and session duration achieved

under hand control [20].
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Figure 9. Sustained performance plots for both monkeys using the SNN decoder

under the pinball task. The sharp falloff represents a loss of interest in the task, which

occurred when the monkey was satiated. Results for Monkey L (A) and for Monkey

J (B).

7. Conclusions and future work

The SNN decoder’s performance was comparable to that produced by a SKF. The 2000-

neuron network had success rates higher than 94% on all blocks but took moderately

longer to hold the cursor still over targets. Performance was sustainable for at

least an hour under a generalized acquisition task. As the Kalman filter and its

variants are the state-of-the-art in cortically-controlled motor prostheses [1]-[5], these

simulations increase confidence that similar levels of performance can be attained with a

neuromorphic chip, which can potentially overcome the power constraints set by clinical

applications. A neuromorphic chip could implement a 10 000-neuron network while

dissipating a fraction of a milliwatt, likely increasing the performance of the system

compared to the simulated SNN shown here.

This demonstration is an important proof-of-concept that highlights the feasibility

of mapping existing control theory algorithms onto SNNs for BMI applications. For

BMIs to gain widespread clinical deployment, they must packaged in low-power,

completely implantable, wireless systems. The computational demands of BMI decoding

are high, and thus present a problem for low-power applications. Implementing the SNN

decoder presented here onto neuromorphic chips may be a possible answer, performing
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complex and demanding computations at a fraction of the power draw of conventional

processors. Translating the SNN from software to ultra-low-power neuromorphic chips is

the next step in the development of a fully-implantable neuromorphic chip for cortical

prosthetic applications. Currently, we are exploring this mapping with Neurogrid, a

hardware platform with sixteen programmable neuromorphic chips that can simulate

up to a million spiking neurons in real-time [17].
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