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• Numerical fracture framework for polycrystalline silicon  

– Discontinuous Galerkin (DG) method 

– Hybrid DG/Extrinsic cohesive law (ECL) 

– Orthotropic plane-stress Hooke’s law for core of grains 

– Intra-granular fracture 

– Thickness effect 

– Preliminary results 

– Observations 

 

• Future work 

– Characterize inter-granular strength 

– Compare with experiments 

– Apply to robust design 

 



Introduction 

• Purpose 

– Develop a numerical method to 

 predict MEMS fracture 

− Difficulties 

− Grains sizes are no longer negligible  

 compared to the structure size 

− Silicon is anisotropic 

− Inter/intra granular fractures 

− Dimensions are not perfectly controlled 

− Two MEMS will have  

− Different grains orientations/sizes 

− Different dimensions/surface profiles 

− The numerical method should thus be probabilistic 

− But impossible to perform many direct numerical simulations with grain 

size resolutions 



Introduction 

• Objective is to develop a robust design procedure of MEMS based 

on numerical stochastic 3-scale approaches 

Grain-scale   Meso-scale  MEMS scale 
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Introduction 

• Methodology 

– Develop a numerical fracture framework for polycrystalline structures (ULg) 

– Validate tool with on-ship testing (UcL) 

 

 

 

 

 

– Exploit numerical fracture framework in the 3-scale stochastic method 

(future work) 

[Gravier et al., JMEMS 2009] 



• Fracture challenges 

− Fracture can be 

− Inter-granular  

− Intra-granular 

− Grains are anisotropic 

− Initially there is no crack 

− Numerical approach 

− Cohesive elements inserted between two 

 bulk elements 

− They integrate the cohesive Traction Separation Law 

− Characterized by  

− Strength sc & 

− Critical energy release rate GC 

− Can be tailored for  

− Intra/inter granular failure 

− Different orientations 
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• Problems with cohesive elements 

– Intrinsic Cohesive Law (ICL) 

• Cohesive elements inserted from the beginning 

• Drawbacks: 

– Efficient if a priori knowledge of the crack path  

– Mesh dependency [Xu & Needelman, 1994] 

– Initial slope modifies the effective elastic modulus 

– This slope should tend to infinity [Klein et al. 2001]: 

» Alteration of a wave propagation 

» Critical time step is reduced 

– Extrinsic Cohesive Law (ECL) 

• Cohesive elements inserted on the fly when  

 failure criterion is verified [Ortiz & Pandolfi 1999] 

• Drawback 

– Complex implementation in 3D (parallelization) 

• Solution 

– Use discontinuous Galerkin method embedding interface elements 
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• Discontinuous Galerkin (DG) methods 

– Finite-element discretization 

– Same discontinuous polynomial approximations for the 

• Test functions h and  

• Trial functions d 

 

 

 

 

– Definition of operators on the interface trace: 

• Jump operator: 

• Mean operator: 

– Continuity is weakly enforced, such that the method 

• Is consistent 

• Is stable 

• Has the optimal convergence rate 
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• Discontinuous Galerkin (DG) methods (2) 

– Formulation in terms of first Piola-Kirchhoff stress tensor P  

    &  

– Weak formulation obtained by integration by parts on each element  
e  
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• Discontinuous Galerkin (DG) methods (3) 

– Interface terms rewritten as the sum of 3 terms 

– Introduction of the numerical flux h 

 

 

• Has to be consistent: 

• One possible choice: 

– Weak enforcement of the compatibility 

 

 

– Stabilization controlled by parameter , for all mesh sizes hs  

 

 

– Can also be explicitly derived from a variational form 

Numerical fracture framework for polycrystalline silicon  

[Noels & Radovitzky, IJNME 2006 & JAM 2006] 



• Hybrid DG/ECL 

– Interface terms exist at the beginning  

• DG method ensures consitency/stability 
 [Seagraves, Jerusalem, Radovitzky, Noels, CMAME 2012] 

 

 

 

 

– Onset of fracture 

• When interface traction reaches sc  

• The cohesive law substitutes for the DG terms 

– Advantages 

• Consistent 

• Easy to implement 

• Highly parallelizable 

• In this work 2D plane-stress structures are studied 
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• Silicon crystal 

– Diamond-cubic crystal  

– Has symmetry-equivalent surfaces 

– Orthotropic material (at least two orthogonal planes  

 of symmetry) 

– Different fracture strengths and critical strain energy release rates  

     along crystal lattice planes  

• 6 {1 0 0}-directions,  12 {1 1 0}-directions,  8 {1 1 1}-directions 
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• Bulk law 

– In the referential (x, y, z) of the crystal 

• 9 constants (actually 3 ≠) 

 

 

 

 

 

 

 

 

– Is rotated in the referential axes (X, Y, Z) 

• Different angles for different grains 

• Plane stress state sZZ = 0 

 

Numerical fracture framework for polycrystalline silicon  

X 

Y 

x 

y 

z 



• Intra-granular fracture 

– Different fracture strengths along crystal lattice planes  

• 6 {1 0 0}-directions      , 12 {1 1 0}-directions    ,         8 {1 1 1}-directions 

 

– Mesh-interfaces are not along a fracture direction 

 

 

 

 

 

 

 

 

• Assumption: FE mesh > silicon crystal cell size (5.43 Å) 

– Compute effective fracture strength on any required plane 

• But:      ,          &             do not form an orthonormal basis 

– Consider the dual basis        ,         & 
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• Intra-granular fracture (2) 

– Surface normals of (1 0 0), (1 1 0), (1 1 1) known 

•       ,          &             do not form an orthonormal basis 

• Consider the dual basis        ,         & 

 

 

 

 

 
• Extract component of surface normal in the dual basis   

 

 

 

 

• Interpolate strength from strength along {1 0 0}, {1 1 0} and {1 1 1} 
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• Intra-granular fracture (3) 

– At the end of the day 

•   

 

•   

 

 

• Applicable when surface normal is in-between solid  

 angle formed by     ,       & 

• 48 solid angles are identified in 

                        and 
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• Thickness effect  
– 2D-plane-stress model 

– Reality is 3D  

• Anisotropy 

• Weakest plane is not always the section 

– Find weakest plane passing through the 

interface edge 

• Iterate on q 

• Compute new edge referential 

 

 

 

 

• Compute normal and tangential stress   

    in new referential 
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• Thickness effect (2) 

– Find weakest plane passing through the interface edge (2) 

• Compute effective stress in the new referential 

 

 

 

 

 

• Compare this value to effective fracture strength along      

• Extrapolated as previously 
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Preliminary results 

• MEMS modelled by 9 crystal lattices with 534 elements 

• Solved without and with thickness effect 

 

Stress vs. strain plots along right boundary  

without thickness effect 

MEMS geometry 

Stress vs. strain plots along right boundary  

with thickness effect 

2

111110100 J/m28.1Gc,10.2Gc,54.2Gc 



Preliminary results (2) 

 

 

 

 

 

 

 

 

Crack tip stress at the beginning of first fracture 

(a) commencement and (b) end of the through-the-thickness fracture of MEMS with 

a v-notch when all the crystals are oriented along (1 1 0) direction 

a b 



Experimental observations 

• On-chip tensile microstructure fabricated to test MEMS for fracture 

─ Extraction of Young’s modulus and fracture strain by SEM and TEM 

─ Automated crystallographic orientation mapping on transmission electron 

microscope (ACOM-TEM) technique to determine local orientations of grains 

 

(a) Top view of the out-of-plane orientation map of 240 nm-thick polysilicon sample and (b) bright 

field TEM image of polysilicon sample 

a b 



Experimental observations continued … 

(a) SEM image of the side wall of 240 nm-thick polysilicon sample and (b) SEM image of the top 

view of fracture zone of polysilicon sample 

a b 

─ SEM observation shows the presence of one or two grains along the 

thickness of sample 

─ Average local preferential orientation (1 1 0) in the out-of-plane direction and 

in-plane orientations are random 

─ Fracture initiated due to the flaws on sidewalls created during sample 

preparation 

 



Observations 

• Maximum stresses along the loading edge and crack tip are close to 

effective fracture strength 

– Validate the correctness of the computation of effective fracture strength 

• Maximum fracture stress at crack tip is slightly lower with thickness effect 

as compared with without thickness effect 

– Maximum stress at fracture is either 

– First fracture is detected when 

– Irrespective of the orientation of crystal lattices, there will be at least one 

interface plane orientated in the direction (1 1 1) 

– Verifies experimental observation that, independent of the orientation of 

crystal lattices, crack propagates in the direction (1 1 1) 

–                                                               as (111) is weakest plane    

nor or S 

(111)effS s

max max max(100) (110) (111),s s s 



Observations continued … 

• Experimentally observed fracture strain 0.96% (+/- 0.07%) and fracture 

stress 1.41 (+/- 0.1) GPa 

− fracture stress in between the fracture strengths along (1 0 0) and (1 1 0) 

cleavage planes, as these planes influence in-plane fracture behaviour 

• Numerically observed fracture strain 0.7% (+/- 0.1%) and fracture stress 

1.1 (+/- 0.1) GPa 

− Fracture stress is slightly lower than experimentally observed value 

− Effective fracture strength is computed by weighted average values of 

fracture strengths along the (1 0 0), (1 1 0), and (1 1 1) orientations 

− Experimental sample has random in-plane orientations with higher influence 

of (1 0 0) and (1 1 0) orientations 

• Transgranular crack path 



Future work 

• Inter-granular strength 

– Characterize strength 

– In terms of mis-orientations 

• Compare with experiments 

– Grains orientations by automated crystal 

oriented mapping (ACOM) 

– Analysis of the competition between inter-

granular versus trans-granular crack path with 

respect to grain orientation 
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Future work 

• Robust-design   

– Statistical fracture strength at meso-scale from micro-scale simulations 

involving different grain sizes and grain orientations 

– Stochastic numerical method considering statistical distribution of 

fracture strength 
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