Quadratization of symmetric pseudo-Boolean functions

Yves Crama
with Martin Anthony, Endre Boros and Aritanan Gruber

HEC Management School, University of Liège
Liblice, April 2013

Outline

(1) Pseudo-Boolean functions
(2) Quadratization
(3) Symmetric functions

4 About negative monomials

Objectives

Focus:

- basic facts about pseudo-Boolean minimization
- quadratization techniques
- the case of symmetric functions
- more about negative monomials.

Definitions

Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow \mathbb{R}$

Multilinear polynomials

Every pseudo-Boolean function can be represented - in a unique way - by a multilinear polynomial in its variables.

Example:

$$
f=4-9 x_{1}-5 x_{2}-2 x_{3}+13 x_{1} x_{2}+13 x_{1} x_{3}+6 x_{2} x_{3}-13 x_{1} x_{2} x_{3}
$$

Pseudo-Boolean optimization

Complexity:

PB optimization

Given a multilinear polynomial f of degree at least 2 , it is NP-hard to find the minimum of f.

- Many applications: Max Cut, Max Sat, computer vision, etc.
- When f is quadratic and has no positive quadratic terms, then f is submodular and its minimization reduces to minimum cost flow.

Quadratic optimization

The quadratic case has attracted most of the attention:

- many examples arise in this form: Max Cut, Max 2Sat, simple computer vision models,...
- higher-degree cases can be efficiently reduced to the quadratic case, and this leads to good optimization algorithms.

Observations

- Say $g(x, y),(x, y) \in\{0,1\}^{n+m}$, is a quadratic function.
- Then, for all $x \in\{0,1\}^{n}$,

$$
f(x)=\min \left\{g(x, y) \mid y \in\{0,1\}^{m}\right\}
$$

is a pseudo-Boolean function.

- $f(x)$ may be quadratic, or not.
- $\min \left\{f(x) \mid x \in\{0,1\}^{n}\right\}=\min \left\{g(x, y) \mid(x, y) \in\{0,1\}^{n+m}\right\}$.
- Conversely...

Quadratization

Quadratization

The quadratic function $g(x, y),(x, y) \in\{0,1\}^{n+m}$ is an m-quadratization of the pseudo-Boolean function $f(x), x \in\{0,1\}^{n}$, if

$$
f(x)=\min \left\{g(x, y) \mid y \in\{0,1\}^{m}\right\} \quad \text { for all } x \in\{0,1\}^{n} .
$$

- $\min \left\{f(x) \mid x \in\{0,1\}^{n}\right\}=\min \left\{g(x, y) \mid(x, y) \in\{0,1\}^{n+m}\right\}$.
- Does every function f have a quadratization?

Existence

Existence of quadratizations

Given the multilinear expression of a pseudo-Boolean function $f(x), x \in\{0,1\}^{n}$, one can find in polynomial time a quadratization $g(x, y)$ of $f(x)$.

- Due to Rosenberg (1975).
- Idea: replace the term $\prod_{i \in A} x_{i}$ of f, with $\{1,2\} \subseteq A$, by

$$
t(x, y)=\left(\prod_{i \in A \backslash\{1,2\}} x_{i}\right) y+M\left(x_{1} x_{2}-2 x_{1} y-2 x_{2} y+3 y\right)
$$

- Fix x. In every minimizer of $t(x, y), y=x_{1} x_{2}$ and $t(x, y)=\prod_{i \in A} x_{i}$.
- Drawbacks: introduces many additional variables, many positive quadratic terms, big M.

Questions arising...

- Many quadratization procedures proposed in recent years. Which ones are "best"? Small number of variables, of positive terms, good properties with respect to persistencies, submodularity?
- Can we chararacterize all quadratizations of f ?
- Easier question: What if f is a single monomial?
- How many variables are needed in a quadratization?
- etc.

Refs: Boros and Gruber (2011); Fix, Gruber, Boros and Zabih (2011): Freedman and Drineas (2005); Ishikawa (2011); Kolmogorov and Zabih (2004); Ramalingam et al. (2011); Rosenberg (1975); Rother et al. (2009); Živný, Cohen and Jeavons (2009); etc.

The case of symmetric functions

Symmetric functions

A pseudo-Boolean function f is symmetric if the value of $f(x)$ depends only on the Hamming weight $\mathrm{wt}(x)=\sum_{j=1}^{n} x_{j}$ (number of ones) of x.

That is, there is a function $k:\{0,1, \ldots, n\} \rightarrow \mathbb{R}$ such that $f(x)=k(w)$ where $w=\mathrm{wt}(x)$.

Examples

- Negative monomial: $N_{n}(x)=-\prod_{i=1}^{n} x_{i}=-x_{1} \ldots x_{n}$.
- (Freedman and Drineas 2005) $N_{n}(x)=\min _{y}\left[n-1-\sum_{i=1}^{n} x_{i}\right] y$.
- Positive monomial: $P_{n}(x)=\prod_{i=1}^{n} x_{i}=x_{1} \ldots x_{n}$.
- $P_{n}(x)=-x_{1} \ldots x_{n-1} \bar{x}_{n}+P_{n-1}(x)$: so P_{n} can be quadratized using $n-2$ additional variables.
- (Ishikawa 2011) P_{n} can be quadratized using $\left\lfloor\frac{n-1}{2}\right\rfloor$ additional variables.
- How many variables are needed for other symmetric functions?
- (Fix 2011) $n-1$ variables suffice.

We propose a generic approach.

A representation theorem

Let $[a]^{-}=\min (a, 0)$.

Theorem: Representation of symmetric functions

For all $0<\epsilon_{i} \leq 1, i=0, \ldots n$, every symmetric pseudo-Boolean function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ can be uniquely represented in the form

$$
f(x)=\sum_{i=0}^{n} \alpha_{i}\left[i-\epsilon_{i}-\sum_{j=1}^{n} x_{j}\right]^{-}
$$

- Idea: $\left[i-\epsilon_{i}-\sum_{j=1}^{n} x_{j}\right]^{-}$reflects whether $\sum_{j=1}^{n} x_{j}$ is larger than i.
- System of linear equations: $\alpha_{0}, \ldots, \alpha_{n}$ can be efficiently computed.

Example: Negative monomials

- Let $N_{n}(x)=-\prod_{i=1}^{n} x_{i}$.
- Then: $N_{n}=\left[n-1-\sum_{i=1}^{n} x_{i}\right]^{-}$.
- Note: $[a]^{-}=\min (a, 0)=\min _{y \in\{0,1\}} a y$.
- So: $N_{n}=\min _{y}\left[n-1-\sum_{i=1}^{n} x_{i}\right] y$. (Freedman and Drineas 2005).

Quadratization: first attempt

- More generally, using $[a]^{-}=\min (a, 0)=\min _{y \in\{0,1\}} a y$
- for symmetric f :

$$
f(x)=\sum_{i=0}^{n} \alpha_{i}\left[i-\epsilon_{i}-\sum_{j=1}^{n} x_{j}\right]^{-}=\min _{y} \sum_{i=0}^{n} \alpha_{i}\left(i-\epsilon_{i}-\sum_{j=1}^{n} x_{j}\right) y_{i}
$$

- Well, not quite: $-[a]^{-}=-\min (a, 0) \neq \min _{y \in\{0,1\}}(-a y)$.
- Modify the representation of f to cancel negative coefficients.

Some identities

Define

- $E(l)=\frac{l(l-1)}{2}+2 l+1+\sum_{i=-1}^{n-1}[i-l]^{-}$,
- $E^{\prime}(l)=\frac{l(l-1)}{2}+2 \sum_{\substack{i=2: \\ i \text { even }}}^{n}\left[i-\frac{1}{2}-l\right]^{-}$,
- $E^{\prime \prime}(l)=\frac{l(l+1)}{2}+2 \sum_{\substack{i=1: \\ \text { iodd }}}^{n}\left[i-\frac{1}{2}-l\right]^{-}$.

Lemma.

For all $l=0, \ldots, n, E(l)=E^{\prime}(l)=E^{\prime \prime}(l)=0$.
Proof. Follows from the representation theorem applied to $e(x)=\sum_{i<j} x_{i} x_{j}=w(w-1) / 2$, where w is the Hamming weight of x.

Quadratization: second attempt

- for symmetric f :

$$
f(x)=\sum_{i=0}^{n} \alpha_{i}\left[i-\epsilon_{i}-\sum_{j=1}^{n} x_{j}\right]^{-}=\min _{y} \sum_{i=0}^{n} \alpha_{i}\left(i-\epsilon_{i}-\sum_{j=1}^{n} x_{j}\right) y_{i} .
$$

- Well, not quite: $-[a]^{-}=-\min (a, 0) \neq \min _{y \in\{0,1\}}(-a y)$.
- Modify first the representation of f by adding one of $E(l), E^{\prime}(l)$, $E^{\prime}(l)$ so as to cancel negative coefficients.

Example: Positive monomials

- Let $P_{n}(x)=\prod_{i=1}^{n} x_{i}$.
- Then: $P_{n}=-2\left[n-\frac{1}{2}-\sum_{i=1}^{n} x_{i}\right]^{-}$.
- For even n : add $E^{\prime}\left(\sum_{i=1}^{n} x_{i}\right)$ to P_{n}, leading to

$$
\begin{aligned}
P_{n} & =\sum_{1 \leq i<j \leq n} x_{i} x_{j}+\sum_{\substack{i=2: \\
i \text { even }}}^{n-2} 2\left[i-\frac{1}{2}-\sum_{j=1}^{n} x_{j}\right]^{-} \\
& =\sum_{1 \leq i<j \leq n} x_{i} x_{j}+\min _{y} \sum_{\substack{i=2: \\
i \text { even }}}^{n-2} 2 y_{i}\left(i-\frac{1}{2}-\sum_{j=1}^{n} x_{j}\right)
\end{aligned}
$$

Quadratization of symmetric functions

Theorem: Positive monomials (Ishikawa 2011)

The positive monomial P_{n} has a $\left\lfloor\frac{n-1}{2}\right\rfloor$-quadratization.

Theorem: k-out-of- n function

The k-out-of- n function has a $\left\lceil\frac{n}{2}\right\rceil$-quadratization.

Theorem: Parity function

The parity function has a $\left\lfloor\frac{n}{2}\right\rfloor$-quadratization, and its complement has a $\left\lfloor\frac{n-1}{2}\right\rfloor$-quadratization.

Theorem: General symmetric functions (Fix 2011)

Every symmetric pseudo-Boolean function has an ($n-1$)-quadratization.

About negative monomials

Remember

- Negative monomial: $N_{n}(x)=-\prod_{i=1}^{n} x_{i}=-x_{1} \ldots x_{n}$.
- (Freedman and Drineas 2005) $N_{n}(x)=\min _{y}\left[n-1-\sum_{i=1}^{n} x_{i}\right] y$.
- Question: can we characterize the quadratizations of N_{n} ?
- Seems surprisingly difficult.
- Note: many quadratizations are somehow "reducible", e.g., by fixing variables, or are identical, up to replacing y by \bar{y}.

About negative monomials

We can establish:

Theorem: 1-Quadratizations of negative monomials

Up to a permutation of the x-variables, and up to a switch of the y-variable, the only irreducible 1-quadratizations of N_{n} are

$$
\begin{gathered}
s_{n}=\left[n-1-\sum_{i=1}^{n} x_{i}\right] y \\
s_{n}^{+}=(n-2) x_{n} y-\sum_{i=1}^{n-1} x_{i}\left(y-\bar{x}_{n}\right)
\end{gathered}
$$

Proof. Very long...

Conclusions

- Structure and properties of quadratizations are poorly understood.
- Many intriguing questions and conjectures, much computational and theoretical work to be done.

Some references

E. Boros and A. Gruber, On quadratization of pseudo-Boolean functions, Working paper, 2011.
A. Fix, A. Gruber, E. Boros and R. Zabih, A graph cut algorithm for higher-order Markov random fields, Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), pages 1020-1027.
D. Freedman and P. Drineas, Energy minimization via graph cuts: Settling what is possible, in: IEEE Conference on Computer Vision and Pattern Recognition (2) (2005) pp. 939-946.
H. Ishikawa, Transformation of general binary MRF minimization to the first-order case, IEEE Transactions on Pattern Analysis and Machine Intelligence 33(6) (2011) 1234-1249.
V. Kolmogorov and C. Rother, Minimizing non-submodular functions with graph cuts - A review, IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (2007) 1274-1279.

Some references

V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2) (2004) 147-159.
S. Ramalingam, Ch. Russell, L. Ladický and Ph.H.S. Torr, Efficient Minimization of Higher Order Submodular Functions using Monotonic Boolean Functions, arXiv:1109.2304v1, 2011.
I.G. Rosenberg, Reduction of bivalent maximization to the quadratic case, Cahiers du Centre d'Etudes de Recherche Opérationnelle 17 (1975), 71-74.
C. Rother, P. Kohli, W. Feng and J. Jia, Minimizing sparse higher order energy functions of discrete variables, in: IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1382-1389.
C. Rother, V. Kolmogorov, V. Lempitsky and M. Szummer, Optimizing binary MRFs via extended roof duality, in: IEEE Conference on Computer Vision and Pattern Recognition, 2007.
S. Živný, D.A. Cohen and P.G. Jeavons, The expressive power of binary submodular functions, Discrete Applied Mathematics 157 (2009) 3347-3358.

