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Abstract

The International Liquid Mirror Telescope (ILMT) project is a joint collaboration
between different universities and research institutes in Belgium, Canada, India
and Poland, for the design, construction and operation of a 4 meter liquid mirror
telescope at the Devasthal Observatory (India).

In the framework of the present thesis, we have contributed to the development
of the ILMT. We have namely designed and manufactured an innovative instru-
ment capable of measuring the optical quality of the primary mirror that may
be affected by the propagation of wavelets on the mercury layer. The instrument
is composed of a laser source, emitting a beam whose reflection on the mirror is
modulated by slope variations induced by the wavelets. Preliminary tests were
carried out showing the validity of the method for on site testing of the mirror.

The ILMT has been designed to perform a photometric variability survey of
a narrow strip of sky, making it very suitable for the detection and follow-up of
photometrically variable sources such as supernovae and quasars.

In the second part of this thesis, we present an estimate of the number of QSOs
to be detected within the ILMT survey, and of the expected number of multiply
imaged sources among these caused by the presence of a deflector near the lines-of-
sight. We have studied the impact of various parameters on the expected number
of detected gravitational lens systems, such as the instrumental resolution of the
telescope, the galaxy population type(s) and corresponding lensing model(s), and
the cosmological parameters.

The statistical sample of multiply imaged QSOs is intended to be used as
a cosmological probe. In order to make a sensitivity comparison between vari-
ous modelling approaches, we introduce a new formalism to estimate the lensing
probabilities, based on the joined probability density of the observed QSOs.

This new formalism allows to calculate three probability densities: that asso-
ciated with the optical depth distribution, as well as those related to the deflector
and the lensed source redshift distributions. For the case of FLRW universes, we
compare the sensitivity of these distributions as a function of the cosmological
mass density.



Résumé

Le projet du Télescope International à Miroir Liquide (ILMT) résulte d’une col-
laboration entre différentes universités et instituts de recherche belges, canadi-
ens, indiens et polonais pour la conception, la construction et l’utilisation d’un
télescope à miroir liquide de 4 mètres de diamètre à l’Observatoire de Devasthal
(Inde).

Au cours de cette thèse, en plus d’une contribution au développement de
l’ILMT, nous avons conçu et réalisé un instrument innovant permettant la mesure
de la qualité optique du miroir primaire, qui peut être affectée par la propagation
d’ondelettes à la surface du mercure. Cet instrument est composé d’une source
laser émettant un faisceau dont la réflection sur le miroir est modulée par les
variations de pente locale induites par les ondelettes. Des tests préliminaires ont
été réalisés, permettant de valider la méthode pour l’évaluation sur site du miroir.

L’ILMT a été conçu en vue de la surveillance de la variabilité photométrique
d’une étroite bande de ciel, le rendant de ce fait propice à la détection et au suivi
photométrique de sources variables, telles que les supernovae et les quasars.

Dans le seconde partie de cette thèse, nous présentons une analyse prospective
de la population de quasars détectés par le télescope, ainsi qu’une estimation du
nombre de sources, au sein de cet échantillon, multiplement imagées suite à la
présence d’un déflecteur le long de leurs lignes de visée. Nous étudions également
l’impact sur le nombre de systèmes de lentille gravitationelle détectés en fonction
de différents paramètres, tels que la résolution instrumentale, le(s) type(s) de
galaxies déflectrices et le(s) modèle(s) de lentille correspondant(s), ainsi que les
paramètres cosmologiques.

L’échantillon statistique de quasars multiplement imagés sera utilisé comme
outil d’étude cosmologique. En vue d’effectuer une étude comparative de la sen-
sibiliité de différentes méthodes pour exploiter cet échantillon, nous introduisons
un nouveau formalisme pour le calcul de la probabilité d’événement lentille, for-
malisme basé sur la densité de probabilité jointe de quasars observés.

Ce nouveau formalisme permet le calcul de trois densités de probabilité, à
savoir: la distribution de la profondeur optique des sources et les distributions en
redshift des déflecteurs et des sources multiplement imagées. Nous comparons la
sensibilité de ces distributions en fonction de la densité de masse cosmologique,
pour le cas d’univers de type FLRW.
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Chapter 1

The 4m International Liquid
Mirror Telescope project

The International Liquid Mirror Telescope (ILMT) project consists of an effort
between institutes1 from Belgium, Canada, India and Poland to design and con-
struct a 4 meter liquid mirror telescope. The ILMT is composed of a primary
liquid mirror, a focal point assembly and a structure to hold the focal point in-
strument (Fig. 1.1a).

The telescope main characteristics are summarized in Table 1.1.

The ILMT will be located at the observatory of Devasthal (Uttarakhand, In-
dia), in the early Himalayan chain at an altitude of 2,450 meters. The geographical
coordinates of the observatory are 29.3617◦N 79.685◦E. The site location is shown
in Fig. 1.1b.

The Devasthal site has been tested for astronomical observations by Sagar
et al. (2000) and Stalin et al. (2001). The site median seeing is 1.1”, and the
seeing is better than 1”, 35 percent of the time. The monsoon running from June
to September precludes observations during this period.

The site will host two other telescopes (Sagar et al. (2012a)) among which a 3.6
meter telescope with spectroscopic capabilities, the Devasthal Optical Telescope
(DOT) project with which the ILMT is expected to have a strong synergy. The
second telescope is a 1.3-m fast (f/4) wide field-of-view optical telescope, already
operating on the site, primarily used for wide field photometry.

In this Chapter, after an introduction to the principle of liquid mirror tele-
scopes in section 1.1, we present a technical description of the telescope, its pri-
mary mirror assembly in section 1.2, and the focal assembly in section 1.3, includ-
ing the optical corrector and the CCD camera.

1The ILMT project consists of a scientific collaboration in observational astrophysics between
the Institute of Astrophysics and Geophysics of the Liège University (IAGL), the Royal Obser-
vatory of Belgium (ROB), the Aryabatta Research Institute of Observational Science (ARIES,
Nainital, India), the Observatory of Poznań (UAM, Poland) and several Canadian universities
(British Columbia, Laval, Montréal, Toronto, Victoria and York).

7
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(a) (b)

Figure 1.1: (a) The International Liquid Mirror Telescope scheme. (b) Location
of the Devasthal observatory.

Telescope

Mirror diameter 4 (m)
Focal length 8 (m)
Effective focal length 9.4524 (m)
(with the optical corrector)
Field of view 27’ by 27’

CCD 4096 by 4096 (px)
Pixel size 15 (µm/ px)

0.4 (arcsecond / px)

Filters g′, r′, i′ (SDSS)
Integration time 102 (s)
Limiting magnitude i′ ∼ 22.5

Table 1.1: Main characteristics of the ILMT.

1.1 Principle of liquid mirror telescopes

A liquid mirror is obtained by using a rotating dish containing a reflective liq-
uid. Under the combined action of the local gravity and the centrifugal force, as
pictured in Fig. 1.2, the liquid surface takes the shape of a paraboloid.

Indeed, a liquid surface at equilibrium sets perpendicularly to the net accel-
eration it experiences. The centrifugal force scales as ω2r (where ω is the dish
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Figure 1.2: Principle of a liquid mirror telescope. The primary mirror is a rotating
reflective fluid, taking a parabolic shape under the combined action of the gravity
and the centrifugal force. A camera inserted in the focal plane of the paraboloid
will image the field-of-view near the Zenith.

angular velocity and r the distance to the central axis) and the gravity is assumed
to be constant all over the surface. Defining the angle θ between the liquid surface
and the horizontal, as shown in Fig. 1.2, it comes

tan θ =
dz

dr
=
ω2r

g
. (1.1)

Integrating Eq. 1.1 and setting the origin of the z axis at the liquid surface central
height, we obtain the shape of the liquid surface

z =
ω2r2

2g
. (1.2)
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Comparing Eq. 1.2 with the general equation of a parabola with a focal length F

z =
r2

4F
, (1.3)

we see that the rotating liquid surface is a paraboloid having a focal length

F =
g

2ω2
. (1.4)

A rotating dish containing a reflective liquid thus acts as a parabolic mirror.
Its focal length F is determined by the angular velocity through Eq. 1.4.

Parabolic mirrors have the property that all light rays incident parallel to the
axis of symmetry of the paraboloid are refelected towards its focal point, as shown
in Fig. 1.2. Consequently, inserting a camera or a sensor at the focal point of
the paraboloid allows to image the field-of-view at the Zenith of the mirror. A
liquid mirror telescope is thus obtained by using a reflective liquid as the primary
mirror and by inserting a sensor on the focal surface. The angular field-of-view
(FOV) of the telescope is then determined by the focal length F and the size d of
the sensor

FOV =
d

F
. (1.5)

The liquid mirror telescope, as previously described, is thus composed of a
Zenith point mount. Because the local gravity is used to generate the primary
mirror shape, it is not possible to incline it in order to point or track an object, as
it is done with classical telescopes. Furthermore, because of the earth rotation, all
objects in the telescope FOV are moving at the sidereal rate. It is thus impossible
to image the near-Zenith FOV using conventional integration techniques as stars
would leave tracks due to their diurnal motion over the detector.

Borra (1982),Borra et al. (1982) and Hickson et al. (1994) showed that it is
possible to track electronically the objects crossing the telescope FOV using a
CCD imaging technique called Time Delay Integration (TDI) or drift-scanning.
In the TDI imaging technique, as a source goes through the telescope FOV, the
photoelectrons generated on the sensor are drifted in order to stay under the image
of the object on the sensor. All the photoelectrons generated are then counted
once the source gets out of the FOV.

Using a CCD camera with TDI imaging, the integration time t is fixed by
the time necessary for the objects to go through the telescope FOV. Defining the
sidereal rate SR of an object at the telescope Zenith, the integration time is

t =
FOV

SR
. (1.6)

The interest of such a fixed mount is thus dictated as will its accessible FOV.
Thanks to the parabolic primary mirror, the image of an object on the optical
axis of the telescope is aberration free. However, off-axis imaging is very quickly
deteriorated due to the dominant coma aberration and astigmatism (see Schroeder
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(1987) for a full description of aberrations with parabolic reflective mirrors). The
coma aberration being very quickly limitating, one must introduce an optical
corrector in front of the sensor in order to correct for this aberration.

A great effort has been done to increase the region of the sky accessible with a
fixed telescope using this technology by either using optical correctors to correct
a field as large as possible (Borra (1993), Hickson and Richardson (1998)) and/or
movable secondary systems (Borra et al. (1995), Zaritsky et al. (1996), Hickson
(2002)).

The ILMT is a liquid mirror telescope using a 4 meter primary mirror and
fixed secondary assembly composed of an optical corrector and a CCD camera
working in TDI mode.

In the two next sections, we give a technical description of the ILMT primary
mirror and focal-point assembly.

1.2 The primary-mirror assembly

1.2.1 Primary mirror

The primary mirror is a 4 meter rotating dish containing mercury. A picture of
the primary mirror is shown in Fig. 1.3.

The dish structure is composed of twelve vertical ribs, covered by a circular
plate. The core segments are made of styrofoam, surrounded by carbon fiber
sheets. This provides a very light structure to the bowl thanks to its inside foam,
yet rigid enough to sustend the load of mercury covering the bowl.

The overall stiffness of the bowl is of critical importance. The dish structure
itself must resist to flexure induced by the load of the layer of mercury covering
the rotating dish. This flexure should not be larger than one tenth of the mercury
layer thickness (Hickson et al. (1993)). Furthermore, any vibration transmitted to
the mercury leads to the formation of wavelets on the mercury layer that affect the
optical quality (Borra et al. (1992), Borra (1994)). Consequently, the resonance
frequency of the mirror should be as high as possible to avoid the transmission of
vibrations to the mercury (Hickson et al. (1993)).

In order to reduce the amount of mercury needed, the top surface of the dish is
preshaped with the form of the final mercury layer. The reduction of the amount
of mercury is important for several reasons. First, it permits to have a lighter
structure to be supported by the rotation system and it reduces the load of the
bowl structure itself. Secondly, Borra et al. (1992) have shown that reducing the
thickness of the mercury layer on the rotating dish increases the damping of the
wavelets that could be present on the mercury layer. This operation by which
the mirror is preshaped is called the spin-casting. The dish is covered with a
layer of Polyurethane (PU), a two-component resine composed of a basis and a
hardener. The liquid PU is poured on the mirror while rotating, and the mirror
is kept rotating while the PU hardens. The PU thus hardens with the shape that
the mercury layer will have.
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(a)

interface

air bearing

(b)

Figure 1.3: ILMT primary mirror. (a) Top view of the spinning mirror. (b)
Schematic side view of the mirror.

The ILMT mirror is designed to have a focal length of 8 meters. Inverting Eq.
1.4 linking the focal length and the angular velocity, we find

ω =

√

g

2F
, (1.7)
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and the period of rotation T of the primary mirror is thus

T =
2π
√

g
2F

. (1.8)

Inserting the different numerical values, we find a rotation period T = 8.02 sec-
onds.

1.2.2 Air bearing

Any vibration induced by the rotation system to the dish will lead to the formation
of wavelets on the mercury surface. To achieve an optical surface quality, it is
thus mandatory to avoid any vibration to be transmitted to the mercury. One of
the way to achieve this is to use air bearing rotation sytems to avoid transmission
of wavelets to the liquid induced by ball-bearing, for instance. Using air bearing
systems, Borra et al. (1989, 1992) showed that it is possible to achieve diffraction
limited liquid mirrors with a 1.5 m diameter, a Strehl ratio of 0.8 and rms surface
deviation of ∼ λ/20. Borra et al. (1993) then demonstrated with a 2.5 meter
f/1.2 mirror that using this technique can lead to liquid mirrors of astronomical
optical quality.

For these reasons, the ILMT rotation system consists of an air-bearing mounted
on a three-point mount for the alignment of the axis of rotation. The air bearing
used for the ILMT is a Kugler RT600T model.

The importance of the angular-velocity stability of the mirror has been em-
phasized by Borra (1982) who prescribed a rotational period stability better than
10−5, as instabilities in the rotational velocity will also lead to perturbations
induced to the liquid mercury. The rotational speed stability of the ILMT air
bearing is ensured by a position controled feedback loop (Denis (2011)). In this
system, the rotor position sensor consists of a 3000 lines per revolution encoder
on the rotor, sending pulses to a comparison unit. The encoder pulses are com-
pared to reference pulses generated by a reference clock (a Synthesized Function
Generator - SRS DS 335). The time difference between the encoder pulses and
the reference pulses, defined as the Following Error (FE), is measured by the
comparison unit. The control loop maintains the FE as small as possible by ap-
plying a torque to the rotor, at a frequency of 2 Khz. The stability of the dish
rotation period has been measured during tests which have taken place in the
AMOS workshop, with a 3mm thickness of mercury on the dish. The relative
period variation measured was better than 1.5 10−6 (rms) and 7.2 10−6 (peak to
valley).

The rotor of the air bearing is kept levitating and on axis during its rotation,
thanks to a pressurized air system. There are two separate circuits to feed the air
bearing:

• an axial thrust circuit: with a nominal working pressure of ∼ 6 bar. This
circuit supports the vertical load applied to the bearing, i.e. the weight of
the rotating dish and the mercury;
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• a radial thrust circuit: to guarantee that the rotor stays centered with re-
spect to the stator during its rotation, the nominal working pressure here is
∼ 3 bar.

The maximal axial load bearable by the bearing depends on the pressure in
the axial thrust circuit. With the nominal pressure of 6 bar, the maximal axial
load of the bearing has been measured (Hickson (2008b)) to be

Wmax = 1272(Kg). (1.9)

The empty mirror weights ∼ 600 Kg and a 3mm thickness of mercury over the
whole mirror weights 410 Kg. Consequently, the maximum load to which the
bearing is submitted is 1010 Kg which is slightly less than Wmax.

Content (1992) has emphasized the importance of the overall tilt stiffness of
the rotating dish. The overall structure must be sufficiently stiff to resist to the
torque created by an off-axis load that would be created due to a global motion
of the mercury over the mirror during its startup. An insufficient tilt stiffness
would lead to a tilting of the mirror and a spill of its mercury content. It is
also important that the rotating structure resists to the torque created by an
occasional break of the mercury layer while rotating (Hickson et al. (1993)).

The ability of the dish to resist to a torque m created by an off-axis load is
measured through its tilt stiffness K

K =
m

θ
(Nm/radian), (1.10)

where θ is the tilt angle (in radian) induced to the dish by the torque. It is
sometimes more practical to define the tilt compliance G = 1/K. Based on the
hydrostatic stability criterion, Hickson (2008b) has determined the critical tilt
stiffness Kcrit and critical compliance Gcrit for the ILMT primary mirror

Kcrit = 1.677 (Nm/µradian) (1.11)

Gcrit = 0.596 (µradian/Nm), (1.12)

with a 50 percent safety factor, the maximal value of the critical compliance is
Gcrit = 0.4.

In order to avoid any damage to the rotating table in case of a break of
the mercury layer while rotating, the primary mirror dish is not fixed to the air
bearing. Two interface plates allow the dish to tilt with respect to the air bearing
once an off axis load applies a torque that would be damageable to the air bearing
(Fig. 1.3b).

Finally, Girard and Borra (1997) have put in evidence the importance of the
alignment of the rotation axis with the vertical. The rotation axis of the mirror
should be aligned to better than 0.1 arcsecond (Hickson (2008a)). This is made
possible thanks to the three point mount on which the air bearing is mounted,
allowing a manual adjustment of the rotation axis.
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1.2.3 Mercury handling infrastructure

For different operations, the mercury has to be taken off the mirror. It is thus
necessary to have an infrastructure allowing to pump the mercury on and off the
mirror and store the 500 Kg of mercury when not used.

Storage of the mercury is done in a stainless steel container located next to
the mirror and the mercury is pumped with a commercial peristaltic pump.

Figure 1.4: The ILMT pumping structure.

Borra et al. (1992) put in evidence the importance of using a thin layer of
mercury during operation. This increases the damping of the wavelets on the
mercury as well as decreases their amplitude, thus optimising the mirror quality.
On the other hand, during start-up, the mirror is spinned manually to commu-
nicate enough angular momentum to the mercury. This operation is made easier
by using a thicker layer of mercury, making it easier to close the mercury surface
over the dish. The pumping infrastructure must thus allow to pump the mercury
off the mirror while the primary mirror is rotating, without breaking the mercury
layer. This implies the pumping to be performed at the center of the rotating
dish, to avoid breaking the symmetry of the system.

In the framework of this PhD thesis, we have designed and assembled the
pumping structure shown in Fig. 1.4. It consists of a metallic structure holding
the pumping tube. The end of the tube is fixed to a stainless steel tube move-
able vertically by a linear translation stage, thus allowing to retract the pumping
system out of the mercury, in order to avoid any vibrations to be transmitted
to the mercury. The overall structure is attached by hinges on one of the focal
assembly tower pilars, permitting to fold the structure on the side in order to
avoid additional light obstruction above the mirror.
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1.3 The focal-point assembly

The ILMT focal-point assembly is composed of

• a CCD camera with time delay integration imaging capability;

• a slide with medium band-width optical filters;

• an optical corrector;

• several mechanical systems allowing alignment of the whole assembly.

In the next Section, we describe the different components of this assembly.

1.3.1 CCD camera

Imaging with a CCD camera

The CCD camera sensor is composed of a matrix of pixels. In a normal use of the
CCD, imaging is done in two different steps: the integration and the readout of
the sensor.

During the first phase, the integration, photons arriving on the sensor gen-
erate photoelectrons in the pixels. Each pixel acts as a potential well where the
photoelectrons are stored during integration. As shown in Fig. 1.5a, the pixels
consist of Metal-Oxyde-Semiconductors (MOS) junctions. The photons arriving in
the semiconductor generate photoelectrons that are attracted towards the Oxyde
layer thanks to a positive potential applied to the Metal.

photon

e⁻

+V

Metal

Oxyde

Semi-

 conductor

(a) (b)

Figure 1.5: (a) Pixel concept and (b) CCD readout concept.

At the end of the integration starts the readout phase. All photoelectrons
generated in the pixels are drifted, row by row, towards the readout register on
one side of the CCD. Once a pixel row is transferred to the readout register, the
pixels lines are drifted towards a charge detection device that counts the number
of photoelectrons generated in each pixel during the integration time, converting
it into a voltage.
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Time Delay Integration technique

In the case of the ILMT, the camera is working in a particular readout mode
called Time Delay Integration (TDI) mode.

As the ILMT is a Zenith-pointing telescope, thanks to the earth rotation, all
objects in its FOV are moving at the sidereal rate. As an object goes across the
FOV of the telescope in the East-West direction, its image goes across the CCD
sensor.

In the TDI readout mode, the readout process is slowed down in such a way
that the shift rate of the lines towards the readout register, matches the motion
rate of the object image on the sensor. Consequently, all the photoelectrons
generated by a source stay under the image of the source on the CCD sensor as it
goes across it. The tracking of the object in the FOV is thus done electronically.

As soon as an object gets out of the FOV, the pixel line (along the North-
South direction) on which the photoelectrons were generated is drifted towards
the readout register and the generated photoelectrons are counted. The data flow
created by TDI imaging is thus continuous, creating a single long image of the
strip of sky to which the telescope has access.

One of the main advantages of the TDI imaging mode is the facility of data
reduction. In conventional imaging, the sensitivity irregularities of the sensor
must be corrected for by the use of a two dimensional flat field image. In the
TDI mode, as the objects go all across the detector along the sensor column, the
sensitivity irregularities are averaged over the detector columns. Consequently,
the image reduction is done by dividing each line by a one-dimensional flat field.
Furthermore, this flat field can be directly estimated from the scientific data, as
opposed to conventional imaging where flat field images must be taken before
and/or after scientific imaging.

The ILMT CCD camera

The ILMT is equipped with a Spectral Instrument camera model SI-1100 mounted
with a E2V CCD 231-84-1-E06 chip. The camera is capable of classical and TDI
imaging. The general characteristics of the chip are given in Table 1.6.

The camera is equipped with a 4K by 4K sensor, each pixel measuring 15 µm
by 15 µm, with a filling factor of 100 %. The main characteristics of the chip are

• the full well capacity : the maximum number of photoelectrons that can be
stored in a pixel during integration time. The E2V chip has a full well
capacity of ≥ 250ke− per pixel,

• the dark current : during the integration time, some thermal electrons are
created in the pixel potential well, acting as a noise signal. Dark electrons
being generated by thermal excitation, this noise is lowered by cooling the
CCD,

• the readout noise: electrons generated during the readout process,
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Number of pixels 4096 x 4112
Filling factor 100 %
Pixel size 15 µm
Flatness < 20µm
Illumination Back illuminated
Pixel charge storage ≥ 250Ke−

Digitization 16 bit

Max readout noise 5e− (1MHz)
Max readout noise (SI 100 KHz) 2e− (quotes)
Dark current (e−/pix/s) 0.83 10−3 (-100◦C)
Dark Current (-100◦C SI) 10−4 (quotes)

Figure 1.6: Characteristics of the E2V-231 CCD chip.

• the flatness of the sensor: E2V garantees flatness deviations smaller than 20
µm peak to valley,

• the quantum efficiency which is defined as the fraction of incident photons
that generate photoelectrons, dependent on the wavelength. The chip quan-
tum efficiency is shown as a function of wavelength in Fig. 1.7. The chip has
been coated in order to minimise the light reflection in the corresponding
spectral range.

1.3.2 ILMT filters

The ILMT is equipped with median-band optical and near infrared filters. These
filters are the g′, r′, i′ filters based on the SDSS photometric system. The trans-
mission of the SDSS spectral bands are shown in Fig. 1.7b.

The choice of the SDSS filter system was made in order to directly compare
the data produced by the ILMT with those from other large surveys, such as
the SDSS and the CFHT data products also using the SDSS’ photometric sys-
tem. Note that the SDSS data pertain to a slightly different photometric system
(u, g, r, i, z bands instead of u′, g′, r′, i′, z′) due to an alteration of the mounted
filters. The conversion between the two photometric systems only necessitates
minor corrections to the measured magnitudes.

The telescope will mostly operate in the i′ filter with which the time variability
survey will be performed. Imaging in g′ and r′ will be performed in order to ensure
a correct photometric calibration of all the detected objects.

The characteristics of the g′, r′ and i′ filters are summarized in Table 1.2. The
definition of the SDSS filters may be found in Fukugita et al. (1996). The central
wavelength and full width at half maximum values come from the specifications
delivered by the OmegaOptics company, who manufactured the filters.

For information, the central wavelengths of the SDSS g, r and i filters are also
indicated in Table 1.2.
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Figure 1.7: (a)Quantum efficiency, as a function of the wavelength, for the E2V
chip equipping the ILMT CCD camera, with a mid-band anti-reflective coating.
(b)Transmission of the g′, r′, i′ SDSS filters that will be used with the ILMT.
The lighter grey curve is the combined transmission of the filters and the CCD
quantum efficiency.

Common characteristics

Flatness λ/4 (peak to valley)
Parallelism ≤ 30”
Transmission ≥ 88% (average)
Thickness 5 ± 0.25 (mm)

Individual characteristics

Filter g’ r’ i’

Central wavelength (nm) 475 625 763
Full Width at half maximum (nm) 145 150 150
Cut on ( ±8 nm ) 400 550 695
Cut off ( ±8 nm ) 545 695 853
Refractive index 1.53 1.51 1.535

SDSS 2.5m filter characteristics

Filter g r i

Central wavelength (nm) 468.6 616.5 748.1

Table 1.2: ILMT and SDSS filter characteristics.
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1.3.3 Optical corrector

The ILMT optical quality has been designed such as it will just be limited by the
seeing conditions on site.

As mentioned in the previous Chapter, because the primary mirror is parabolic,
off-axis imaging is very quickly blurred due to a dominant coma aberration and
astigmatism (Schroeder (1987)). The coma aberration being very quickly limi-
tating, one must introduce an optical corrector in front of the sensor in order to
correct for this aberration.

Furthermore, there are particular image distortions introduced by TDI im-
agery. First of all, the star trails in the sky plane are curved. When using the
TDI CCD imaging technique, the trajectories of the stars projected on the CCD
are also curved whereas the columns of the CCD along which the photoelectrons
are shifted are straight. Consequently, the telescope PSF gets spread along the
N-S direction over several columns, producing a deformation of the PSF. As an
indication, we use the linear relation determined by Gibson and Hickson (1992) of
the maximum deviation ∆ that a star trail deviates from the center of a column

∆ = (1− cos b) tan l, (1.13)

where b is half the detector angular FOV and where l is the telescope latitude.
Inserting the values from Table 1.1, in the ILMT field, this leads to a maximum
North-South displacement of the star photocenter by ∆ ∼ 0.9”, this North-South
elongation being added to the athmospheric seeing effect.

Secondly, the angular velocity of the objects across the FOV is a function of
both their declination and the declination of the FOV center. It is thus impossible
to match the TDI line shift rate to the sidereal rate over the entire field. By setting
the TDI shift rate to match the shift rate for the middle of the field, in the upper
and lower edge of the field, the difference between the TDI shift rate and the
drift of the objects on the detector due to earth rotation leads to a deformation
of the images along the East-West direction. Hickson and Richardson (1998)
determined the maximum value of the displacement of the star center due to the
speed gradient across the field of view. If the TDI readout rate is set to match the
speed of a star whose trail passes through the center of the field, the maximum
deviation along the East-West direction ∆E−W , occurs for stars at the North and
South edges of the CCD detector. Using the first relationship derived by Hickson
and Richardson (1998), we find

∆E−W = 0.7239” (1.14)

= 1.4624 px. (1.15)

The effect of TDI distortion on astronomical images has been studied by Hick-
son and Richardson (1998) and Gibson and Hickson (1992) and independently by
Vangeyte et al. (2002). If not corrected for, these combined effects lead to a
banana-shape PSF as mentioned previously.
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(a) Zeemax model (b) Corrector structure drawing

Figure 1.8: The ILMT optical corrector.

In order to correct the parabolic off-axis coma distortion and the TDI distor-
tion due to star trail curvature and differential velocity across the field, the ILMT
is equipped with an optical corrector whose goal is to correct a field of 27 by 27
arcminutes, to make the ILMT seeing limited. The Zeemax model of the corrector
is shown in Fig. 1.8 on the left hand panel and the right hand panel shows the
whole corrector assembly with its mount.

This corrector is the first attempt of correcting optically the TDI distortion,
leading to a system of tilted lenses as seen on the Zeemax model.

The assembly is equipped with a mechanical mount allowing a tip-tilt align-
ment of the corrector.

1.4 Science with the ILMT

Thanks to the earth rotation, the ILMT will scan a strip of sky centered at a
declination equal to the telescope latitute. The width of this strip is determined
by the North-South width of the telescope FOV. The ILMT is located in Devasthal
(India) at a latitude of 29.3617◦N. The telescope field of view is 27’ by 27’. The
strip of sky accessible to the telescope is shown in Fig. 1.9, in an all sky projection
centered on the galactic center. As seen in the figure, the ILMT strip crosses the
galactic plane twice. This gives access to both very crowded low galactic fields
and high galactic latitude fields where the detection of fainter and more distant
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Figure 1.9: All sky image centered on the galactic center in the Hammer-Aitoff
projection. The strip of sky accessible by the ILMT is superimposed over the
image. Equatorial coordinate isocurves are projected as grey lines on the all sky
image, NP and SP being the North and South equatorial pole, respectively.

objects (galaxies, quasars,...) will be possible. The calculation of the solid angle
covered by the survey, for both low and high galactic latitude fields, is presented
in detail in Chapter 5. The total field covered by the survey is 140 sq.deg., with
70 sq.deg. at a galactic latitude |b| > 30◦.

The ILMT will image parts of this strip night after night through the broad-
band SDSS filters. Because this strip is imaged night after night, we shall use the
different images of the same fields

• either by adding them to increase the signal-to-noise ratio and thus simulate
a longer integration time, enabling the detection of fainter objects;

• or by subtracting the successive images to detect variable objects and mea-
sure their photometric or astrometric variability.

As an example, use of the image subtraction technique described in Alard and
Lupton (1998) and Alard (2000) will allow to retrieve relative photometric vari-
ability, taking into account the seeing variation from night to night, by desinging
a reference image that will be convolved with a kernel to simulate comparable
seeing conditions.

The photometric variability study of the strip of sky during the 5 years the
telescope is expected to run at first, does really constitute the corner-stone of the
ILMT project. Although long-term photometric variability study is commonly
used as a tool to study various types of objects such as time-delays between the
multiple images of a lensed quasar, supernova remnants or exoplanet transits, the
ILMT is really a unique tool that will allow to do photometric variability survey
of all types of objects.
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Thanks to the very low cost of LMTs, such a telescope can be devoted to
a unique scientific project. The ILMT main goal is the photometric variability
study of all objects passing in the narrow strip of sky. It is thus very suitable for
the detection of variable objects as well as their photometric follow up.

The different scientific possibilities offered by the LMT particularities have
been addressed by Borra (1995) and Borra (1997). One way to overcome the
main limitation of liquid mirrors, i.e. the zenithal pointing, is to use LMTs for
statistical cosmological studies. Indeed, thanks to the hypothesis of homogeneity
and isotropy at large scales, the direction of pointing does not really matter, as
long as the telescope has access to a wide extragalactic field.

Among the different scientific projects achievable with LMTs, let us mention
the

• detection and photometric follow up of QSOs, which are variable objects by
essence;

• detection of multiply imaged QSOs by gravitational lenses;

• detection and photometric follow up of type Ia Supernovae;

• study of microlensed galactic objects;

• detection of high proper motion objects;

• detection of low surface brightness galaxies by co-addition of the images.

Our two main scientific drivers of the ILMT project are the detection and the
photometric follow up of gravitationally lensed QSOs and type Ia Supernovae.

Type Ia Supernovae constitute very useful probes for cosmological tests related
to the determination of H0 and q0, as these Supernovae have been proposed to
be standard distance indicators (see Branch and Tammann (1992) and Krisciunas
(2012) for recent reviews on the topic).

As the second part of this thesis adresses the statistical aspect of gravitational
lensing in the population of QSOs to be detected with the ILMT, we highlight in
the following the different science topics that can be addressed with gravitationally
lensed QSOs.

There are several techniques to detect QSOs in surveys (see Weedman (1986)
for an introduction). Selection strategies of QSO candidates can be based either
on broad or median-band filter colour criteria, photometric variability, or based on
the identification of the X-ray or radio counterpart of the objects. QSO candidates
can then be confirmed spectroscopically.

In the case of the ILMT project, QSO candidates are selected on the basis of
their photometric variability: they will appear as point-like sources in the strip of
sky, presenting photometric variability from night to night.

Beside the photometric variability survey in the SDSS i’-band, the ILMT will
also image the sky in the g’ and r’ bands of the SDSS system. Broad or medium
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band photometry makes possible a confirmation of the QSO candidates on the ba-
sis of the candidate colours as well as a photometric redshift estimate (as described
in Claeskens et al. (2006b) for the case of the GAIA mission).

On the other hand, the presence of another 3.6 meter telescope with spectro-
scopic capabilities on the site of the ILMT, the Indo-Belgian Devasthal Observa-
tory Telescope (intensively introduced during the 2012 SPIE meeting, see Sagar
et al. (2012b), Ninane et al. (2012), Sagar et al. (2012a) for a general description),
will also allow a spectroscopic confirmation of the QSO candidates.

The selection of QSOs among selected candidates from their photometric vari-
ability has the advantage to provide a very homogeneous QSO sample, free from
colour selection biases. Thus this technique will provide a very clean statistical
sample of QSOs.

Among these QSOs detected in the survey, some will be detected as being
gravitationally lensed. Due to the presence of a foreground massive object near
their line-of-sight deflecting the light-rays the QSOs emit, these objects will appear
to be multiply imaged. This phenomenon is described intensively in the second
part of this thesis. Gravitational lens candidates will be selected for instance
as multiple point-like objects, close to each other, all showing some photometric
variability. They will have to be confirmed either spectroscopically or on the basis
of their colour, in the same way as the QSO candidates.

The detected gravitationally lensed QSOs can be studied either independently
or as a statistical sample. The study of each gravitational lens will address various
scientific questions such as

• the determination of the time delays between the images, thanks to the
photometric variability monitoring of each of the lensed images;

• assuming a mass distribution model for the deflector, knowledge of the time
delay between the images allows to determine the local value H0 of the
Hubble constant (Refsdal (1964a,b));

• knowing the deflector mass distribution also permits to invert the lensed
images and doing so, to retrieve the real image of the background source
benefiting from the magnification of the gravitational lensing event;

• assuming a cosmological model, the astrometry and magnification of the
lensed images allow to study the mass distribution of the corresponding
deflector;

• moreover, the differential variability between the lensed images due to mi-
crolensing will lead to the studies of the structure of the source.

The reader interested in these topics could read the series of papers dedicated
to a multi-wavelength study of the gravitationally lensed QSO RXS J1131-1231
by Sluse et al. (2006), Sluse et al. (2007) and Claeskens et al. (2006a). In these
papers, multi epoch imaging at multi wavelengths has permitted to reconstruct
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a multi colour image of the background source as well as its host galaxy, also
revealing its structure by microlensing effects. These papers present a very good
example of the wide range of science topics rendered possible through the study
of a single gravitational lens system.

On the other hand, the sample of gravitational lenses considered as a whole
can be used as a statistical tool for cosmological studies. In this context, as
mentioned earlier, the ILMT data will be of an excellent quality thanks to its
variability selection strategy of QSO candidates.

The statistical aspects of gravitational lensing events were proposed as a sta-
tistical tool by Turner and Gott (1984). The idea is to compare an observable
statistics in a source population with the prediction of a model. The observables
suggested by Turner and Gott (1984) are either the fraction of lensing events, the
redshift distribution of the lenses, or the distribution of the angular separation of
the lensed images.

The probability of a lensing event depends upon the space distribution of the
deflectors and their types, the space distribution of the sources and the cosmo-
logical model. Consequently, by comparing the observation to the prediction of a
model of the different statistics, lensing statistics may be used as a tool to

• constrain the cosmological model parameter ΩΛ (Cen et al. (1994));

• constrain the density and the evolution of the deflector population (Chae
(2010));

• constrain the density and evolution of the source population.

The second part of this thesis presents the expected population of QSOs to
be detected with the ILMT (Chapter 5), the expected number of lensing events
within this population of sources (Chapter 6) and a comparison study of the
different observable statistics as a tool to test the cosmological model (Chapter
7).
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Chapter 2

Testing the ILMT mirror
surface quality using the CCD
triangulation technique

2.1 Method description

2.1.1 Introduction

The quality of the scientific data acquired with the ILMT relies on the sharpness
of the telescope PSF. Sharper images allow, on one hand, to achieve a better an-
gular resolution enabling the detection of objects angularly closer to one another,
and, on the other hand, it leads to a higher Signal-to-Noise ratio for the same
integration time, enabling the detection of fainter objects.

The optical quality of the primary mirror is thus of critical importance for the
image sharpness. Liquid mirror surface quality is known to be affected by the
possible presence of wavelets, propagating over the mercury layer. The impact of
theses wavelets is to diffract light into the wings of the PSF (Hickson and Racine
(2007)), reducing the energy contained in the central core of the PSF.

There are different types of wavelets: transitory waves, spiral shaped waves
and concentric ones. Fig. 2.1 shows a defocused image of a liquid mirror where
the different types of wavelets are clearly visible.

The transitory wavelets (marked as concentric rings on the left side of Fig.
2.1) are induced by any perturbation transmitted to the mirror (a gust of wind, a
fly or a debris impacting the mercury layer, ...). These waves propagate through
the surface and are damped rapidly with time. They cannot be avoided but their
damping is increased by the use of thinner mercury layers (Borra (1994)).

Concentric waves may originate due to vibrations transmitted to the bowl
from the bearing. These vibrations will typically have a frequency equal to the
eigen frequency of the system bowl+mercury (∼20-30 Hz). They are formed with
a pattern of concentric wavelets propagating radially, with a typical amplitude

27
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Figure 2.1: Defocused image of a liquid mirror revealing the presence of wavelets
on the mercury layer.

and wavelength of ∼ 10−6 (m) and ∼ 10−2 (m), respectively1. Such wavelets may
be avoided thanks to the use of an air bearing system and an increase stiffness of
the bowl (in order to increase its eigen frequency). Nevertheless, as their presence
reveals a conception and/or a dish stiffness problem, it is important to ensure
that they are not present.

Finally, spiral waves are believed to rise because of instability phenomena in
the air layer at the interface with the mercury, because of a too high relative
velocity between the air and the mercury. Their name is related to their spiral
pattern as seen in Fig. 2.1. It is possible to avoid them by covering the rotating
mirror with a thin Mylar layer, and thus rotating with the dish. Indeed, the
presence of the Mylar captures the air just above the mirror which is thus rotating
with the mercury, thus suppressing friction between the air and the mercury.

The typical amplitude and wavelength are of the order of ∼ 10−6 (m) and
∼ 10−2 (m), respectively, both increasing with the radius.

Since the different wavelets possibly present on the mercury layer have a dif-
ferent origin, it is important to determine the type of waves present on the dish
to be able to avoid them by a appropriate means.

In the framework of this PhD thesis, we have developed a new method to
detect and characterise the type of waves possibly present on the mercury layer.
This chapter presents a general description of the method and the instruments
designed and manufactured to make the measurements. We then present the
mathematical modelling necessary to analyse the results and finally present some
measurements performed for the ILMT primary mirror.

1Mulrooney (2000) mentions the presence of concentric waves with a shorter wavelength and
a higher frequency (∼ 45 Hz), observed on the NODO. The author has concluded that these
waves were due to environmental effects, specific to the telescope location. Consequently, we do
not consider these waves in the present work.
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2.1.2 General principle

The wave detection principle is represented in Fig. 2.2. A laser beam emitted
by a source (on the left hand side) impacts the surface at a given point, with a
known incidence angle and is then reflected. The reflected ray position is measured
thanks to a detector (on the right hand side of the mirror).

S D

Figure 2.2: Experimental set-up to test the ILMT surface quality using the CCD
triangulation technique.

The presence of wavelets at the impact point, modifies the local slope of the
mercury layer, which leads to a change in the reflected ray trajectory. By measur-
ing the modification induced to the reflected beam, it is possible to retrieve the
wave information at the impact point on the mirror surface.

By changing the height and the angle of the emitted beam, the ray can impact
the surface at different radii, allowing to study the wavelet characteristics as a
function of the radius. As the mirror is spinning, impacting at a given radius does
actually allow to probe a small ring of the mirror.

Both the laser source and the detector are fixed on opposite pillars of the
ILMT structure supporting the upper end of the telescope. They are both fixed
on a mount enabling a vertical translation and a rotation in a fixed meridian.

In order to differentiate the different types of wavelets, the laser beam section
is a horizontal line. Wavelets propagating with different angles relatively to the
line-section will induce a different deformation of the line.

During this thesis, we have designed and manufactured the laser source and
detector. We describe them in the next sections.
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2.1.3 Emitter description

(a)

(b)

Figure 2.3: Conceptual drawing of the emitting system. (a) Internal view of the
laser source itself where the important optical elements are shown in dark grey.
(b) Front and side views of the laser source and of its mount.
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The concept of the laser source and its mount is shown in Fig. 2.3. Fig. 2.3a
shows the interior of the laser source where the optical elements are indicated in
dark grey. The laser source is composed of a laser pen emitting at 360 nm, a
beam expander and two blades spaced by 2 mm. The section of the collimated
beam emitted by the laser is expanded while going through the lenses of the
beam expander, out of which, the beam is almost collimated. Part of the beam
section is then blocked by the two blades. Out of the laser source comes an almost
collimated beam, which section is a rectangle with a width of 5 cm and a height
of 2 mm.

Due to the intrinsic divergence of the rays, the out-coming beam is slightly
divergent. We neglect the beam divergence in the meridional plane of the laser
source and the situation in the sagittal plane is shown in Fig. 2.4, where πe
represents the laser source output plane (defined by the two blades).

Figure 2.4: Beam divergence in the laser source sagittal plane.

In the sagittal plane, the light rays seem to be emitted by a point-like source
S located at a distance dπeS from πe. To determine the distance of the equivalent
source (and thus characterise the beam divergence), we have measured the width
of the beam at the output of the laser source (l1 = 0.047 m) and at a distance
dm = 6.1 m (l2 = 0.068 m).

A simple geometrical consideration leads to the conclusion that the rays emit-
ted by the laser source could be modelled as coming from a point-like source at a
distance dπeS

2

dπeS =
dml1

(l2 − l1)
= 13.6 (m). (2.1)

Furthermore, a ray impacting at a distance d from πe, and at a distance Y from
the optical axis, makes an angle θdiv with respect to the optical axis related to
dπeS

θdiv (Y, d) = arctan

(

Y

dπeS + d

)

. (2.2)

2Due to the very large value of dπeS compared to the beam width and for clarity, the scales
in Fig. 2.4 are arbitrary.
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This relation will be used to calculate the incidence angle of the rays on the mirror
surface.

Let us now look at the mount of the laser source. Fig. 2.3b shows the front
and side views of the laser source on its mount (on the left and right hand side,
respectively). The laser beam section defined by the two blades is clearly visible
on the front view.

To allow the laser beam to impact at different radii on the mirror, the laser
source is mounted on a vertical translation stage, combined with a rotation stage
allowing the laser source to be rotated in a meridian plane.

Finally, to provide a fine adjustment, the beam-expander holder is mounted
with three alignment screws (cf. the side view).

2.1.4 Detector description

The concept of the detector is shown in Fig. 2.5a. It is composed of a CMOS
detector, a single lens, two linear polarisers, and the housing. The different parts
are darkened in the figure.

The CMOS chip is a commercial USB 2.0 CMOS detector manufactured by
The Imaging Source, with 744 by 480 pixels of 6 by 6 µm. The highest frame rate
achievable with the detector composed of 744x480 pixels is 60 Hz3.

The detector entrance lens is a 75 mm diameter lens with a focal ratio of
f/2. Note that, as the incoming laser beam is almost collimated, the CMOS chip
is designed to be out of focus: focal length of the lens is 150 mm whereas the
distance between the lens and the chip is 159.5 mm. In front of the lens, the two
linear polarisers are used to control the flux arriving on the chip, in order to avoid
its saturation.

The calibration process and the determination of the characteristics of the
detector are presented in Appendix A.

As in the case of the laser source, the detector is mounted on a translation
stage coupled with a rotation stage (see Fig. 2.5b). This enables the detector to
intercept the reflected rays at different impact radii.

Fig. 2.6 displays a typical frame detected by the CMOS sensor. In this
particular case, the laser beam impacted at a distance r ∼ 1.5 m from the primary
mirror rotation axis. During acquisition, the detector thus acquires 60 frames per
second similar to that of Fig. 2.6.

In each frame column we detect the photocenter of the signal of the laser beam
image. This is done by resampling the vector of the pixel measured flux in the
column, and convolving it with a Gaussian kernel having a FWHM equal to that
of the flux signal in the column. The photocenter position is determined by the
maximum of the convolution.

3At the time of the purchase, this was the fastest USB detector manufactured by the company.
A year later, they sell comparable detectors capable to make data acquisition at 150 Hz. The
use of such a camera would result in an improvement of the instrument.
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f
(a)

(b)

Figure 2.5: Conceptual drawing of the detector. (a) Internal view of the detector
itself where the CMOS, the lens and the linear polarisers are shown in darker grey.
(b) Front and side views of the detector and its holding structure.
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Figure 2.6: Typical frame detected by the CMOS sensor. In this case, the laser
beam impacts at a distance r ∼ 1.5 m from the primary mirror rotation axis.

Consequently, in each frame, we detect the laser beam image height as a
function of the pixel column index. For each pixel column, we have thus access
to the time dependence of the photocenter height.

2.2 Laser ray path equation

Let us now derive the equation governing the path of the rays reflected on the
mercury surface. We will proceed by determining the impact point on the mirror,
then the reflection angles of the ray and finally, the impact position on the detector
lens. We then calculate the intersection of the reflected rays with the detector lens
plane, in a reference frame containing the lens plane and centred on the detector
optical axis.

2.2.1 Impact point on the mirror surface

In a reference frame centred at the vertex of the parabola, where the z axis coin-
cides with the rotation axis of the mirror (as shown in Fig. 2.7), the paraboloidal
surface is defined by

zparaboloid = a
(

x2 + y2
)

, with a =
1

4F
, (2.3)

where F is the focal distance of the paraboloid.

All emitted rays are contained in a single plane (the laser source sagittal plane).
We consider the optical axis of the laser source to be contained in the plane y = 0,
and we define the angle α between the z axis and the laser source optical axis (as
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Figure 2.7: Drawing of the laser ray path with the different reference frames.

shown in Fig. 2.7), and X0 the x coordinate of the intersection between the laser
source optical axis and the mirror surface.

Let us now consider a second orthonormal reference frame (η, µ, ξ), as shown
in Fig. 2.7. Its origin is located at the impact point of the optical axis (i.e. the
point with coordinates

(

X0, 0, aX
2
0

)

), and the ξ axis is aligned towards the laser
source. Coordinates in this reference frame are defined by the change of variables





x
y
z



 =





cosα 0 − sinα
0 0 0

sinα 0 cosα









η
µ
ξ



+





X0

0
a ∗X2

0



 , (2.4)

= R (α)





η
µ
ξ



+ T , (2.5)

where we have defined the rotation matrix R (α) and the translation matrix T .

The equation of the paraboloid in the new reference frame is obtained by
inserting the change of variables in the paraboloid equation, and by isolating ξ.
This leads to

ξ1,2 =

(

2X0 sinα+ η sin 2α +
cosα

a

)

2 sin2 α
±

√
R

2 sin2 α
, (2.6)

with

R =
(

2X0 sinα+ η sin 2α+
cosα

a

)2

−4 sin2 α

(

η2 cos2 α+ 2X0η cosα− η
sinα

a
+ µ2

)

.
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In this reference frame the plane defined by the ξ and µ axes corresponds to
the laser source sagittal plane. Consequently, the impact points of the laser rays
on the mirror are given by Eq. 2.6 where we set η = 0. This leads to

ξ (µ) =

(

2X0 sinα+
cosα

a

)

2 sin2 α
−

√

(

2X0 sinα+
cosα

a

)2
− 4 sin2 αµ2

2 sin2 α
. (2.7)

Expressing ξ (µ) in terms of the (x, y, z) reference frame coordinates thanks
to Eq. 2.5, we find the coordinates of the laser impact points (X (Y ) , Y, Z (Y ))
in the reference frame centred on the mirror vertex

X (Y ) = X0 +
1

2 sinα

((

−2X0 sinα+
cosα

a

)

−
√

(

−2X0 sinα+
cosα

a

)2
− 4 sin2 αY 2

)

, (2.8)

Y = Y, (2.9)

Z (Y ) = aX2
0 +

cosα

2 sin2 α

((

−2X0 sinα+
cosα

a

)

−
√

(

−2X0 sinα+
cosα

a

)2
− 4 sin2 αY 2

)

. (2.10)

We have chosen as the affine parameter of the intersection curve, the coordinate
Y of the impact point, as measured along the y axis.

2.2.2 Reflected laser rays

Let us now find the incidence angle of the ray impacting at a point labelled by
means of its Y coordinate. The projection in the (x, z) plane of any incident laser
ray makes an angle α with the vertical (cf. Fig. 2.8a).

In the laser source sagittal plane, using Eq. 2.2, the ray with an impact
parameter Y makes an angle θdiv (Y ) with the optical axis given by

θdiv (Y ) = arctan

(

Y

dπeS + ds+X(Y )
sinα

)

, (2.11)

where ds is the distance from the laser source to the rotation axis of the mirror
and (ds +X (Y )) / sinα represents the distance from the laser source output plane
πe to the impact point, as measured along the laser source optical axis. The
projection of the incident ray on the (y, z) plane makes an angle δy (Y ) with the
vertical axis (cf. Fig. 2.8b), which is given by the projection of θdiv on (y, z), i.e.

δy (Y ) = arctan

(

tan θdiv
cosα

)

. (2.12)
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(a) (b)

Figure 2.8: Incidence angle and reflection vector at the impact point, projected
on (a) the (x, z) and (b) the (y, z) planes.

Eq. 2.11 and Eq. 2.12 may be linearised with respect to Y , leading to linear
expressions

θdiv (Y ) =
Y

dπeS + ds+X(Y )
sinα

, (2.13)

δy (Y ) =
Y

cos (α) dπeS + cot (α) (ds +X0)
. (2.14)

Let us now define the slopes θx and θy at the impact point on the paraboloid

tan θx =
d

dx
(z (x, y))

∣

∣

∣

x=X(Y ),y=Y
(2.15)

tan θy =
d

dy
(z (x, y))

∣

∣

∣

x=X(Y ),y=Y
, (2.16)

where z (x, y) is defined by means of Eq. 2.3. From Fig. 2.8a and Fig. 2.8b, as we
know the expressions of δy, θx and θy, the application of the reflection law allows
to find the unitary director vector t of a reflected ray parametrised by Y . We find

t =
(tan (α− 2θx) ,− tan (2θy − δy) , 1)
√

tan (α− 2θx)
2 + tan (2θy − δy)

2 + 1
, (2.17)

where θx and θy are evaluated at the impact point (X (Y ) , Y, Z (Y )).
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In the matrix formalism, the equation of a reflected ray parametrised by Y is
thus given by





x
y
z



 =





X (Y )
Y

Z (Y )



+ k t, (2.18)

where k is the affine parameter of the ray impacting at the point with the coor-
dinates (X,Y,Z).

2.2.3 Laser ray impact in the lens plane

We define the detector lens position such as its optical axis coincides with the
reflected ray impacting at (X0, 0, Z0) (cf. Fig. 2.7). Let us assume that the
detector is located at a distance d from the paraboloid axis of rotation.

Inserting the impact coordinates (X0, 0, Z0) in the reflected ray equation, and
fixing x = d, we find the height h0 of the reflected ray impact

h0 = Z0 + (d−X0) cot (α− 2θX0
) . (2.19)

We consider the detector lens to be centred on this position. Furthermore, the
lens plane has to be perpendicular to the reflected ray that impacted the surface
of the mirror at X0. Consequently, from Fig. 2.7, simple geometrical arguments
lead to an inclination angle ρ of the detector equal to

ρ = arctan

(

h0 − aX2
0

d−X0

)

. (2.20)

Let us now find the impact coordinates of a ray in the lens plane. As we know
the height of the lens center (Eq. 2.19) and the inclination of the lens plane (Eq.
2.20), we can determine the plane equation of the detector first lens, which is
given by

x = d− tan ρ (z − h0) . (2.21)

Combining the definition of the detector lens plane in Eq. 2.21 with the first
relation of Eq. 2.18 of the reflected ray trajectories, and isolating the ray affine
parameter k, leads to

k =
1

t1
(d−X (Y )− tan (ρ) (z − h0)) , (2.22)

where t1 is the first component of the normalised directing vector t = (t1, t2, t3)
of the reflected ray, given by Eq. 2.17.

Inserting Eq. 2.22 into the two last relations of Eq. 2.18, we find the impact
point coordinates on the lens plane















y = Y +
t2

t1
(d−X (Y )− tan (ρ) (z − h0)) ,

z = Z (Y ) +
t3

t1
(d−X (Y )− tan (ρ) (z − h0)) .

(2.23)
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We now introduce the new variables (u, v) defined as

u = y,

v =
z − h0
cos (ρ)

.

(u, v) are the coordinates of the impact points as measured in the lens plane (see
Fig. 2.7). The reference frame is centred on the intersection of the optical axis
(the ray impact on the mirror in the y = 0 plane) with the lens plane. u and v
are the coordinates as measured in the detector sagittal and meridional planes,
respectively. Introducing (u, v) and the expressions of t1, t2 and t3 in Eq. 2.23,
we find

u = Y − tan (2θy − δy)
(d−X) + (h0 − Z) tan (ρ)

tan (α− 2θx) + tan (ρ)
, (2.24)

v =
(d−X) cos (α− 2θx) + (Z (Y )− h0) sin (α− 2θx)

sin (ρ+ α− 2θx)
. (2.25)

The former expression of (u, v) can be linearised by neglecting in Eq. 2.10
the Y 2 term in the square root, and by using the linearised expression of δy (Eq.
2.14) in order to obtain a linear expression of tan (2θy − δy), relatively to Y , i.e.

tan (2θy − δy) = P Y, (2.26)

with

P = 4a− 1

cos (α) dπeS + cot (α) (ds +X0)
. (2.27)

Furthermore introducing the expression of h0, we find the linear expression for
(u, v)

{

u = S Y,
v = 0,

(2.28)

where we have defined

S = 1− P

(

(d−X)− (Z0 − h0) tan (ρ)

tan (α− 2θx) + tan (ρ)

)

. (2.29)

In this linearised form, the reflected beam impacts the lens plane on a horizontal
line, passing through the lens center. In the sagittal plane, as the relation between
the impact coordinate on the mirror Y and the one on the lens (u) is linear, this
means that the coordinates measured on the lens plane are a simple scaling of the
ones measured on the mirror. For information, in our case, the scaling factor S
for an impact radius of 1.5 m of the mirror is S ∼ 1.05. Thanks to this linear
relation, in the sagittal plane, light rays impacting the lens appear to emanate
from a single point source. For an impact radius of 1.5 m, the distance is of the
order dS ∼ 100m4.

4The determination of dS is presented in Appendix A.
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2.2.4 Wavelet effect

In the remainder, we assume that the effects of the wavelets only consist in a slope
variation at the impact point on the mirror, i.e. we assume that the modification
of the impact point position due to the presence of the wavelets is negligible
because of the small amplitude of the wavelets (A ∼ 10−6 m). So the wavelet
induces a local slope variation

θx 7→ θx +∆θx, (2.30)

θy 7→ θy +∆θy. (2.31)

Inserting these expressions in the non-linearised set of equations 2.28 for (u, v),
one finds

u = Y − tan (2θy + 2∆θy − δy)
(d−X) + (h0 − Z) tan (ρ)

tan (α− 2θx − 2∆θx) + tan (ρ)
, (2.32)

v =
(d−X) cos (α− 2θx − 2∆θx) + (Z (Y )− h0) sin (α− 2θx − 2∆θx)

sin (ρ+ α− 2θx − 2∆θx)
.

(2.33)

This expression can be linearised relatively to the slope perturbations ∆θx and
∆θy. Furthermore, assuming the same linearisation as for the unperturbed case
(and after some algebra), we find

u = SY − 2∆θy
(d−X0) + (h0 − Z0) tan (ρ)

tan (α− 2θx0) + tan (ρ)

−2∆θxPY
(d−X0) cos

2 (ρ) + (Z0 − h0) cos (ρ) sin (ρ)

sin2 (ρ+ α− 2θx0)
, (2.34)

v = 2∆θx
(d−X0) cos (ρ)− (Z0 − h0) sin (ρ)

sin2 (ρ+ α− 2θx0)
. (2.35)

These relations lead to the impact coordinates of the laser rays on the lens (ex-
pressed in the lens plane coordinate system), as a function of the slope modifica-
tion ∆θx and ∆θy induced by the wavelets at the impact point.

One very interesting result is that the v coordinate (i.e. the height as measured
on the lens plane) is a linear function of the slope variation ∆θx along the x
direction. Furthermore, the coefficient of proportionality is entirely determined
by the geometrical characteristics of the ray impacting the y = 0 plane (i.e. the
equation of the optical axes of the laser source and detector).

Let us now assume that a wavelet is propagating at the impact line of the
laser beam. Locally, we model the wave as a plane sinusoidal wave propagating
on a plane. If we assume that the wave front, characterised by the wave number
k and a frequency ω, is propagating along a direction forming an angle β with the
x direction, then its equation is

z = A sin (k (x cos β + y sin β)− ωt) . (2.36)
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Consequently, the equation of the Hg surface is, locally,

z = a
(

x2 + y2
)

+A sin (k (x cos β + y sin β)− ωt) , (2.37)

and the local slope variation in the x direction ∆θx due to the wavelets is given
by

tan (θX +∆θx) =
dz (x, y)

dx

∣

∣

∣

x=X,y=Y
, (2.38)

= 2AX +Ak cos β sin (k (X cos β + Y sin β)− ωt) , (2.39)

≃ tan θX +
1

cos2 θX
∆θX . (2.40)

Similarly, we find the expression of ∆θy. We thus obtain for the slope variation

∆θx = cos2 θXAk cos β cos (k (X cos β + Y sin β)− ωt) , (2.41)

∆θy = cos2 θYAk sinβ cos (k (X cos β + Y sin β)− ωt) . (2.42)

A wavelet propagating along the impact line of the laser beam on the mirror
thus creates a slope modulation ∆θx that oscillates with time. Consequently,
through Eq. 2.35, this leads to an oscillation of the impact coordinate v on the
lens.

By measuring the amplitude of the vertical oscillation on the lens, we may
derive the value of Ak cos β.

Furthermore, we have seen that the average impact line on the detector lens
plane (i.e. that of the unperturbed case) is a simple scaling of the intersection line
on the mirror. When the wavelets propagate along the impact line on the mirror,
the same oscillation is imposed to every point of the line, with a phase difference
that varies linearly (in our linear approximation) with the impact parameter Y .
Consequently, on the lens plane, the phase of the signal varies proportionally to
S Y k sin β.

For a concentric wavelet, β = 0 and all points on the line oscillate in phase.
The impact of a concentric wavelet is thus an horizontal oscillation of the whole
impact line on the detector. For a spiral wave, β 6= 0 and the different points of
the impact line oscillate with a phase difference.

2.3 Measurements

Series of measurements were conducted on the primary mirror of the ILMT, using
the instruments and method previously described. These tests were performed in
the workshop of the AMOS company.

Prior to the tests, we have determined sets of laser source heights and emitting
angles α (as well as the corresponding detector positions and angle ρ) allowing
the beam to impact at various mirror radii, ranging from 0.2 to 1.6 m.
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For each impact radius, we have recorded several 60 fps videos (of frames
similar to that in Fig. 2.6), each one composed of 600 frames (∼ 10 seconds). To
characterise potential lower frequency signals in the reflected beam oscillations, a
couple of longer videos (1800 frames) were acquired as well.

For each video frame, we then detected the beam line photocenter as a function
of the pixel column coordinate xd. These measured coordinates were then mapped
to the corresponding impact positions on the detector lens. This mapping was
done, as mentioned previously, using the CMOS-to-lens mapping relation derived
in Appendix A.

The (u, v) coordinates obtained for each frame were then re-sampled in a
regular grid with respect to the u coordinate.

Fig. 2.9 shows the time dependence of the v coordinate (i.e. the oscillation
amplitude) for each value of u (i.e. the distance to the optical axis, as measured
in the lens sagittal plane). The black/grey/white map indicates the amplitude of
the oscillation expressed in meters. This map is part of a 30 second video acquired
for an impact radius of 1.5 m.
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Figure 2.9: Time behaviour of the impact height v in the lens plane for each value
of u. The black/grey/white scale expresses the v coordinates in meter.

We have seen that the impact of a concentric wavelet (with a wave-front being
parallel to the impact line of the laser on the mirror) is an overall oscillation of
the line impacting the lens. In other words, the oscillations for all values of u are
co-phased. Consequently, in Fig. 2.9, a concentric wave would lead to oscillations
marked as exactly vertical lines, i.e. lines of constant height, and thus of constant
grey level. A close visual inspection of the figure shows that this is not the case.
All the lines defined by a same grey level are slightly inclined with respect to the
vertical direction in the figure. To see this inclination more clearly, on the right
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hand side of the figure, we have reproduced part of the data with an enlarged
time scale, on which we can clearly see the slight inclination of the lines. A close
visual inspection of all videos leads to the same conclusion. Consequently, this
tends to show the absence of concentric wavelets on the mirror.

All wave-fronts thus propagate along the impact line on the mirror with an
angle β. Furthermore, there is a seemingly periodic signal in the oscillation.

To further analyse the wavelets present and isolate their apparent frequency,
we used the Fourier transform of the photocenter time oscillation in meridian
planes. A periodic wave propagating (with an angle) across the impact line of
the laser beam on the mirror, will induce a periodic oscillation of the impact
points on the lens plane. Each point with a coordinate u on the lens will have the
same signal, but with a different phase. Consequently, if we calculate the Fourier
transform of the height oscillation as a function of time, for each coordinate u,
the absolute value of all these Fourier transforms will have a peak at the apparent
frequency of the propagating wavelet (although its complex component will differ).

To try to increase the Signal-to-Noise ratio of these peaks, we decided to
analyse average values of the Fourier transform modulus along the impact line on
the lens.

The resulting average Fourier transform modulus is shown as a function of the
frequency, in Fig. 2.10a.

We see the presence of several peaks at a frequency close to ∼ 8 Hz, which are
the signature of the seemingly periodic oscillation observed in Fig. 2.9.

As mentioned earlier, the test procedures were carried out in the workshop of
the private company AMOS. Because of health concern issues for the workers in
the workshop, these tests could not be carried out freely in the company and had
to be performed under severe time constraints.

Furthermore, to avoid the contamination of the workshop by mercury vapours,
the telescope tower was surrounded by a plastic cover, aimed to contain the mer-
cury vapours around the mirror. Although working with specific gas masks while
being around the mirror, the mercury vapours had to be extracted from this
plastic tent, in order to guarantee a mercury vapour concentration lower than a
critical value.

The mercury vapour extraction was done with an industrial fan, attached to
the telescope tower, close to the mirror. This fan was noticed to induce perturba-
tions on the mirror mercury layer, as will be shown in the following. Nevertheless,
stopping the fan for a too long period led to an increase of the mercury vapours,
quickly getting above the security threshold of the mask.

Consequently, very few measurements were carried out without the fan.

Fig. 2.10 shows the spectra acquired at a same impact radius, with an in-
creasing ventilation (v= 0, 1 and 2 in figure a, b and c, respectively). We clearly
see that the ventilation results in a dramatic drop of the Signal-to-Noise ratio of
the observed peaks, and leads to the appearance of numerous secondary peaks.

This tends to indicate that the fan induces wavelets on the mercury. Never-
theless, part of this parasite signal may be due to vibrations transmitted to the
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Figure 2.10: Average modulus of the Fourier of the height v as a function of time.
The different spectra correspond to cases with (a) no fan, (b) low fan level and
(c) a higher fan level.
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detector directly by means of the telescope tower (as the fan was attached to it).
Fig. 2.10c corresponds to the spectrum for a 10 second video. This shorter

recording results in a loss of Fourier frequencies probed, and the peak correspond-
ing to the spiral waves is almost not detectable anymore. About 95 % of the
recorded videos during the test sessions are of this third type, thus highly reduc-
ing the usefulness of the measurements.

Nevertheless, the fact that the frequency where the peaks are located in Fig.
2.10a still presents an excess in Fig. 2.10b and c, indicates that the spiral pattern
responsible for this signature is still present.

A first conclusion of these tests is that the on-site facility and testing will
require to minimize at maximum environmental induced vibrations.

Another interesting point is the position of the peaks at ∼ 8 Hz. Indeed, spiral
waves are quasi-stationary waves in the rotating reference frame attached to the
mercury. If λ is the wavelength of the spiral wave and β the angle between its
wave-fronts and the laser beam impact line on the mirror, then the apparent wave
length along the impact line is

λap = λ sin (β) .

For a given radius r of impact of the laser on the mercury, the propagation speed
of the wave is given by the azimuthal speed of the mercury

v = rωmirror,

where ωmirror = 0.78 (rad s−1) is the angular rotation speed of the mirror. Con-
sequently, the apparent frequency of the wave on the detector is

νap =
v

λap
=

sin (β) rωmirror
λ

.

Due to the spiral wavelet characteristics, we expect a rather high frequency
signature (& 20 Hz), but the observed frequency is about ∼ 8 Hz. This is thus an
argument in favour of the fact that the signal is undersampled.

The highest frequency being imaged by the detector is its Nyquist frequency
νNyq = 30Hz. Consequently, the limiting criterion on the accessible wavelengths
is given by ensuring that the apparent frequency νap is lower than the Nyquist
frequency νNyq. This gives

λ ≥ sin βr ωmirror
νNyq

.

For an apparent frequency higher (or a shorter apparent wavelength) the signal
will be under-sampled. Fig. 2.11 shows the accessible wavelength regime as a
function of the β angle, for different impact points.

Thus, as the apparent frequency of the spiral wavelet is low, on-site testing
of the mirror will necessitate the acquisition of longer videos, in order to better
probe the low frequency regime of the line oscillations.
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Figure 2.11: Accessible wavelength as a function of the β angle, for different
impact points. In the accessible part, the wavelets are sufficiently well sampled
by the camera.

Another possible improvement would be the use of the new camera generation
of the Imaging source company, capable of imaging at 150 fps.

Although the results of these first tests are quite limited because of the rather
hostile environment existing during the measurements, we may however conclude
that these first tests allowed the detection of the spiral wavelets and the differen-
tiation between the wavelet types.

Furthermore, we have seen that the transmission of vibration to the mirror
from the environment generates vibration on the mercury. As these will affect the
optical quality of the primary mirror, it will be mandatory to avoid all vibration
sources on the ILMT site.

Furthermore, we have proven that the instrument is now ready for on site
testing and optimisation of the ILMT primary mirror and that we will benefit from
the conclusions of these first tests to improve the sensitivity of the instrument, by
the acquisition of longer videos to better sample the lower frequency range and/or
by the use of a CMOS detector capable of higher frequency imaging.



Part II

ILMT observations of multiply
imaged quasars
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Chapter 3

Gravitational lensing theory

The ILMT has been designed to perform a photometric variability survey of a
narrow strip of sky, making it very suitable for the detection and follow-up of
photometrically variable sources such as supernovae and quasars.

In the second part of this thesis, we present an estimate of the number of
QSOs to be detected within the ILMT survey, and of the expected number of
multiply imaged sources among these caused by the presence of a deflector near
their lines-of-sight.

In Chapters 3 and 4, we introduce the different tools necessary to the study
of the gravitational lensing phenomenon and its statistical aspects. We then es-
timate the population of QSOs to be detected with the ILMT and apply these
different tools to the simulated catalogue, in Chapter 5 and 6, respectively. We
study the impact of various parameters on the expected number of detected grav-
itational lens systems, such as the instrumental resolution of the telescope, the
galaxy population type(s) and corresponding lensing model(s), and the cosmolog-
ical parameters.

The statistical sample of multiply imaged QSOs detected with the ILMT is
intended to be used as a cosmological probe. In order to make a sensitivity
comparison between various modelling approaches, in Chapter 7, we introduce a
new formalism to estimate the lensing probabilities, allowing us to compare the
sensitivity, as a function of the cosmological mass density, of the average optical
depth over the detected QSOs, and those of the deflector and the lensed source
redshift distributions.

3.1 Basic theory of gravitational lensing

Deflection angle

General Relativity predicts that a light ray undergoes deflection in a gravitational
field.

Let us consider a light ray propagating along a straight line, encountering the
most simple mass distribution imaginable: a point-like mass. The situation is
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depicted in Fig. 3.1. Due to the presence of the point-like object with a mass M ,
the light ray is deflected by an angle

α = −4GM

c2
b

b2
, (3.1)

where G represents the Cavendish gravitational constant, c is the light velocity
and b the impact parameter vector of the light ray in the plane containing the
point-like mass, perpendicular to the incoming light ray.

Figure 3.1: Light ray deflection due to a point-like object with a mass M .

Following the approach of Kochanek et al. (2005), let us now consider a light
ray passing through a three-dimensional mass distribution with volume density
ρ. The field equations of General Relativity can be linearised if the gravitational
field is weak. The deflection angle of an ensemble of mass points is then the sum
of the deflections due to the individual mass components.

The light ray’s spatial trajectory is described by (b1 (λ) , b2 (λ) , r3 (λ)), where
λ is the ray affine parameter. The coordinates are chosen such that, far from the
mass distribution, the incoming light ray propagates along r3.

The light ray is deflected by the mass distribution. If the size of the mass
distribution is negligible compared to the considered light ray path length, we can
use the geometrically-thin lens approximation. This implies that we consider all
the mass contained in the plane passing through the center of the mass distribu-
tion, perpendicular to the direction r3. Furthermore, the deflection of the ray is
supposed to take place when the ray hits the deflector plane.

If we define the impact parameter vector b (λ) = (b1 (λ) , b2 (λ)) of the light
ray with respect to the center of the mass distribution, the geometrically-thin lens
approximation implies b (λ) ≃ b, i.e. the impact parameter is independent of the
affine parameter λ.

The deflection angle α due to the mass distribution is obtained by adding the
contribution of all the mass elements in the distribution. Thus, the total deflection
angle α (b) as a function of the impact parameter is

α (b) = −4G

c2

∫

db′
∫

dr′3ρ
(

b′1, b
′

2, r
′

3

) b− b′

|b− b′|2
.

b is a two dimensional vector. Since the impact parameter is independent of r3, we
can perform the integration of the mass density ρ over r3. We define the surface
mass density Σ (b) as

Σ (b) =

∫

dr′3ρ
(

b1, b2, r
′

3

)

.
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Σ (b) is thus the mass density projected onto the plane perpendicular to the
incoming light ray. The expression of the deflection angle produced by the total
mass distribution becomes

α (b) = −4G

c2

∫

db′Σ
(

b′
) b− b′

|b− b′|2
. (3.2)

Eq. 3.2 thus permits to calculate the deflection angle induced by any known mass
distribution.

Deflection potential

The deflection angle may be expressed as deriving from a potential ψ. Using the
identity ▽ ln |b| = b/ |b|2 valid for any two-dimensional vector, Eq. (3.2) may be
writen as

α (b) = −▽ ψ, (3.3)

where

ψ =
4G

c2

∫

db′Σ
(

b′
)

ln
∣

∣b− b′
∣

∣ (3.4)

is called the deflection potential.

Furthermore, using the identity1 ▽2 ln |b| = 2πδD (b) and the definition of
the deflection potential from Eq. 3.4, one can show that ψ satisfies the Poisson
equation

▽2ψ =
8πG

c2
Σ (b) . (3.5)

Lens equation

Let us now consider an observer (O), a source (S) and a mass distribution acting
as a deflector (D), as shown in Fig. 3.2. Light rays emitted from the background
source are deflected by an angle α due to the presence of the foreground deflector.
Consequently, from the point-of-view of the observer, the position of the image
(I) is displaced by the angle θ − θs with respect to S.

From Fig. 3.2, it is straightforward to derive the relationship between the
angular position θs of the source and that of the image θ, measured relatively to

1This identity can be demonstrated by considering the integral

I =

∫
|b|≤R

▽2 ln |b| db,

with R ≥ 0 and by using the Green theorem in 2 dimensions to show that

I → 0 , if |b| < R andR → 0

I → 2π , if |b| = R andR → 0.
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O D

S

I

Figure 3.2: Illustration of the gravitational lensing phenomenon.

the deflector center D. We find

θs = θ +
DDS

DOS
α (DODθ) , (3.6)

where DOD,DDS and DOS are the different angular distances between O, D and
S. Eq. 3.6 expresses the angular position of the source as a function of the angular
position of the lensed image(s) as seen by the observer; it is the lens equation in
terms of angular coordinates.

Multiplying Eq. 3.6 by DOS and introducing the impact parameter vector
b = θDOD and the source position relatively to the optical axis bs = θsDOS, the
lens equation can be expressed in terms of physical distances defined in the source
and in the deflector plane

bs =
DOS

DOD
b+DDSα (b) . (3.7)

If the deflection angle α (b) induced by a given mass distribution is known, the
inversion of Eq. 3.6 or Eq. 3.7 allows to calculate the position of the lensed
image(s) formed due to the presence of the deflector near the line-of-sight of the
background source.

Adimensional formalism

In the lens Eq. 3.7, we can introduce the normalized variables x and y

x =
b

b0
(3.8)

y =
bs

b0

DOD

DOS
, (3.9)
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where b0 is a scaling factor corresponding to the Einstein radius b0 = θEDOD.
In this formalism, x = (x1, x2) is a two dimensional vector giving the position
of the lensed image in the deflector plane, normalized to the Einstein radius or,
equivalently, the angular position of the image, expressed in units of the Einstein
angular radius θE. y = (x1, x2) is a vector giving the position of the source,
projected on the deflector plane, normalized to the Einstein radius.

Injecting the new variables x and y in Eq. 3.7, we obtain the expression of
the dimensionless gravitational lens equation

y = x+ α̂ (x) , (3.10)

with the adimensional angle of deflection α̂ given by

α̂ = α (b0x)
DODDDS

b0DOS
. (3.11)

α̂ now derives from the adimensional deflection potential ψ̂ (x), i.e.

α̂ = −▽x ψ̂ (x) , (3.12)

with ψ̂ (x) being linked to the deflection potential ψ introduced in Eq. 3.4 by

ψ̂ (x) =
DODDDS

DOSb20
ψ (x) . (3.13)

The Poisson equation linking the adimensional deflection potential to the sur-
face mass density is

▽2ψ̂ = 2κ, (3.14)

where κ =
Σ(b0x)

Σcrit

and Σcrit =
c2DOS

4πGDDSDOD
.

In the following, unless mentioned otherwise, we exclusively use the adimen-
sional formalism and we omit theˆsign on the variables.

To summarise, considering a deflector with a surface mass density κ, we may
determine the deflection potential through Eq. 3.14, and the deflection angle using
Eq. 3.12. Once the expression of the deflection angle is known, we can determine
the position of the observed images of the background source for a given source
position by inverting the lens Eq. 3.10.

Amplification, caustics and critical curves

A beam of light emitted within a given solid angle around the source position is
distorted through the lensing event and appears distorted around the image posi-
tion because of the differential deflection. If the images are resolved, this distortion
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may be observed. When the image is unresolved, because the specific intensity of
the source is preserved (Etherington (1933)), the ratio between the solid angles
covering the lensed images and the source leads to an apparent amplification A
of the images, given by the ratio of the solid angles.

The lens Eq. 3.10 defines a univocal change of variables x 7→ y. The am-
plification A (x) of the images is given by the inverse of the determinant of the
Jacobian matrix A, called for this reason the amplification matrix

A (x) = (detA)−1 . (3.15)

The amplification matrix A is given by

A =

(

∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

)

=

(

1− ∂2ψ
∂2x1

− ∂2ψ
∂x1∂x2

− ∂2ψ
∂x1∂x2

1− ∂2ψ
∂2x2

)

. (3.16)

In its proper reference frame, the amplification matrix is diagonal with its
elements being the eigenvalues. We can define the convergence K as the isotropic
part of the eigenvalues and the shear γ as their anisotropic part. Consequently,
in its proper reference frame, the amplification matrix becomes

A =

(

K − γ 0
0 K + γ

)

. (3.17)

K is associated with the change in size and γ with the deformation of the light
beam through the mapping x 7→ y.

Using the conservation of the trace and the determinant of the matrix through
its representation in different reference systems, and using the Poisson equation
(3.14), comparison between Eq. 3.16 and Eq. 3.17 leads to

K =
trA
2

= 1− κ

γ = ±

√

(

trA
2

)2

− detA

A (x) = (detA)−1 =
1

(1− κ (x))2 − (γ (x))2
.

The critical curves are defined as the region where the determinant of the
amplification matrix is null. Through Eq. 3.15, we see that the critical curves
correspond to regions in the image plane with infinite amplification. The image
of the critical curve in the source plane is called the source caustic. A source on
a caustic will give rise to infinitely amplified images formed on the critical curves.
The caustic defined in the source plane defines the regions within which a source
is multiply imaged as seen by a fixed observer. One way to understand this is the
following.

Let us consider a source (S) emitting light rays which are deflected by a lens
(D) before reaching an observer (O), as shown in Fig. 3.3.
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Figure 3.3: Principle of the formation of multiple images inside a caustic (Refsdal
and Surdej (1994)).

Considering the wave-front of the emitted light (i.e. the surface perpendicular
to all the rays), the presence of the deflector curves the wave-front which eventually
may fold on itself in some areas. If the observer is located in one of these regions,
several wave-fronts may arrive to him from different directions. Consequently,
because several rays are arriving from different directions, he sees multiple images
of the source at the positions A, B and C.

The surface defining the volume in which multiple wave-fronts arrive to the
observer is called the caustic envelope. If the source is slightly displaced laterally,
the envelope moves as well and, eventually, the observer may get out of the volume
defined by the caustic envelope.

In the source plane, the curve delimiting the points where a source forms an
envelope containing the observer, is called the source caustic. The shape of this
caustic curve in the source plane is identical to that of the intersection of the
observer plane with the caustic envelope. In the following, when the concept of
caustic is used, we refer to the curve defined in the source plane.

3.2 Properties of simple deflectors

In the previous section, we have introduced the equations and concepts necessary
to study the gravitational lens phenomenon. In this section, we introduce and
study the peculiarities of three different mass models commonly used to represent
galaxy mass distributions. Namely, we study the Singular Isothermal Sphere (SIS)
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model in Section 3.2.1, the Singular Isothermal Ellipsoid (SIE) in Section 3.2.2
and finally the SIS model plus external shear in Section 3.2.3.

For each model, we have developed Matlab libraries that enable to

• find the position and the number of lensed images formed as a function of
the source position;

• calculate the amplification of a lensed image;

• calculate the shape of the caustics and critical curves.

All the figures in this section were constructed using these libraries.

3.2.1 Singular Isothermal Sphere (SIS) lens model

Spiral galaxies present a flat rotation curve, i.e. the one-dimensional line-of-sight
velocity of stars in the galaxy is observed to be constant as a function of the
distance to the galaxy’s center. Such a flat rotation curve cannot be explained
by the distribution of visible matter alone. In order to account for the observed
rotation curves, astrophysicists assume the presence of a mass halo composed of
dark matter and containing more than 90 percent of the galaxy’s mass.

The Singular Isothermal Sphere (SIS) mass distribution model was introduced
to reproduce the mass distribution in the halo of spiral galaxies and reproduces
pretty well the mass ditribution in elliptical galaxies. It aims at reproducing the
observed flat rotation curves.

We thus show hereafter how to describe a mass distribution in which a test
particle’s azimuthal speed v would keep a constant value whatever the radius of
its orbit. The speed of the particle (a star for instance) has to be such that the
centrifugal acceleration compensates the gravity force g, we thus need

v2

r
= g = −▽ φ, (3.18)

where φ is the gravitational potential.
The mass density ρ can be found solving the Poisson equation

△φ = ▽ · (▽φ) = 4πGρ. (3.19)

Introducing Eq. 3.18 in Eq. 3.19, we obtain for the density

ρ =
v2

4πG

1

r2
. (3.20)

We may show that this density profile corresponds to an isothermal gas in auto-
gravitating equilibrium. Indeed, the equation governing the behaviour of an auto-
gravitating gas at hydrostatic equilibrium is

−▽ p+ gρ = 0, (3.21)
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where p, g and ρ are the pressure, the gravity and the volume density fields,
respectively. Inserting the obtained density of Eq. 3.20 in Eq. 3.21, we obtain

p =
v4

8πGr2
=
v2

2
ρ. (3.22)

We see that an auto-gravitating gas following the density relation given in Eq.
3.20 shows a pressure law alike the density one.

Now, if we consider a perfect gas which particles are in Brownian motions, we
have the state equation of a perfect gas

p = ρ
kT

m
, (3.23)

where T is the temperature, k is the Boltzmann constant and m the mass of the
individual particles constituting the gas. From statistical physics, we know that
the one-dimensional velocity dispersion σ of the velocity distribution in the gas,
is linked to the temperature via the relationship

σ2 =
kT

m
. (3.24)

Thus, combining Eq. 3.23 and Eq. 3.24, we obtain a relation linking the one-
dimensional velocity dispersion to the pressure in the case of a perfect gas in
Brownian motions

p = σ2ρ. (3.25)

If this gas is isothermal then the velocity dispersion is constant all through the
gas cloud and we retrieve a pressure following the density law as in Eq. 3.22.
Thus, a gas having a density profile alike that given in Eq. 3.20 behaves as an
isothermal perfect gas in auto-gravitating equilibrium and we can assimilate the
stars of the galaxy to particles in brownian motions.

By comparing these equations, we further obtain

σ2 =
v2

2
, (3.26)

that we may insert in Eq. 3.20 in order to obtain the density of the SIS as a
function of the observed line-of-sight velocity dispersion σ

ρSIS =
σ2

2πG

1

r2
. (3.27)

The SIS surface mass density ΣSIS is obtained by projecting ρSIS on a plane
passing through the lens center

ΣSIS (b, φ) =
σ2

2Gb
. (3.28)
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Deflection potential and deflection angles

Let us consider an SIS mass distribution acting as a deflector on the light emitted
by a background source.

The dimensionless deflection potential ψSIS is obtained using the expression of
ΣSIS given in the previous section and solving the dimensionless Poisson equation
for the deflection potential

▽2ψSIS = 2κSIS , (3.29)

with κSIS =
ΣSIS
Σcrit

, (3.30)

= 2π
(σ

c

)2 DODDDS

DOS

1

b
. (3.31)

Expressing the Laplacian operator in cylindrical coordinates and taking into ac-
count the spherical symmetry of the deflector, leads to

1

b
∂b (b∂bψSIS) = 4π

(σ

c

)2 DODDDS

DOS

1

b
,

⇒ ψSIS = 4π
(σ

c

)2 DODDDS

DOS
b+A ln b+B,

where A and B are integration constants. As we are only interested in the gradient
of the deflection potential (fixing the deflection angle), we may set B = 0. The
term in ln b corresponds to the addition of a plane with a constant surface mass
density between the observer and the source, we thus set A = 0. The deflection
potential ψSIS of a SIS deflector thus becomes

ψSIS = 4π
(σ

c

)2 DODDDS

DOS
b. (3.32)

The deflection angles are calculated by inserting the deflection potential from
(3.32) in (3.12)

α = −▽ ψSIS ,

= −4πσ2

c2
b

b
. (3.33)

Using Eq. 3.11 defining the adimensional deflection angle, we find

α̂ = −x

x
(3.34)

and b0 =
4πσ2

c2
DDSDOD

DOS
, (3.35)

where b0 is the scale factor of the lens system.
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The lens equation and image positions

The 2-D dimensionless lens equation is obtained by inserting the expression of the
deflection angle in the lens Eq. 3.10

y1 =

(

1− 1
√

x21 + x22

)

x1,

y2 =

(

1− 1
√

x21 + x22

)

x2,

(3.36)

where (y1, y2) and (x1, x2) represent the cartesian coordinates of y and x, respec-
tively.

When the source, the deflector and the observer are perfectly aligned (y = 0),
we notice from Eq. 3.36 that all positions along the unitary circle in the deflector
plane (normalized to b0) are solutions. In other words, the background source is
imaged as a ring called the Einstein ring. In dimensional units, the radius RE of
this circle in the deflector plane, called the Einstein radius, is thus equal to the
normalisation factor b0. We define the Einstein angular radius θE as

RE = b0 = DOD θE, (3.37)

where DOD is the angular distance between the observer and the deflector.

Eq. 3.36 may be put in a scalar form by defining y =
√

y21 + y22 and x =
√

x21 + x22 and by adding the square of the two above equations. The scalar
equation can then be solved analytically and leads to

{

x = y ± 1 , if y < 1
x = y + 1 , if y ≥ 1.

Fig. 3.4a and Fig. 3.4b display different source positions and the corresponding
lensed image positions, repectively.

When the source is located outside the solid angle defined by the Einstein
circle (y > 1, cf. the white marker), there is only a single image of the background
source.

When the source is located within the solid angle defined by the Einstein circle
(y ≤ 1), there is formation of a second lensed image, which converges towards the
Einstein circle as the source gets closer to perfect alignment with respect to the
deflector. The two lensed images are located along the line passing through the
source and the center of the deflector, on each side of the deflector’s center . The
angular separation between the images is always equal to the Einstein angular
diameter.
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Figure 3.4: SIS deflector for different positions of (a) the source and (b) the
resulting lensed images. Amplification maps in the source (c) and the deflector
(d) plane, respectively. The source amplification is the sum of the moduli of
the amplifications of all the lensed images produced for a source located at that
position.

Critical curves and caustics

The amplification in the image plane is given by

A−1 (x) =
x− 1

x
. (3.38)

The tangential critical curve is the circle xt = 1 and the radial critical curve does
not exist and is degenerated into a single point located at x = 0.

The radial pseudo-caustic, image of the point x = 0, is the unitary circle in the
source plane projected on the normalized deflector plane. As seen in the previous
sub-section, there is formation of multiple lensed images whenever the source is
inside the unitary circle.

The total amplification in the source plane is obtained by adding the moduli
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of the amplifications of the two lensed images











A (y) =
2

y
, if y ≤ 1

A (y) =
1 + y

y
, if y > 1

We directly notice that even when there is no formation of multiple images (y > 1),
the background source is amplified due the presence of the deflector near its line-
of-sight .

Fig. 3.4c and Fig. 3.4d illustrate the amplification of the lensed images in
the source and the image plane, respectively. The closer the position of an image
to the critical curve, the more amplified is the lensed image. In Fig. 3.4c the
total amplification increases as the source gets closer to a perfect alignment with
respect to the deflector because the lensed images get closer to the critical curves,
as we can see in Fig. 3.4a and Fig. 3.4b.

3.2.2 Singular Isothermal Ellipsoid (SIE) lens model

The SIS deflector model represents very well the radial density dependence in
the spiral galaxy’s halos and elliptical galaxies. Nevertheless, the galaxy mass
distributions tend to be slightly more ellipsoidal than spherical. In order to take
into account the internal ellipticity of the galaxy mass distribution, we introduce
a new deflector model : the Singular Isothermal Ellipsoid (SIE) (Kormann et al.
(1994)).

Furthermore, we have seen that an SIS deflector produces at maximum two
lensed images. An SIS deflector does thus not permit to reproduce observed
gravitational lens configurations with 3 or 4 lensed images. We will see that the
introduction of the internal ellipticity in the SIE deflector model makes possible
to reproduce such image configurations.

Surface mass density

The SIE surface mass density is obtained by introducing an elliptical symmetry
to the SIS surface mass density ΣSIS, i.e. replacing b by b

√

cos2 φ+ f2 sin2 φ in
Eq. 3.28. The SIE surface mass density ΣSIE is thus given, in polar coordinates
(b, φ), by

ΣSIE (b, φ) =

√
fσ2

2Gb
√

cos2 φ+ f2 sin2 φ
, (3.39)

where σ is the line-of-sight central velocity dispersion, and where f is the ellipse
axis ratio. Note that the normalisation by the factor

√
f ensures that the mass

located inside an iso-density contour is identical to that for the case of the SIS
lens model. This mass profile corresponds to the projection in the lens plane of
an ellipsoid mass distribution with a radial dependence proportional to r−2.
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Deflection potential and deflection angles

The dimensionless deflection potential ψSIE is obtained by using the expression
of ΣSIE in Eq. 3.39 and by solving the dimensionless Poisson equation for the
deflection potential

▽2ψSIE = 2κSIE (3.40)

κSIE =
ΣSIE
Σcrit

=
c2DOSΣSIE
4πGDDSDOD

. (3.41)

The dimensionless deflection potential is given in polar coordinates by (Kormann
et al. (1994))

ψSIE =

√
f b

f ′

[

sinφ arcsin
(

f ′ sinφ
)

+ cosφ arcsh

(

f ′

f
cosφ

)]

,

with f ′ =
√

1− f2.
The deflection angle is calculated through the deflection potential using the

relation
α = −▽ ψSIE.

Along the deflector main axes, the deflection angles are given by (Kormann et al.
(1994), Claeskens (1999), Eq. 2.72)

α1 = −4πσ2

c2

√
f

f ′
arcsh

(

f ′

f
cosφ

)

,

α2 = −4πσ2

c2

√
f

f ′
arcsin

(

f ′ sinφ
)

,

with b0 =
4πσ2

c2
DODDDS

DOS
, (3.42)

where b0 is the lens system scale factor. Using Eq. 3.11, the dimensionless deflec-
tion angles are given by

α̂1 = −
√
f

f ′
arcsh

(

f ′

f
cosφ

)

,

α̂2 = −
√
f

f ′
arcsin (f ′ sinφ) . (3.43)

Lens equation

Inserting the expression 3.43 of the deflection angle for an SIE deflector in the
lens equation 3.10 and introducing the polar coordinates (x, φ) in the deflector
plane (normalized to b0), the two-dimensional lens equation becomes

y1 = x cosφ−
√
f

f ′
arcsh

(

f ′

f
cosφ

)

, (3.44)

y2 = x sinφ−
√
f

f ′
arcsin

(

f ′ sinφ
)

. (3.45)
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In this case, the lens equation cannot be inverted analytically. Nevertheless,
(3.44)× cos φ + (3.45)× sin φ and (3.44)× sin φ − (3.45)× cos φ lead respectively
to the equations

x (φ) =

[

y1 +

√
f

f ′
arcsh

(

f ′

f
cosφ

)]

cosφ+

[

y2 +

√
f

f ′
arcsin

(

f ′ sinφ
)

]

sinφ,

0 =

[

y1 +

√
f

f ′
arcsh

(

f ′

f
cosφ

)]

sinφ−
[

y2 +

√
f

f ′
arcsin

(

f ′ sinφ
)

]

cosφ.

The latter equation is only a function of the angular coordinates of the lensed
images. Consequently, we can solve it numerically and insert the image angular
coordinates in the former relation to determine their radial coordinates.

Amplification, critical curves and caustics

The amplification in the image plane A (x) can be derived calculating the deter-
minant of the Jacobian matrix of the change of variables defined by Eq. 3.44 and
Eq. 3.45 and leads to

A−1 (x) = 1−
√
f

x
√

cos2 φ+ f2 sin2 φ
. (3.46)

The amplification in the image plane is shown in Fig. 3.5a for an SIE deflector
with f = 0.4. In Fig. 3.5b we have calculated the amplification in the source
plane A (y) for the same deflector. For every position of the source, we invert
the lens equation to find the positions of the lensed images and add the absolute
values of the amplifications of the lensed images.

As the deflector is singular, there is no radial critical curve. The tangential
critical curve equation is obtained, in polar coordinates, by nulling the expression
of A−1 (x) in Eq. 3.46. This leads to

xt (φ) =

√
f

√

cos2 φ+ f2 sin2 φ
. (3.47)

The tangential critical curve due to an SIE deflector with f = 0.4 is shown in Fig.
3.5c. Comparing the shape of the critical curve with the amplification map in the
image plane in Fig. 3.5a, we clearly see that the region of high amplification of
the images is situated along the tangential critical curve.

The equation of the radial pseudo-caustic is obtained by inserting x = 0 in
the lens equations 3.44 and 3.45, which leads to















yr,1 (φ) = −
√
f

f ′
arcsh

(

f ′

f cosφ
)

,

yr,2 (φ) = −
√
f

f ′
arcsin (f ′ sinφ) .
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(a) Amplification in the image plane (b) Amplification in the source plane
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(c) Image positions and critical curve
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(d) Source positions and (pseudo-)caustics

Figure 3.5: Amplification maps in the deflector (a) and source (b) planes for an
SIE deflector with f = 0.4. Various source positions (d) and the corresponding
lensed image positions (c).

The equation of the tangential caustic is obtained by inserting Eq. 3.47 of the
tangential critical curve in the lens equation. This gives



















yt,1 (φ) =

√
f cosφ

√

cos2 φ+ f2 sin2 φ
−

√
f

f ′
arcsh

(

f ′

f cosφ
)

,

yt,2 (φ) =

√
f sinφ

√

cos2 φ+ f2 sin2 φ
−

√
f

f ′
arcsin (f ′ sinφ) .

(3.48)

The radial and tangential (pseudo-)caustics due to an SIE deflector with axis ratio
f = 0.4 are shown in Fig. 3.5d. The radial pseudo-caustic has an elliptical shape
whereas the tangential caustic shows a characteristic diamond shape. Comparing
the caustics to the amplification map in the source plane, we directly see that the
tangential caustic curve defines an area of high amplification, especially near the
cusps (the corner of the diamonds), and the caustic curve is itself by definition
characterised by an infinite amplification.

The tangential critical curves for different values of the axis ratio f are shown
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in Fig. 3.6a. As f converges to 1, the SIE converges to the SIS mass distribution
and the critical curve converges toward the SIS critical curve, i.e. the unitary
circle.

The radial and tangential (pseudo-)caustics are shown in Fig. 3.6b for different
values of f . For f converging to 1, the radial pseudo-caustic converges to that of
the SIS model, the unitary circle. The tangential caustic is no longer degenerated
to the singularity at y = 0 : we notice the diamond shaped tangential caustic.
For values of f < 0.392, the tangential caustic crosses the radial one, giving rise
to the existence of so-called naked cusps.
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Figure 3.6: Tangential critical curves (a) and tangential and radial (pseudo-)
caustics (b) for different values of the f parameter.

Number and position of lensed images

The position of the lensed images are found by solving numerically the lens equa-
tions 3.44 and 3.45 for the case of the SIE deflector.

Fig. 3.5d and Fig. 3.5c show different positions of the source and the cor-
responding lensed images, respectively. When the source is located outside both
caustics (white markers), a single image is being formed. As soon as the source
crosses the radial pseudo-caustic curve, there is formation of a second image close
to the line-of-sight of the deflector (x ≃ 0). Observing the amplification in the
deflector plane in Fig. 3.5a, we see that this image is deamplified; from Eq. 3.46,
we confirm that the image is infinitely deamplified.

As the source gets closer to the deflector line-of-sight (darker markers), the
second image goes away from the center and gets more amplified.

When the source crosses the tangential caustic, there is formation of 2 new
lensed images appearing along the tangential critical curve. As seen in Fig. 3.5a,
the amplification of these images is infinite on the critical curve and they get
fainter as they move away from it. The positions of the lensed images in the case
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of perfect alignment are marked with crosses in Fig. 3.5c.

When the source is perfectly aligned with the deflector and the observer, there
is no longer formation of an Einstein ring as in the SIS case. Because of the
introduction of the deflector internal ellipticity, the ring breaks in 4 lensed images,
located by pair along the main axes of the deflector, on each side of the deflector
center.

We have seen that for very elliptical deflectors (f close to 0), the diamond-
shaped tangential caustic goes through the radial pseudo-caustic and there is the
appearance of naked cusps. In such cases, there exist configurations with the
formation of 3 lensed images when the source is located inside the tangential
caustic and outside the radial one. These configurations where the source is
located close to the cusp lead to a very high amplification of the background
source.

The main effect of introducing an ellipticity in the deflector, is to break the
degeneracy of the tangential caustic, making it possible to produce lens configu-
rations with 3 or 4 images.

3.2.3 SIS with external shear

In Section 3.2.2, we have seen that breaking the spherical symmetry of the SIS
deflector through the introduction of an internal ellipticity in the mass distribution
allows to take into account gravitational lensing configurations with more than 2
images.

The spherical symmetry of the SIS deflector can also be broken by adding an
external perturbation to the gravitational potential. Physically, this may corre-
spond to a perturbation due to the presence of a nearby massive object. The
effect of the companion is modelled by adding a constant external shear to the
SIS potential.

Deflection angle

For any mass distribution, the vectorial deflection angle α can be expressed in a
matricial form as follows

α =

(

a1 (x1, x2) 0
0 a2 (x1, x2)

)(

x1
x2

)

,

=









a1 + a2
2

0

0
a1 + a2

2



+





a1 − a2
2

0

0 −a1 − a2
2









(

x1
x2

)

,

(3.49)

where the deflection angle has been separated in its isotropic and anisotropic parts
in the second equation. The easiest non trivial way to introduce anisotropy in the
mass distribution is to set constant γ = (a1 − a2) /2 in the deflector plane.
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The SIS model plus external shear introduces an anisotropic term to the de-
flection angle of the SIS mass distribution. The deflection angle is thus given
by

α = αSIS + γ

(

1 0
0 −1

)(

x1
x2

)

,

=













− 1
√

x21 + x22
+ γ 0

0 − 1
√

x21 + x22
− γ













(

x1
x2

)

,

=





cosφ (rγ − 1)

− sinφ (rγ + 1)



 , (3.50)

where r and φ are the polar coordinates in the deflector plane, normalized to b0.
The lens equation 3.10 thus becomes





y1

y2



 =





cosφ (r (γ + 1)− 1)

sinφ (r (1− γ)− 1)



 , (3.51)

=











x1 −
x1

√

x21 + x22
+ x1γ

x2 −
x2

√

x21 + x22
− x2γ











. (3.52)

There is no simple analytical solution to this lens equation. It must thus be solved
numerically. By isolating cosφ and sinφ in Eq. 3.51 and by adding their squares,
we obtain a relationship that is no longer function of the angular coordinate φ.
This relationship can be expressed as a fourth-order polynomial in the radial
coordinate r

c4r
4 + c3r

3 + c2r
2 + c1r

1 + c0 = 0, (3.53)

with

c4 = (1 + γ)2 (1− γ)2 ,

c3 = −4
(

1− γ2
)

,

c2 =
(

1− y22
)

(1 + γ)2 +
(

1− y21
)

(1− γ)2 + 4
(

1− γ2
)

,

c1 = 2
(

y22 − 1
)

(1 + γ) + 2
(

y21 − 1
)

(1− γ) ,

c0 = 1−
(

y21 + y22
)

.

Solving the lens equation of an SIS plus shear deflector can thus be solved numer-
ically by finding the roots of Eq. 3.53 in order to determine the radial coordinates
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and inserting them in relation 3.51 to retrieve the angular coordinates of the lensed
images.

Amplification, critical curves and caustics

The amplification is given in polar coordinates in the image plane by

A−1 = 1− γ2 − 1 + γ cos (2φ)

r
. (3.54)

Fig. 3.7a and Fig. 3.7b illustrate the amplification in the image plane normalised
to b0 and in the source plane projected on the normalized image plane, respec-
tively, for a SIS deflector with an external shear γ = 0.4.

(a) Amplification in the image plane (b) Amplification in the source plane

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

im.1

im.2

im.3

im.4

x
1

x 2

 

 

critical curve

(c) Image position and tangential critical curve
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(d) Source position and caustic curves

Figure 3.7: Amplification maps in the deflector (a) and source (b) planes. Dif-
ferent source positions (d) and corresponding lensed image positions (c) for a SIS
deflector with an external shear γ = 0.4.

The tangential critical curve equation is found by solving A−1 = 0 in Eq.
3.54, which leads to

rt (φ) =
1 + γ cos 2φ

1− γ2
, γ 6= ±1, (3.55)
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with φ ∈ [0, 2π[ representing the polar angle. The bottom panel of Fig. 3.8 shows
the tangential critical curves for different values of the external shear γ. The
radial critical curve is degenerated to the point r = 0 because the deflector is
singular.

The tangential critical curve is shown in Fig. 3.7c for the same deflector as
before (γ = 0.4): we notice once again the good correspondence between the shape
of the tangential critical curve and the area of high amplification in the deflector
plane.

Figure 3.8: Caustics and critical curves for the SIS case with γ = 0.2, 0.4, 0.6 and
0.8. The radial critical curve is degenerated to the origin point in the deflector
plane and the radial pseudo-caustic is independent of the shear value.

The tangential caustic is obtained by inserting the equation of the tangential
critical curve in the lens equation, this gives



















y1 = cosφ
γ (cos (2φ) + 1)

1− γ
,

y2 = − sinφ
γ (1− cos (2φ))

1 + γ
.

(3.56)

The radial pseudo-caustic curve, found by considering the image at r = 0 in the
lens equation, is the unitary circle yr = 1.

The tangential and radial (pseudo-)caustics are shown in Fig. 3.7d, for γ = 0.4.
We see the correspondence between the tangential caustic and the area of high
amplification in the source plane.
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Source caustics for different values of γ are shown in the top panel of Fig. 3.8.
It is interesting to notice that there is no dependence of the radial pseudo-caustic
as a function of the shear: this pseudo-caustic is always identical to that for the
SIS case.

When increasing the external shear, the diamond-shaped tangential caustic
gets more elongated, and crosses the radial pseudo-caustic, giving rise to naked
cusps, similarly to the SIE case.

Number and position of the lensed images

Fig. 3.7d and Fig. 3.7c show different source positions and the corresponding
lensed images, respectively.

When the source is located outside both caustics (white marker) there is only
one image of the background source. As in the SIE case, crossing the radial
pseudo-caustic leads to the formation of a second image near the center of the
deflector, infinitely deamplified. Furthermore, crossing the tangential caustic leads
to the formation of two highly amplified images, emerging from the tangential
critical curve.

From Fig. 3.8, we see that there is also formation of naked cusps when the
deflector differs sufficiently from the spherical case, i.e. for values of the external
shear close to 1.

Consequently, the SIS plus external shear model also enables to represent
lensing configurations with 3 and 4 lensed images.

SIE versus SIS plus shear

Although the SIE and SIS plus external shear models are both capable to produce
lensing events with 3 or 4 images, these two models are fundamentally different.
To emphasize this difference, in this sub-section, we demonstrate that, even for a
very small asymmetry (i.e. f ∼ 1 and γ ∼ 0), the 2 models behave differently. We
show this by demonstrating that the SIS deflector model plus constant external
shear cannot be interpreted as a first order development of the SIE model.

Let us consider a Singular Isothermal Ellipsoid (SIE) which deflection angles
are given by Eq. 3.43 and let us develop the expression (3.43) for small deflector
ellipticities. The hypothesis of small ellipticities (e≪ 1) implies f ∼ 1 and f ′ ≪ 1.
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In Eq. (3.43), the arcsin and arcsh may be developed as

arcsh

(

f ′

f
cosφ

)

≃
[

arcsh

(

f ′

f
cosφ

)]

f ′

f
=0

+

(

f ′

f
cosφ

)









1
√

1 +
(

f ′

f cosφ
)2









f ′

f
=0

,

≃ f ′

f
cosφ and

arcsin
(

f ′ sinφ
)

≃
[

arcsin
(

f ′ sinφ
)]

f ′=0
+
(

f ′ sinφ
)





1
√

1− (f ′ sinφ)2





f ′=0

,

≃ f ′ sinφ.

Inserting these relations in Eq. 3.43, it comes

α1 ≃ −cosφ√
f
,

α2 ≃ −√
f sinφ. (3.57)

Developing the square roots to the first order, we get

1√
f

≃ 3− f

2
+©

(

(f − 1)2
)

,

√

f ≃ 1 + f

2
+©

(

(f − 1)2
)

.

Inserting these relations in Eq. 3.57, we obtain

α1 ≃ −3− f

2
cosφ,

α2 ≃ −1 + f

2
sinφ , for f ∼ 1. (3.58)

In the ellipsoid eigen reference frame, the lens equation in a matrix format
may be writen as

(

y1
y2

)

=

(

x1
x2

)

−
(

a1
a2

)(

x1
x2

)

,

=

(

x1
x2

)

−
(

a1+a2
2

a1+a2
2

)

iso

(

x1
x2

)

−
(

a1−a2
2

−a1−a2
2

)

an

(

x1
x2

)

,

where a1 = −α1/x1 and a2 = −α2/x2. In the second equality, we have developed
the deviation angle matrix in its isotropic and anisotropic parts. Inserting the
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expressions (3.58) in the lens equation, we obtain

(

y1
y2

)

SIE

=

(

x1
x2

)

−
(

1
b

1
b

)

iso

(

x1
x2

)

− 1− f

2

(

1
b

−1
b

)

an

(

x1
x2

)

,

(3.59)

with b =
√

x21 + x22. The isotropic contribution of the lens corresponds to that of
the contribution of a SIS. If we compare Eq. 3.59 with the equation obtained in
the case of an SIS deflector plus constant shear, i.e. (cf. Eq. 3.49)

(

y1
y2

)

SIS

=

(

x1
x2

)

−
(

1
b

1
b

)

SIS

(

x1
x2

)

− γ

(

1
−1

)

an

(

x1
x2

)

,

we see that, in the anisotropic contribution of the SIE deflector (developed for
small ellipticities), there appears a b−1 factor. Consequently, the SIS model plus
a constant external shear cannot be interpreted as the first order development of
an SIE model.



Chapter 4

Gravitational lensing
probabilities

Let us consider the population of QSOs detected in a survey, NQSO represent-
ing the number of detected sources. We would like to determine the number of
gravitationally lensed sources expected among this population.

Let us define τ , the probability that a given QSO is detected as a gravitational
lensing event with multiple lensed images, due to the presence of a foreground
deflector near its line-of-sight. The expected number of gravitational lenses NGL

among the detected sources is given by the relation

NGL =< τ > NQSO, (4.1)

where < τ > is the mean value of τ evaluated over all the sources.
In this chapter, we derive the expression of τ and we introduce the different

tools necessary for its estimation.

4.1 Geometrical cross section

Let us consider a fixed source S, an observer O and, at a given distance in between,
a plane perpendicular to the line-of-sight, containing a potential deflector D (see
Fig. 4.1).

When the deflector is located along the line-of-sight to the source, multiple
images of the background source are produced or an Einstein ring, depending
on the symmetry of the deflector. If the deflector is slightly moved away from
the source line-of-sight, the lensed images move relatively to each other. If the
deflector is moved further away from the source line-of-sight, at some distance, the
multiple images of the background source disappear, either by merging together
or by being gradually de-amplified.

We can thus define an area in the deflector plane where the presence of a
deflector leads to the formation of multiple images. This area is defined as the
geometrical cross section associated with the lens event.

73
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Figure 4.1: Illustration of the geometrical cross section.

We have so far considered a fixed source and we have defined the cross section
by moving the deflector with respect to the line-of-sight.

Let us now consider that the deflector position is fixed. If the source is per-
fectly aligned along the line-of-sight towards the deflector, we would see multiple
lensed images or an Einstein ring. We have seen that the mass distribution of the
deflector defines curves in the source plane called caustics inside which a source
will be seen as being multiply imaged by the observer.

If we project the source plane on the deflector plane, it is straightforward that
an angular displacement of the source in one direction is equivalent to the same
angular displacement of the deflector in the opposite direction. The area in the
deflector plane intercepted by the solid angle defined by the caustics is thus the
geometrical cross section.

Using the dimensionless formalism introduced in Section 3.1, the geometrical
cross section Σdim

geom can thus be calculated as follows

Σdim
geom = b20 (z)

∫

Sy

dy,

= b20 Σgeom,

(4.2)

where

• y = (y1, y2) are the angular coordinates of the source position projected on
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the deflector plane, normalised by the angular Einstein radius θE ;

• Sy is the area inside the caustic curves, projected on the deflector plane,
normalised to θE;

• b0 is the scale factor of the lens system, i.e. the Einstein radius in the
deflector plane.

The dimensional geometrical cross section Σdim
geom is a function, through its depen-

dence on b0, of the redshifts of both the source and the deflector, the universe
model and the deflector mass distribution. It is possible to isolate the effect of
the geometrical configuration of the lens system (i.e. the different distances be-
tween the observer, the deflector and the source). In Eq. 4.2, we have defined the
dimensionless geometrical cross section Σgeom as

Σgeom =

∫

Sy

dy (4.3)

which is calculated in the projected source plane, normalised to the Einstein
radius. Σgeom is no longer dependent on the geometrical configuration of the lens
system: it is a measure of the intrinsic ability of the mass distribution to produce
multiple images of the source.

The lensing cross section is thus calculated by integrating the source area
projected in the deflector plane, centred on the deflector, in which a source must
be located in order to lead to the formation of multiple lensed images.

Let us now examine the cross sections for the different deflector mass distri-
bution models introduced in Chapter 3: the SIS, the SIE and SIS plus external
shear.

SIS deflector

Let us consider a deflector whose mass distribution follows the Singular Isothermal
Sphere (SIS) law introduced in Section 3.2.1.

We have seen that the tangential caustic is degenerated to the origin and that
the radial pseudo-caustic is the unitary circle. The source area Sy (projected on
the deflector plane, normalised to θE) is thus the unitary circle. Consequently,
the dimensionless cross section is Σgeom = π.

In the case of the SIS deflector, the scale factor is given by Eq. 3.35.

The expression of the dimensional geometrical cross section given by Eq. 4.2,
particularized to the SIS deflector, thus becomes

Σgeom,SIS =
16π3

c4
σ4
(

DDSDOD

DOS

)2

, (4.4)

where σ is the central line-of-sight velocity dispersion, and where DDS, DOS and
DOD are the different angular distances between the observer, the deflector and
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the source. We see that the geometrical cross section is a function of the line-of-
sight central velocity dispersion up to the fourth power, and it is a function of the
distances between the observer, the deflector and the source.

SIE deflector

It is possible to define different geometrical cross sections depending on how we
define the lensing event. In Eq. 4.2, we have defined the lensing event as the
formation of multiple lensed images from the point-of-view of the observer. Sy
was thus defined as the area in which the source must be located to lead to
the formation of multiple images. The obtained Σgeom is thus the cross section
associated with the formation of multiple images.

We have seen that introducing an ellipticity to the deflector mass distribution
can lead to gravitational lensing systems with more than 2 images. We might in
fact be interested in the formation of multiple images with some given character-
istics.

Let us consider a deflector with a Singular Isothermal Ellipsoid mass profile,
as defined in Section 3.2.2. With such a deflector, the tangential caustic is no
longer degenerated as in the SIS case; it has a diamond shape. Depending on
the position of the source relatively to the tangential and radial (pseudo-)caustic
curve, such a deflector may lead to the formation of 2, 3 or 4 lensed images of
the background source. With an SIE deflector, we may now define a cross section
linked to a lensing event with a given number of lensed images; we can thus define
a cross section leading to the formation of 2, 3 or 4 lensed images or simply of
multiple images independently of the number. In Eq. 4.2, we would then define
Sy as the area in which a source must be located to lead to the formation of the
considered number of images.

Fig. 4.2 shows the dependence of different geometrical cross sections as a
function of the axis ratio f of the deflector. As the scale factor b0 is the same as
in the SIS case, we have only represented the dimensionless cross sections. The
value of Σgeom,SIS is shown as the dotted line. The right panel of the figure shows
the dependence of the caustic as a function of f .

When f equals 1, the deflector is a SIS. The tangential caustic is degenerated to
a single point. All sources inside the caustic (except on the optical axis) lead to the
formation of two lensed images. Consequently, Σgeom,2 = Σgeom,tot = Σgeom,SIS.

As f decreases, the tangential caustic increases in size and the radial pseudo-
caustic flattens. A source located inside the radial pseudo-caustic only leads to
the formation of 2 images whereas a source inside both caustics will be imaged
4 times. As the area inside the tangential caustic increases, Σgeom,4 increases.
Σgeom,2 decreases because of both the increase in size of the tangential caustic
and the decrease of the area inside the radial pseudo-caustic due to its flattening.
Σgeom,tot decreases because the total area leading to multiple images decreases
due to the flattening of the radial pseudo-caustic.

For f . 0.392, the tangential caustic goes through the radial one leading to
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Figure 4.2: (a)Dependence of the dimensionless geometrical cross section as a
function of the axis ratio f of an SIE deflector. As a reference point, the value of
the SIS dimensionless cross section is shown as a dotted black line. (b) Dependence
of the caustics as a function of the axis ratio f of the deflector.

the presence of naked cusps. A source inside the tangential caustic curve only is
seen into 3 images; consequently, Σgeom,3 increases as f decreases. The flattening
of the radial pseudo-caustic continues, leading to a decrease of both Σgeom,2 and
Σgeom,4.

The decrease of Σgeom,tot due to the flattening of the radial pseudo-caustic
is compensated by the increasing size of the tangential caustic. For the limit of
f converging to 0, the tangential caustic converges to a diamond shaped surface
with an area equal to π.

SIS plus external shear

Let us now examine the case of an SIS deflector with the presence of an external
shear. In this case as well, we can have configurations with 2, 3 or 4 lensed images.
The dependence of the dimensionless geometrical cross sections as a function of
the external shear γ is shown in Fig. 4.3a. Fig. 4.3b illustrates the behaviour of
the caustics with γ.

As in the case of the SIE deflector, when the shear γ is null, we retrieve
the results of the SIS deflector. When γ increases, Σgeom,4 increases due to the
increased size of the tangential caustic (cfr Eq. 3.48).

For the critical value γ = 1/3, there appear naked cusps and Σgeom,3 increases
and becomes dominant at the limit for γ converging to 1.

Nevertheless, there are a few fundamental differences with the SIE model:

• there is no change of the radial pseudo-caustic with the value of the shear γ.
Because of this, Σgeom,tot never gets below the SIS case and increases when
the cusp crosses the radial pseudo-caustic.
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Figure 4.3: (a)Dependence of the dimensionless geometrical cross section as a
function of the shear γ of an SIS deflector with external shear. As a reference
point, the value of the SIS dimensionless cross section is shown with a dotted
black line. (b) Radial and tangential caustics for different values of γ.

• the radial pseudo-caustic is fully located inside the tangential caustic for γ =
1. Consequently, the whole area becomes a region leading to the formation
of 4 lensed images and Σgeom,4 converges to π (instead of 0 in the SIE case).

• The area inside the tangential caustic diverges for γ → 1 (contrary to the
SIE case where it converges to π), leading to a divergence of Σgeom,tot.

4.2 Geometrical lensing volume and gravitational lens-

ing probabilities

For a source at a fixed distance, we may define a geometrical cross section in every
plane perpendicular to the source line-of-sight, located in between the source
and the observer. The envelope of all the cross sections defines the lensing

geometrical volume associated with the event. By definition, the geometrical
volume is the volume in which the presence of a deflector leads to the formation
of multiple lensed images from the observer point-of-view.

The probability of a source to be gravitationally lensed with the formation of
multiple images can be estimated through the probability of having a deflector
located within the lensing geometrical volume. For a small density of deflectors,
this is equivalent to calculating the optical depth associated with the source.

For information, the dependence of the geometrical lensing volume as a func-
tion of the source redshift is shown in Fig. 4.4a, for a deflector with σ = 161
km/s and f = 0.697 (corresponding to typical values for an early type galaxy
in the local universe), modelled as an SIE or an SIS deflector. In both cases, as
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Figure 4.4: (a) Dependence of the geometrical lensing volume as a function of
the source redshift for an SIS and an SIE deflector with σ = 161 km/s and
f = 0.697. (b) Contribution of the differential geometrical lensing volume as a
function of the deflector redshift for two different source redshifts. The values of
σ and f correspond to typical values for an early type galaxy in the local universe.
The volume is expressed in the comoving reference frame, assuming a flat FLRW
universe with H0 = 70 km s−1Mpc−1 and Ωm = 0.3.

the source redshift increases, its lensing volume increases as well. In the case of
the SIE deflector, we have reproduced the geometrical volume associated with the
formation of a given number of lensed images. Fig. 4.4b shows the contribution
of the different deflector redshift to the lensing volume, for two different source
redshifts.

Let us consider an observer and a QSO source at a redshift zs. In the case
where the deflector population is composed of all similar individuals, the proba-
bility of a lensing event τgeom is given by integrating the density of deflectors over
the geometrical lensing volume Vgeom, i.e.

τgeom = Csel

∫ ∫ ∫

Vgeom

ndV , (4.5)

where n is the density of deflectors at redshift z per unit of proper volume.

We have introduced a correction factor Csel to account for a non favourable
selection effect to the inclusion of gravitationally lensed events in a sample of
luminous QSOs. This correction factor was introduced by Surdej et al. (1993)
to take into account that part of the lensing events which have been discarded
through the process of the source population selection. If we consider a survey
for detection of QSOs for instance:

• the QSO candidates can be selected on the basis of their colours. The
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presence of a redder foreground galaxy can lead to the exclusion of part of
the GL systems in the colour selection process.

• On the other hand, QSOs are expected to be point-like sources. Multiple
merged images with the deflector may lead to an object with an appar-
ent ellipticity that can be discarded on the basis of the point-like selection
criterion.

Let us introduce in Eq. 4.5 a new reference frame b1, b2, b3 with b3 aligned
along the line-of-sight to the source and b1 and b2 are coordinates in a plane
perpendicular to the line-of-sight. It comes

τgeom =

∫ ∫ ∫

Vgeom

nd (b1, b2, b3) db1db2db3. (4.6)

Expressing b3 as a function of the deflector redshift z

τgeom (zs) =

∫ zs

0

{∫ ∫

SGL

db1db2nd (z)
cdt

dz

}

dz, (4.7)

where SGL is the area in the deflector plane in which the presence of a deflector
leads to the formation of multiple images and where cdt is the infinitesimal light
distance element along the line-of-sight at redshift z. In a flat FLRW universe
model, we have (Peebles (1993))

cdt

dz
=

c

H0 (1 + z)

1
√

(1 + z)3 Ωm,0 +ΩΛ,0

, (4.8)

where H0 is the value of the Hubble constant in the local universe, Ωm,0
1 is

the local universe value of the cosmological density parameter, and ΩΛ,0
2 is the

dimensionless Cosmological constant.
The density of deflectors is independent of b1 and b2 under the assumption

of an isotropic universe and can be taken out of the integration of b1 and b2.
The remaining integral in the plane perpendicular to the line-of-sight towards
the source, over the area SGL in which the presence of a deflector leads to the
formation of multiple images, is by definition the geometrical cross section Σdimgeom

Σdimgeom =

∫ ∫

SGL

db1db2 = b20

∫ ∫

ΩGL

dy. (4.9)

Inserting Σdimgeom in Eq. 4.7 leads to

τgeom (zs) =

∫ zs

0
Σdimgeom (z)n (z)

cdt

dz
dz. (4.10)

1Ωm,0 is the ratio between the energy density in the local universe ρ0 and the critical density

ρcrit =
3H2

0

8πG
.

2ΩΛ,0 = Λc2/3H2
0 , where Λ is the cosmological constant.
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In order to perform this integration, we need an expression for the density
of deflectors n (z). The expression of the density of deflectors will be different
depending on the population of deflectors we consider.

4.3 Effective cross section

Amplification phenomenon in GL

The gravitational lensing phenomenon may lead to an amplification of the flux
from the background source. Indeed, when a foreground deflector deviates the
light rays emitted from a background source towards the observer, the solid angle
of the lensed image(s) can be different in size and in shape with respect to that of
the non-lensed source. If a lensed image is not resolved, thanks to this change in
solid angle and because the specific intensity of the source is preserved, this image
will appear (de-)amplified with respect to the hypothetical non-lensed source. The
amplification factor is given by the ratio of the solid angles of the lensed image
and the unlensed source. Schneider (1984) has shown that at least one of the
images is always amplified.

If multiple images are formed but detected as a single point-like source (be-
cause of a too small angular separation), the amplification of flux received from the
background source is the sum of the moduli of the individual image amplifications.

These amplification phenomena can have different effects, among which the
possible inclusion of intrinsically fainter sources in a flux limited sample. This
is typical in the flux limited case of QSOs, because these objects are unresolved
by nature. Thanks to the increase of their geometrical lensing volume, their
lensing optical depth increases with their distance. Consequently, in this case,
the selection bias in flux limited samples is favourable towards the inclusion of
gravitationally lensed sources. There is thus a bias in the calculation of a source
optical depth, due to the amplification.

Amplification bias effect

How can we properly take into account the impact of the amplification bias in
gravitational lensing statistics? Let us first have an idea of the context in which
we want to know the impact of the amplification phenomenon.

Our goal is to estimate the number of gravitational lens systems NGL that
will be detected in the population of NQSO within the ILMT survey. In order to
determine NGL, we must estimate the mean lensing probability 〈τ〉 through the
population of QSOs and we will then use the relation

NGL = 〈τ〉NQSO. (4.11)

Defining the distribution n (m, z) as a function of their apparent magnitude
and redshift of the detected sources (per solid angle), 〈τ〉 may be calculated via
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the

〈τ〉 = 1

NS

∫ ∫

n (m, zs) τ (m, zs) dmdzs, (4.12)

whereNS is the number of sources observed per solid angle unit and τ (m, zs) is the
lensing probability of a source with redshift zs and observed apparent magnitude
m. τ is thus to be understood as the probability that a source with an apparent
magnitude m and redshift zs, is lensed with formation of multiple images.

The number of gravitational lens systems dNL (m, zs) per solid angle, with a
source in the redshift range [zs, zs + dzs] and an apparent magnitude (after the
lensing event) in the range [m,m+ dm], is thus given by

dNL (m, zs) = n (m, zs) τ (m, zs) dmdzs. (4.13)

We have seen that gravitational lensing can affect the apparent magnitude of
an unresolved source due to the amplification phenomenon.

Let us suppose that all lensing events with a source at redshift zs have a same
amplification 〈A〉. In Eq. 4.13, as we multiply τ (m, z) by the number of observed
sources with apparent magnitude between m and m+dm, τ (m, z) must take into
account that, due to the amplification, we are referring to a source population
whose magnitude is m after the amplification of the lensing event. If there was
no amplification due to the lensing event, these sources would have a magnitude
of m+ 2.5 log 〈A〉.

To ensure that τ (m, z) accounts for the amplification, we can decompose it as

τ (m, z) = B (m, z, 〈A〉) τgeom (z) , (4.14)

where τgeom (z) is the geometrical lensing probability introduced in Section 4.2,
taking into account the increase of the geometrical lensing volume with the in-
creasing source redshift, and with

B (m, z, 〈A〉) = n (m+ 2.5log 〈A〉 , z)
n (m, z)

(4.15)

being the amplification bias. The effect of the amplification is thus taken into
account by introducing a correction factor to τgeom.

In real lensing events however, the amplification A of the background source
is different depending on the deflector position in the lensing volume. In order to
take the variation of this amplification into account, when calculating τ (m, zs),
the correction factor in Eq. 4.14 is used as a weighing factor while integrating over
the geometrical lensing volume. τ (m, zs) is thus calculated through, similarly to
Eq. 4.7

τ (m, zs) =

∫ zs

0

{∫ ∫

SGL

B (m, zs, A (b1/b0, b2/b0)) db1db2 nd (z)
cdt

dz

}

dz,
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where nd (z) is the density of deflectors in the proper volume. Introducing the
dimensionless formalism leads to

τ (m, zs) =

∫ zs

0

{

b20

∫ ∫

Sy

n (m+ 2.5logAtot (y) , zs)

n (m, zs)
dy nd (z)

cdt

dz

}

dz. (4.16)

As for the geometrical cross section, we can define the dimensional Σdimeff and
dimensionless Σeff effective cross sections

Σdimeff = b20

∫ ∫

Sy

n (m+ 2.5logAtot (y) , zs)

n (m, zs)
dy,

= b20Σeff ,

(4.17)

that know accounts for the bias introduced by the amplification. The effective
optical depth of a lensing event becomes

τ (m, zs) =

∫ zs

0
b20 Σeff nd (z)

cdt

dz
dz (4.18)

Although the definition of Σeff in Eq. 4.17 is the proper way to take into
account the impact of the amplification bias on the lensing cross section, the
effective cross section is commonly calculated as

Σeff = b20

∫ ∫

SGL

N (m+ 2.5logA (y))

N (m)
dy (4.19)

where N (m) is the DNCF of the observed sources as a function of their observed
apparent magnitude

N (m) =

∫ zmax

zmin

n
(

m, z′
)

dz′. (4.20)

where zmin and zmax define the redshift range of the sources.
The definition of Eq. 4.19 is actually used for historical reasons because the

amplification bias was initially introduced considering a mean amplification 〈A〉.
After its introduction, this definition has been adapted (apparently not accounting
for the mean amplification assumption) by using the DNCF ratio as a weighing
factor over the entire lensing volume.

Calculating the expression of Σeff via Eq. 4.19 implies the assumption

N (m+ 2.5logA)

N (m)
=
n (m+ 2.5logA, zs)

n (m, zs)
(4.21)

for all values of A and zs. In other words, it assumes that the slope of n (m, zs)
as a function of m is independent of the redshift.
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To check the reliability of this assumption, we have compared the dependence
of the ratio of n (m, zs) between different magnitudes, as a function of the redshift.
The observational data used comes from the quasar catalogue of the SDSS-DR7.

Fig. 4.5a shows the distribution of the QSOs from the SDSS-DR7 in the
(m, zs) plane. Due to the selection strategy of the SDSS, this constitutes a fairly
complete source sample for m < 19.1 and zs < 2. We thus use this homogeneous
sample to check the slope dependence of n (m, zs) (as a function of m) with the
redshift.
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Figure 4.5: (a) Distribution of the apparent magnitude i of the QSOs detected in
the SDSS-DR7 catalogue of quasars. (b) Ratios between the number of quasars
in different magnitude intervals as a function of various redshift values. The
dashed lines show the average values of the different ratios, whereas the continuous
lines represent the ratios of the DNCF, evaluated at the considered apparent
magnitudes, and restricted to the same redshift range.

For different redshift positions ranging from 0.5 to 2, we calculate the mean
value of n (m, zs) in areas around the magnitudes i = 18, 18.6 and 19. The areas
in the (m, zs) plane over which the mean value of n (m, zs) is calculated are shown
in Fig. 4.5a. We then compare the dependence of the ratios n (19, zs) /n (18.6, zs)
and n (19, zs) /n (18, zs) as a function of the QSO redshift. The results are shown
in Fig. 4.5b. There is no clear trend for a redshift dependence of these ratios.
Although this sample of sources does not span over a sufficiently wide range of
magnitude and redshift to ensure that Eq. 4.21 holds over the entire population
of QSOs to be detected with the ILMT, we assume that this relation is verified.

We thus follow the definition of Σeff in Eq. 4.19 and we define the amplifica-
tion bias B as the ratio

B =
N (m+ 2.5logA (y))

N (m)
. (4.22)
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4.4 Instrumental resolution effect

Let us consider two point-like objects on the sky separated by an angle ∆θ, imaged
by an instrument. Because of the finite size of the instrument PSF, we can define
a critical value ∆θcrit under which the objects are detected as a single point-like
object. ∆θcrit is a function of the flux ratio between the two objects.

Let us now consider a gravitational lens system such that the angular separa-
tion between the multiple lensed images is too small, these images will be detected
as a single point-like object, i.e. a single image. If two such lensed images were the
only ones produced by the gravitational lens, then this will not be detected as a
lens event; if there were more than two lensed images, then this would be detected
as a lensing event with a number of lensed images smaller than the number really
produced.
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(a) 2 merged lensed images, resolution is 0.35θE
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Figure 4.6: Two different lensed image configurations. The deflector is an SIS
with external shear γ = 0.3.

As an example, Fig. 4.6a shows a lens system projected in the lens plane
normalised to b0 of an SIS deflector plus external shear γ = 0.3. The position of
the source inside both caustics leads to the formation of 4 images.

We define the parameter R as the critical distance measured in the deflector
plane normalised to b0 corresponding to the angle ∆θcrit, we thus have

R =
∆θcrit
θE

. (4.23)

R is the projection of the instrumental resolution on the deflector plane, nor-
malised to b0. The circles around the images represent the projection of the
instrumental resolution on the normalised deflector plane: the radius of such a
circle is R.

In Fig. 4.6a, as the distance between the two lensed images in the bottom right
part of the figure is smaller than R, these two images will be detected as a single
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point-like object. Consequently, when calculating the effective cross sections, this
source position will no longer contribute to Σeff,4 but will instead contribute to
Σeff,3.

Deciding on whether a source position leading to the formation of multiple
images should be contributing to one effective cross section or another is not
always straightforward, as in the configuration depicted on Fig. 4.6b. In this
case, the source position leads to the formation of 4 lensed images, with three of
them being detected as a single object. But in this case, the object is detected as
having an internal ellipticity. We choose that such image configurations contribute
to Σeff,3 although there are only 2 images detected. The reason for this is that
for such a configuration, there will be the detection of a lensing event which
will eventually be thoroughly analysed, leading to the conclusion that the non-
point like object is composed of multiple images unresolved because of the limited
instrumental resolution.

When calculating the effective lensing cross section through equation 4.19, the
finite instrumental resolution is taken into account by changing the definition of
Sy. It was previously defined as the region of the source plane projected on the
deflector plane (normalised to b0) where a source would lead to the formation of
multiple images of the background source, or leading to the formation of a given
number of images. We now define Sy as the region where a given number of
images is formed and detected as resolved.

The dimensional cross section depends on both the instrumental resolution
(fixed by ∆θcrit) and the Einstein angular radius θE (through the dependency on
b0 = DODθE). As θE is a function of the angular distances between the observer,
the deflector and the source, Σdimeff depends on

• the redshifts of the source zs and the deflector zd;

• the universe model parameters;

• the apparent magnitude of the source (through the calculation of the am-
plification bias effect).

On the other hand, the dimensionless effective cross section Σeff is only de-
pending on

• the source apparent magnitude,

• the projection R of the instrumental resolution in the deflector plane nor-
malised to θE.

We thus see that Σeff is no longer a function of the universe model and the
geometrical configuration of the lens system.
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4.5 Lensing probability for simple deflectors

The lensing optical depth expression in Eq. 4.18 was derived assuming that all
deflectors are identical. A real population of deflectors, however, is composed of
galaxies that may differ in size and shape. Furthermore, the cross section depends
on the mass distribution of the deflectors.

In Chapter 3, we have introduced two different mass distributions commonly
used in the lensing theory to represent the total mass profiles of galaxies, namely
the SIS and SIE profiles. Let us now derive an expression for the lensing optical
depth of a source, when modelling the deflectors as SIS or SIE models.

4.5.1 SIS deflectors

Let us consider a population of deflectors composed of spherically symmetric
galaxies modelled as SIS, the different individuals possibly differing from one an-
other by their mass. Because their mass dependence, the galaxies have different
efficiencies to produce a gravitational lensing event. Therefore, we have to take
into account the mass distribution of the deflector population. As the observ-
able linked to the mass distribution of galaxies, we consider their central velocity
dispersion σ along the line-of-sight.

We thus need an expression for the density of deflectors n (z, σ) (expressed
in terms of proper volume) at a given redshift and for a given σ. This can be
expressed as a function of the Velocity Dispersion Function (VDF) Φσ (σ) of
the deflector population. By definition, Φσ (σ) dσ gives the number of galaxies
per unit of comoving volume, with a central velocity dispersion between σ and
σ + dσ.

Consequently, the density of deflectors with a central velocity dispersion be-
tween σ and σ + dσ per unit of proper volume at redshift z is given by

n (z, σ) dσ = (1 + z)3 Φσ (σ) dσ. (4.24)

Eq. 4.18 considers a deflector population of identical individuals, with a central
velocity in the range [σ, σ + dσ[. The probability for a source to be gravitationally
lensed with the formation of multiple lensed images by the population of deflectors
with a line-of-sight central velocity dispersion in the range σ and σ+dσ is obtained
by inserting Eq. 4.24 in Eq. 4.18.

When calculating the probability of a background source to be gravitationally
lensed by the deflector population, we have to add the contribution of all the
different types of individuals, we thus have to integrate Eq. 4.18 over σ.

Consequently, when considering a population of spherical deflectors with a
given mass distribution, the probability τ that a background source with redshift
zs and magnitude m undergoes a gravitational lensing event due to the presence
of a deflector near its line-of-sight is given by

τ = Csel

∫ zs

0
b20dz

∫ σmax

σmin

(1 + z)3 Φ (σ)
cdt

dz
Σeff (m) dσ. (4.25)
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We thus need an expression for the VDF of the deflector population.

Deflector population VDF

The deflector population is the combination of early and late type galaxies. Al-
though late type galaxies are more abundant in the universe, we will see that
early type galaxies are much more efficient deflectors. Consequently, most of the
contribution to the lensing probability of a distant source is due to the population
of early type galaxies. In this subsection, we present the measured local universe
VDF for both galaxy type populations.

Treu et al. (2006) studied the properties of the elliptical galaxy population of
lenses detected in the SLACS survey, in combination with the velocity dispersion
measurements of the galaxies available in the SDSS data.

They have compared the measured stellar velocity dispersion σ measured in
the SDSS with the velocity dispersion σSIE obtained by fitting the lens events
with an SIE lens model.

The authors conclude that

• after correction for evolution of the stellar populations, the SLACS3 lenses
are on the fundamental plane of early type galaxies in the local universe.
SLACS lenses thus represent a fair sample of high velocity dispersion (σ &

240 km s−1) early type galaxies. In conclusion, taking into account the
selection process (in favour of very massive and luminous early type galax-
ies), the galaxies are indistinguishable from normal early type galaxies in
the local universe;

• the ratio between σ and σSIE is found to be fSIE = 1.01 ± 0.017 with an
rms scatter of 0.065. Lenses are extremely close to isothermal ellipsoids with
ρ ∝ r−γ

′
, with γ′ = 2.01+0.02

−0.03 ± 0.05 and an intrinsic rms scatter of 0.12.

Treu et al. (2006) have proved that we can use statistical properties measured
from the local universe population in order to characterise the lens galaxy popu-
lation. Furthermore, this lens population is very well modelled by an SIE profile.
In the present work, we thus assume that the statistical properties of the local
universe elliptical population properly characterise the population of deflecting
early type galaxy lenses (i.e. deflectors).

Basing their work on the SDSS data, Sheth et al. (2003) and Choi et al.
(2007) found that the velocity dispersion function of early type galaxies in the
local universe is well fitted by a modified Schechter function φ of the form

φ (σ) dσ = φ∗

(

σ

σ∗

)α

exp

(

−
(

σ

σ∗

)β
)

β

Γ (α/β)

dσ

σ
. (4.26)

3The Sloan Lens ACS Survey.
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Evolution processes of the galaxy population might be taken into account by
introducing a redshift dependence on the number density φ∗, on the velocity
dispersion σ∗ and the exponents α and β.

Choi et al. (2007) have determined the VDF of early type galaxies in the local
universe, using the SDSS DR5 data (the NYU-VAGC) with a completeness down
to σ ≈ 70 km/s using volume limited samples. The best fit parameters obtained
are given in Table 4.1. Unless mentioned otherwise, we will use the VDF shape
determined by Sheth et al. (2003) throughout this work.

φ∗ σ∗ α β
(h3Mpc−3) (kms−1)

Early type
(Choi et al. (2007))

8.0× 10−3 161± 5 2.32 ± 0.1 2.67 ± 0.07

Late type
(Chae (2010))

66.0 × 10−3 91.5 0.69 2.10

Table 4.1: VDF parameters for early and late type galaxies, derived in the local
universe.

On the other hand, Chae (2010) have determined the VDF for late type galax-
ies, fitting the data with the modified Schechter function Eq. 4.26. The best fit
parameters are given in Table 4.1.

Use of the VDF instead of the LF

The density of deflectors can be expressed as a function of the Luminosity Function
(LF) ΦL (L) of the deflector population, fixing the number of galaxies per unit
of comoving volume with a given luminosity. The density of deflectors with a
luminosity between L and L+ dL per unit of proper volume at redshift z is then
given by

n (z, L) dzdL = (1 + z)3 ΦL (L) dLdz. (4.27)

The probability for a lensing event given by Eq. 4.25 could be calculated
using the luminosity function of the galaxy population φL instead of the VDF,
and by integrating over all luminosities L, instead of integrating over the velocity
dispersion σ. The early type galaxy luminosity function was shown to be well
modelled by the Schechter LF (Schechter (1976))

φL (L) dL = φ∗L

(

L

L∗

)αL

exp

(

− L

L∗

)

dL

L∗

. (4.28)

We would still need to express the galaxy density as a function of the central
velocity dispersion because the effective cross section is a function of the σ and



90

not of the luminosity4.

The VDF would then be inferred from the LF using the observed power-law
relation between the galaxy luminosity and velocity dispersion (the Faber-Jackson
and the Tully-Fischer law for early and late type galaxies, respectively)

L

L∗

=

(

σ

σ∗

)β

. (4.29)

Note that equations (4.28) and (4.29) along with relation (4.26) imply

αL = α/β − 1 and φ∗L = φ∗/Γ (α/β) . (4.30)

Although the LF in combination with Eq. 4.29 have been used commonly for lens-
ing statistic study, Chae (2010) has shown the use of the LF should be avoided.
The author argues that the relations L = L (σ) and σ = σ (L) give different values
for the power slope β, because the scatter in the luminosity-velocity dispersion
correlation acts differently in the fits (Sheth et al. (2003)). To convert the lu-
minosity function into the VDF, one should take into account the scatter in the
L− σ correlation. To link φ (σ) to φL (L), one should use the relation

φσ (σ) =

∫

dL φ (L) p (σ|L) , (4.31)

where p (σ|L) is the probability of having a line-of-sight velocity dispersion σ for
a galaxy with a luminosity L.

Expression of τ for the SIS deflector population

Let us now use the VDF Eq. 4.28 to express the lensing optical depth τSIS of a
source when modelling the deflectors with an SIS profile.

For an SIS deflector, the link between the dimensional cross section Σdimeff and
the dimensionless cross section Σeff is

Σdimeff = b20Σeff ,with b0 = 4π
(σ

c

)2 DODDDS

DOS
. (4.32)

If we define Σdimeff (σ∗,m) as the value of the cross section for σ∗, it comes

Σdimeff (σ) =

(

σ

σ∗

)4

Σdimeff (σ∗,m) . (4.33)

Introducing Σdimeff (σ∗,m) in Eq. 4.25 and using the modified Schechter expres-
sion in Eq. 4.26 for the VDF, the lensing probability τSIS of a source, is given

4We could do the integration over the luminosity but then we would need to express the
effective cross section as a function of the luminosity. In order to do this, we could use the
Tully-Fischer relationship, still neglecting the dispersion in this relationship.
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by

τSIS = Csel

∫ zs

0

{

(1 + z)3
cdt

dz
φ∗

β

Γ (α/β)
Σdimeff (σ∗,m)

∫ σmax

σmin

(

σ

σ∗

)α+4

exp

(

−
(

σ

σ∗

)β
)

dσ

σ

}

dz. (4.34)

Introducing the new variable u =

(

σ

σ⋆

)β

, it comes:

du = β

(

σ

σ∗

)β−1 dσ

σ∗
,

= β

(

σ

σ∗

)β dσ

σ
,

⇒ dσ

σ
=

1

β

du

u
. (4.35)

The integral over σ in Eq. 4.34 can be expressed as

Iσ =

∫ σmax

σmin

(

σ

σ∗

)α+4

exp

(

−
(

σ

σ∗

)β
)

dσ

σ
,

=
1

β

∫ umax

umin

u
α+4

β exp (−u) du
u
,

=
1

β
Γ ((α+ 4) /β) , .

(4.36)

where umin = (σmin/σ∗)
β and umax = (σmax/σ∗)

β and where the last expression
is obtained by defining σmin = 0 and σmax → ∞, and by using the definition of
the gamma function

Γ (x) =

∫ +∞

0
tx−1 exp−t dt. (4.37)

Introducing the expression of Iσ into Eq. 4.34, we obtain

τSIS = Csel

∫ zs

0

{

(1 + z)3
cdt

dz
φ∗Σ

dim
eff (σ∗,m)

Γ ((α+ 4) /β)

Γ (α/β)

}

dz.

If we furthermore assume that there is no evolution of the deflector population
with redshift, then α, β and φ∗ can be taken out of the integral sign, which leads
to

τSIS (m, zs) = Cselφ∗
Γ ((α+ 4) /β)

Γ (α/β)

∫ zs

0

{

(1 + z)3
cdt

dz
Σdimeff (σ∗,m)

}

dz. (4.38)

This relation allows to calculate the lensing optical depth associated with a source
with a redshift zs and an apparent magnitude m. We will use this expression to
calculate the mean lensing probability in the expected population of QSOs to be
detected with the ILMT.
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4.5.2 SIE deflectors

Let us now consider a population of deflectors with an internal ellipticity described
by the SIE mass profile. Individuals may thus differ by both their mass and by
their internal ellipticity. The internal ellipticity of the deflector mass distribution
is thus modelled by the ellipticity of the mass distribution itself.

The observable chosen to be representative of the mass distribution ellipticity
is the axis ratio f of the isodensity ellipses of the projected mass distribution. As
in the case of the SIS, the observable representing the mass of the deflector is the
central velocity dispersion σ along the line-of-sight.

The density of deflectors per unit of proper volume with a central velocity
dispersion between σ and σ + dσ and an axis ratio in the range f and f + df , at
redshift z is given by

n (z, σ, f) dσdf = (1 + z)3 Φσ,f (σ, f) dσdf, (4.39)

where Φσ,f is the density of deflectors with a line-of-sight velocity dispersion σ
and mass distribution axis ratio f .

The probability of a source to be lensed by a deflector with σ and f in the
range σ + dσ and f + df , respectively, is obtained by inserting Eq. 4.39 in Eq.
4.18. To take into account the axis ratio f dependence in the mass distribution
of the deflector galaxy population, we integrate relation (4.18) over f and σ.

The probability τSIE that a source with a given redshift and apparent magni-
tude m undergoes a gravitational lensing event due to the presence of a deflector
near its line-of-sight, is thus given by

τ (m, zs) = Csel

∫ zs

0
dz

∫ σmax

σmin

dσ

∫ 1

0
df

{

(1 + z)3
cdt

dz
Φσ,f Σdimeff (σ, f,m)

}

.

(4.40)
Φσ,f is linked to the VDF of the deflecting galaxy population by means of the

relation
Φσ,f dσ df = Φσ p (f |σ) dσ df, (4.41)

where p (f |σ) is the probability of having an axis ratio f , given a galaxy with
velocity dispersion σ.

If we assume that the distribution of the central velocity dispersion σ and the
distribution of the axis ratio f in the population of the deflecting galaxies are
independent5, then τSIE may be written as

τSIE = Csel

∫ zs

0
dz

∫ σmax

σmin

dσ

∫ 1

0
df

{

(1 + z)3
cdt

dz
Φσ p (f) Σdimeff (σ, f,m)

}

,

(4.42)

5By definition of the conditional probability

p (f |σ) =
p (f ∩ σ)

p (σ)

where p (f ∩ σ) = p (f) p (σ) if the distributions of f and σ are independent.
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where p (f) is the density of probability of having an axis ratio f . As for the case
of an SIS deflector population, we use the VDF from Eq. 4.26.

Nevertheless, beside the expression of the VDF, we also need the probability
density function of the axis ratio in the deflector population.

The probability density p (f) associated with the axis ratio f can be obtained
by normalising the axis ratio function Φf of the axis ratio distribution for the
early type galaxy population observed in the nearby universe.

Axis ratio distribution of the deflector population

Koopmans et al. (2006) used data from a sub-sample of the SLACS (Bolton et al.
(2008)) survey (15 lenses), combining constraints from HST images with stellar
velocity dispersions from the SDSS database in order to study the correlation be-
tween isophotal-ellipticity and the mass distribution ellipticity found when mod-
elling the gravitational lenses. They conclude that

• the misalignment between the stellar component and the SIE lens model is
found to be null in the lens population ( 〈∆θ〉 = 0◦±3◦, with an rms spread
of 10◦);

• no external shear was necessary to better fit the lenses in addition to the
ellipticity of the deflectors ( 〈γext〉 . 0.035 );

• the elliptical isophotal and isodensity contours (from the fitted SIE) seem
to trace each other very well. The ratio of the ellipticity of the stellar light
(q⋆) and the SIE ellipticity qSIE is 〈qSIE/q⋆〉 = 0.99 with an rms of 0.11.
Hence, mass traces light also in the ellipticity. 〈qSIE〉 = 0.78 ± 0.03 (rms
0.12), which is in very good agreement with nearby E/S0 galaxies which
peaks between 0.7 and 0.8. Thus, they also conclude that ellipticities of the
SLACS lens galaxies are similar to those of nearby early type galaxies;

• below z ∼ 1, massive early type galaxies show a very homogeneous inner
mass density profile ( ρtot ∝ r−γ

′
, with an average value of 〈γ′〉 = 2.01+0.02

−0.03,
with an intrinsic spread σγ′ = 0.12, i.e. less than 6%). There is no evidence
of γ′ evolution with redshift below z = 1.

The work of Koopmans et al. (2006) tends to prove that the direction of the
mass ellipticity and the direction of the isophote ellipticity are the same.

Sluse et al. (2012) gave an independent confirmation of the link between the
ellipticity in the mass distribution and the isophote ellipticity.

Furthermore, we have seen in Section 4.5.1 that there are strong arguments in
favour of using local universe measurements of early type galaxies to characterise
the deflector population associated with the lensing events.

Consequently, the probability density p (f) associated with the axis ratio f
can be obtained by normalizing the axis ratio function Φf from the isophotes of
nearby galaxies.
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Figure 4.7: Axis ratio distribution for early and late type galaxies, based on SDSS
local universe data analyzed by Choi et al. (2007)

.

Choi et al. (2007) have determined the distribution of isophote axis ratios of
early type and late type galaxies (in the local universe), based on the analysis of
a cleaned sample of the SDSS DR5 called the NYU-VAGC (New-York University
Value-Added Galaxy Catalog). The determined distribution ΦEarly and ΦLate are
shown as a function of the axis ratio f in Fig. 4.7.

Expression of τSIE

Let us now introduce the VDF expression of Eq. 4.26 in Eq. 4.42. The scaling
factor b0 of an SIE deflector being the same as for the SIS case, the link between
the SIE cross section and the dimensionless SIE cross section is also given by Eq.
4.32. Consequently, expression of Σdimeff (σ∗) in Eq. 4.33 is still valid.

Inserting Eq. 4.33 in Eq. 4.42 and considering a VDF for the early type
galaxies with the shape of the modified Schechter function in Eq. 4.26, the optical
depth τSIE of a lensing event for a given source, when considering a population
of SIE deflectors becomes

τSIE = Csel

∫ 1

0
df

∫ zs

0
dz

{

(1 + z)3
cdt

dz
φ∗

β

Γ (α/β)
p (f)Σdimeff (σ∗, f,m)

(

∫ σmax

σmin

(

σ

σ∗

)α+4

exp

(

−
(

σ

σ∗

)β
)

dσ

σ

)}

dz.

As for the SIS case, performing the integration over σ when considering σmin =
0 and σmax → ∞, and using the definition of the Γ function (see Eq. 4.37), the
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probability τSIE for a source to be lensed is given by

τSIE = Csel

∫ zs

0
dz

∫ 1

0
df

{

(1 + z)3 φ∗
Γ ((α+ 4) /β)

Γ (α/β)

cdt

dz
p (f)Σdimeff (σ∗, f,m)

}

.

Furthermore, assuming that the deflector VDF does not evolve with redshift,
we obtain

τSIE (m, zs) = Cselφ∗
Γ ((α+ 4) /β)

Γ (α/β)
∫ zs

0
dz

∫ 1

0
df

{

(1 + z)3
cdt

dz
p (f)Σdimeff (σ∗, f,m)

} (4.43)

τSIE (m, zs) allows to calculate the lensing optical depth for a source with redshift
zs and apparent magnitude m, for a population of deflectors modelled with SIE
profiles. As noticed earlier, an SIE deflector allows to produce more than 2 lensed
images of a background source. Consequently, we can define cross sections asso-
ciated with the number of lensed images formed. In Eq. 4.43, depending on the
cross section used, we can thus calculate the probability of a source to be lensed
with the formation of 2, 3 or 4 lensed images.

4.6 Numerical considerations about the calculation of

the gravitational lensing optical depth and the
cross sections

In Sections 4.5.1 and 4.5.2, we have derived in Eq. 4.38 and Eq. 4.43 the ex-
pressions of the lensing optical depth τSIS and τSIE for a source with apparent
magnitude m and redshift zs in presence of a deflector population of SIS and
SIE, respectively. These expressions of the lensing optical depth take into ac-
count the bias introduced by the amplification phenomenon, as well as the effect
of the finite instrumental resolution.

In the framework of this thesis, we have implemented Matlab libraries allowing
to calculate τSIS and τSIE.

In both cases, the calculation of the optical depth is done through the calcu-
lation of an integral along the source line-of-sight (the redshift of the deflector) of
an integrand where the effective cross section Σdimeff appears as a weighing factor.

Σdimeff is itself defined as an integral that has to be calculated numerically.
Because of calculation time considerations, we cannot afford to re-calculate the
cross section integral for every redshift step.

We have seen that when decomposing Σdimeff as

Σdimeff = b20 Σeff = b20

∫

Sy(R)

N (m+ 2.5 logAtot)

N (m)
dy, (4.44)
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the dimensionless cross section is no longer directly a function of the redshifts of
the source and the universe model, the impact of these being all included in the
parameter R. Σdimeff is thus a function of the :

• the source and deflector redshifts zs and zd;

• the universe model parameters;

• the magnitude of the source m;

• the deflector parameters (σ∗, and f for the SIE deflectors);

• the differential number counts of the sources as a function of their magnitude
for the calculation of the amplification bias;

• the instrumental angular resolution (through the dependence of Sy on R =
FWHM/θE)

and the dimensionless cross section is a function of

• the magnitude of the source m;

• the axis ratio f for the SIE deflectors;

• the differential number counts of the sources as a function of their magnitude
for the calculation of the amplification bias;

• R the projection of the instrumental resolution on the normalised deflector
plane.

To perform the integration of the lensing optical depth, we have thus generated
a database of Σeff in which we pick up the needed values when integrating over
the deflector redshift. We have generated a database ranging over all possible
values of f , the apparent magnitude m and the parameter R.

The dimensionless cross sections are calculated performing Monte-Carlo inte-
gration. The numerical integration process is explained in the next section.

The Monte-Carlo calculation of the cross section

The calculation of the dimensionless effective cross section is performed by doing
a plain pseudo-random Monte Carlo integration of the following relationship

Σeff =

∫

SMC

S (y)
N (m+ 2.5 logAtot)

N (m)
dy =

∫

SMC

fΣ (y) dy

where

• SMC is the area in the source plane projected on the normalised deflector
plane including the entire area over which contribution to the cross section is
non-zero: it is called the Monte-Carlo integration surface, all the evaluation
points of the function during MC integration are generated in this area;
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• S (y) is a selection function that equals one if the point y has a non-zero
contribution to the cross section, and equals 0 otherwise. This function takes
into account whether the considered source position leads to the formation
of multiple images and whether these images can be detected considering
the finite instrumental resolution;

• Atot is the total amplification of the source at the position y, i.e. the sum
of the moduli of the multiple lensed image amplifications;

• fΣ (y) is a function giving the contribution of the point y to the effective
cross section

fΣ (y) = S (y)
N (m+ 2.5 logAtot)

N (m)
.

Through the Monte-Carlo integration the effective dimensionless cross section
value is thus calculated as

Σeff ≃ SMC

Niter

∑

iter

fΣ (yiter) ,

where yiter are the Monte-Carlo test points generated in the source plane, and
where Niter is the number of Monte-Carlo evaluation points.

For each iteration, we generate a random position yiter in the source plane
(projected on the deflector plane, normalised to b0) and determine whether this
position is inside the caustics. If it is inside the caustics, we invert the lens equation
to find the position of the images formed. If there is more than one image formed
and detected by the instrument, we calculate the total amplification of the source
Atot (yiter) and calculate the amplification bias.

All the operations at each iteration make use of the libraries mentioned in
Chapter 3. Each dimensionless cross section in the database was calculated with
106 iterations.

Thanks to these libraries and the database, we now have the tools to calculate
the lensing optical depths τSIS and τSIE for a population of sources.

In the next chapter, we will explain how we simulate the QSO sources to be
detected with the ILMT, for which we calculate τSIS and τSIE in Chapter 6.
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Chapter 5

Simulating the ILMT QSO
catalogue

In Chapter 4, we have derived relationships to calculate the probability τ that
a QSO source with a known redshift and apparent magnitude undergoes a grav-
itational lensing event due to the foreground deflector population. We want to
use this relationship to estimate the number of gravitationally lensed QSOs to
be detected with the ILMT. This is achieved by simulating the QSO population
that is to be detected in the ILMT survey and by calculating the lensing event
probability associated with each simulated source. Afterwards, using the aver-
age lensing probability 〈τ〉 through the source population, the number NGL of
expected gravitational lens systems is merely given by the relation

NGL = 〈τ〉 NQSO,

where NQSO is the total number of detected QSOs.
The aim of this chapter is to estimate the population of QSOs that is to be

detected in the ILMT survey.
We first determine the survey angular coverage in which QSO detection is

possible and the accessible cosmological volume defined by this solid angle. We
then determine the luminosity function of QSOs based upon recent and indepen-
dent surveys, fixing the density of QSOs as a function of their luminosity and
redshift. The final catalogue is constructed by simulating the QSO population in
the cosmological volume and keeping only sources whose apparent magnitude is
brighter than the survey limiting magnitude.

5.1 Survey angular coverage and accessible volume

Because of the ILMT zenithal pointing mount, at any time, the ILMT field of
view (FOV) is centred at a declination δILMT equal to the observatory latitude.

The ILMT is located at the Devasthal observatory which latitude is 29.3617◦N
(see Sagar et al. (2000) for a full description of the site), with a field-of-view of
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27′ by 27′ centred on the zenith.

Thanks to the Earth rotation, the angular area ΩILMT,tot accessible by the
ILMT is a strip of sky, centered at the constant declination δILMT . The width of
the strip is defined by the FOV North-South width ∆ILMT = 27′.

Figure 5.1: Projection on the unitary celestial sphere of the ILMT strip of sky
and the strip characterised by a low galactic latitude. QSO detection will only be
possible in the ILMT strip with a galactic latitude larger than |b| & 30◦.

Let us represent the celestial sphere as depicted in Fig. 5.1, on which we have
projected the Equatorial Plane (EQ), the direction of the North Celestial Pole
(NCP), defined by the Earth rotation axis direction and the vernal point γ. The
ILMT sky coverage is represented as a shade strip centered on δILMT .

Assuming a unitary celestial sphere radius and expressing the right ascension
α and the declination δ in radians, the solid angle ΩILMT,tot accessible by the
ILMT is given by

ΩILMT,tot =

∫ 2π

0

∫ δ+

δ−

cos (δ) dδ dα

= 2π [sin (δ)]
δ+
δ−

= 141.2 (sq.deg.),

where δ± = δILMT ± ∆ILMT/2 represent the declinations of the accessible strip
borders. The ILMT will thus cover 141.2 square degrees of the sky.

The ILMT strip crosses the galactic plane twice as shown in Fig. 5.1 where



101

we have projected the Galactic Plane (GP) and the North Galactic Pole (NGP)
on the celestial sphere.

Figure 5.2: Projection of the galactic coordinates in the Right Ascencion - Dec-
lination plane. The ILMT strip is marqued as a black line. The low galactic
latitude fields (|b| < 30◦) are shaded.

Low galactic latitude fields are very crowded fields due to the presence of
foreground milky way stars, making very difficult to detect fainter extra-galactic
objects. Consequently, the detection of QSOs will only be possible in areas at
high galactic latitude b (typically |b| & 30◦). Fig. 5.2 shows the projection of
the galactic coordinates in the Right Ascencion - Declination plane, where the
fields with a galactic latitude lower that |b| < 30◦ have been shaded. The strip
accessible with the ILMT is shown as a black line.

To evaluate the area ΩILMT where QSO detection is possible, we must thus
subtract the part of the ILMT strip at low galactic latitude, i.e. with a galactic
latitude b− < b < b+, with b± = ±bcrit.

We approximate the angular area corresponding to each intersection of the
ILMT and galactic strips by the part of the ILMT strip between right ascension
α1 and α2, where the center of the strip crosses the curves of constant galactic
latitude b+ and b−, respectively.

In order to find the expression of α1 and α2, we use the transformation law
between galactic coordinates (l, b) and equatorial coordinates (α, δ) given in Lane
(1979); Duffet-Smith (1988). The galactic latitude is related to the equatorial
coordinates as follows

sin b = cos δ cos δNGP cos (α− αNGP ) + sin (δ) sin (δNGP ) , (5.1)
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where (αNGP , δNGP )
1 represent the north galactic pole equatorial coordinates.

Inverting Eq. 5.1, we find the expression of α1 and α2

α1,2 = αNGP + arccos

[

sin b± − sin δILMT sin δNGP
cos δILMT cos δNGP

]

.

Inserting the values, we find that QSO detection is possible for right ascencions in
the range 8h12’ - 17h26’ and 23h28’ - 2h10’. The position of these fields at high
galactic latitude can easily be seen in Fig. 5.2.

The ILMT angular coverage at high galactic latitude ΩILMT is thus given by

ΩILMT = ΩILMT,tot − 2

∫ α2

α1

∫ δ+

δ−

cos δ dδ dα

= ΩILMT,tot − 2 (α2 − α1) (sin δ+ − sin δ−) .

The accessible extra-galactic FOV is given in Table 5.1 for different values of
the critical galactic latitude bcrit. The high galactic latitude condition excludes
about half of the accessible sky, leaving between 70 and 85 deg2. For information,
the total and high galactic sky when considering a range ∆ILMT = 30′ is also
indicated in the table.

FW total |b| > 30 |b| > 27.5 |b| > 25

27’ 141.2 70.2 78.1 85
30’ 156.8 77.9 86.7 94.4

Table 5.1: Total and high galactic latitude FOV accessible with the ILMT for
different values of the critical galactic latitude bcrit and the Field North-South
width (FW).

The solid angle ΩILMT defines a volume within which QSOs may be detected.
In a flat static universe, the volume element at distance D and of width dD defined
by this solid angle would simply be

dV = ΩILMTD
2dD. (5.2)

When considering a flat expanding FLRW universe, the latter relation is valid as
long as comoving distances are used. Furthermore, the comoving volume element
is more usefully expressed as a function of the redshift z which is directly accessible
through observation.

The infinitesimal comoving volume element dVc over the solid angle ΩILMT

defined in the redshift range [z, z + dz] as shown in Fig. 5.3 is

dVc = ΩILMT D
2
C

dDC

dz
dz, (5.3)

1In conventional units, αNGP = 12h49m and δNGP = +27◦24′.
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Figure 5.3: Variation of the comoving volume per unit of solid angle as a function
of the redshfit z in a flat FLRW expanding universe, for three different values of
Ωm = 0, 0.3 and 1.

where
dDC

dz
is the variation of the comoving distance as a function of the redshfit

and can be expressed as

dDC

dz
=

c

H0

1

E (z)
, (5.4)

with E (z) =

√

ΩM (1 + z)3 +ΩΛ

and where ΩM and ΩΛ are the local values of the dimensionless density parameters
(Peebles (1993); Hogg (2000)). The line-of-sight comoving distance Dc (z) of an
object with redshift z is obtained by integrating Eq. 5.4 over the redshift.

The volume defined by the ILMT survey coverage at high galactic latitude up
to a redshift z is obtained by integrating Eq. 5.3

VILMT (z) = ΩILMT

∫ z

0

c

H0

D2
c (z

′)

E (z′)
dz′ (5.5)

This integration as well as all cosmological distance determinations are performed
numerically using the cosmological Matlab library developed by E. Ofek2.

5.2 QSO Luminosity Function

We now know the expression of the cosmological volume accessible to the ILMT
observations in which QSOs are detectable. In order to simulate the QSO popu-
lation to be detected, we need to know how the population of QSOs is distributed
in this volume, i.e. the QSO population density all through the accessible volume.

2http://www.astro.caltech.edu/∼eran/matlab.html
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This information is contained in the QSO Luminosity Function (LF) giving the
density of QSOs per comoving volume unit, per interval of the QSO luminosity.
The LF can also be expressed as a function of the absolute magnitude of the QSO.
Before describing the QSO LF, in the next section, we remind the definition the
absolute magnitude and the K-correction.

5.2.1 Absolute magnitude and K-correction

Let us consider a QSO with a bolometric luminosity L (i.e. the total energy emit-
ted per time interval over all wavelengths). An astronomer observing this source
can measure its flux F which, in the UV/optical/infrared is commonly measured
along a logarithmic scale called the magnitude. The apparent magnitude of the
source is

m = −2.5 log10

(

L

4πD2
l

)

− Cst, (5.6)

where Dl is the luminosity distance and Cst the magnitude of a reference source
to set the zero point.

In order to compare the intrinsic brightness of objects at different distances, we
define the absolute magnitude M as the apparent magnitude of an object located
at a reference luminosity distance of 10 parsec,

M = −2.5 log10

(

L

4π102

)

− Cst (5.7)

= m− 5 log10

(

DL

10pc

)

(5.8)

= m−DM. (5.9)

The apparent magnitude m and the absolute magnitude are linked through the
term DM which is a function of the distance of the object, called the distance
modulus.

Astronomical observations are usually performed through a filter with a given
band width at a given wavelength. It is thus convenient to define the fluxes,
luminosities and the magnitudes relatively to the observed spectral window. For
observations performed at a wavelength λ, we thus define the luminosity at this
wavelength Lλ and the corresponding magnitudes mλ and Mλ calculated through
(5.6) and (5.9), respectively.

The monochromatic absolute magnitude Mλ does not provide any longer a
good comparison between the intrinsic brightnesses of sources located at different
distances.

Indeed, because of the universe expansion, a photon emitted by a source at a
wavelength λe is redshifted and is observed at a wavelength λo

λo = λe (1 + z) , (5.10)
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where z is the redshift of the object. Thus, when observing at a wavelength λ
objects at different distances (and thus with different redshifts), we are probing
different parts of the restframe spectra of the objects.

Furthermore, photons observed in the interval dλo were emitted in the interval

dλe =
dλo

(1 + z)
. (5.11)

The effective bandwidth defined by a filter in the object restframe thus contracts
as (1 + z) as the object redshift increases.

To account for these effects, when calculating the absolute magnitude of an
object we must introduce a correction term K, the K-correction, accounting for
the change of the restframe spectral window

M = m−DM −K. (5.12)

The absolute magnitude calculated through this equation allows a direct compar-
ison of the intrinsinc brightnesses of objects located at different distances.

Oke and Sandage (1968) and Kim et al. (1996) define the K-correction as

K (z) = 2.5 log10 (1 + z) + 2.5 log10

(
∫

F (λ)S (λ) dλ
∫

F (λ/ (1 + z))S (λ) dλ

)

, (5.13)

where F (λ) is the source spectral energy distribution as measured in its comoving
restframe and S (λ) is the filter transmission. The first term accounts for the
contraction of the bandwidth with redshift whereas the second term accounts for
the difference of flux density at the emission wavelength.

As seen in Eq. 5.13, the K-correction depends on the spectral energy distri-
bution of the source. As we are interested in QSOs, let us consider a typical QSO
spectrum as shown in Fig. 5.4, in its restframe. This synthetic QSO spectrum has
been constructed by Vanden Berk et al. (2001) who have combined QSO spectra
from the SDSS survey.

For wavelengths redder than the Lyα emission line, the QSO spectrum re-
sults from the superposition of a continuum spectrum described as a power-law
distribution Fcont that shows a wavelength dependence according to

Fcont (λ) ∝ λ−(2+αν), (5.14)

plus a contribution due to emission lines. The power-law contribution is due to
emission from the central regions of the QSO.

It is practical to separate the contribution to the K-correction due to the
continuum part of the spectrumKcont and due to the emission linesKem (Richards
et al. (2006),Ross et al. (2012)), i.e.

K = Kcont +Kem. (5.15)
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Figure 5.4: Composite spectrum of a QSO based upon observed SDSS spectra,
from Vanden Berk et al. (2001).

When comparing all QSOs in their restframe at redshift z = 0, the continuum
contribution Kcont is calculated by inserting the power-law form of the continuum
(5.14) into the K-correction definition (5.13). This leads to

Kcont = −2.5 (1 + αν) log10 (1 + z) . (5.16)
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Figure 5.5: K-correction for the SDSS i band: contribution of the continuum, the
emission lines and the total. The zero point of the K-correction is at z = 2 for the
continuum. The K-correction is part of the on-line material of Ross et al. (2012).

Kem is estimated after subtracting the continuum contribution from a QSO-
synthetic spectrum and by calculating the K-correction associated with the re-
maining spectral energy distribution (SED) of the QSO.
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Ross et al. (2012) have determined the K-correction as a function of redshift for
the SDSS i-band. The synthetic QSO spectrum used by the authors is composed
of an underlying continuum with αν = −0.5 and an emission line template. The
total K-correction and the individual contributions due to the continuum and the
emission are shown in Fig. 5.5.

Kem is actually the contribution from the emission lines to the apparent mag-
nitude. It can thus be used to retrieve the contribution of the emission lines to
the apparent magnitude of an object

mcont = mobs −Kem. (5.17)

mcont is the apparent magnitude of the central engine of the QSO by its own.
The absolute magnitude derived through

M = mcont −DM −Kcont (5.18)

is thus a measure of the energy output of the central engine of the AGN, the
continuum absolute magnitude (Richards et al. (2006)).

Finally, instead of K-correcting the continuum absolute magnitude to a com-
mon restframe at z = 0, we may K-correct to a redshift equal to the mean redshift
of the QSO population considered. As the population of QSOs seems to peak
somewhere around redshift z ∼ 2, it is convenient to chose this redshift for the
reference frame. This is done by retrieving the contribution of Kcont (z = 2) at
the redshift z = 2. We can define the absolute continuum magnitudeM[z=2], with
a zero point of the continuum K-correction at z = 2

M[z=2] = mobs −DM −Kem −Kcont,[z=2], (5.19)

where

Kcont,[z=2] = −2.5 (1 + αν) log (1 + z) + 2.5 (1 + αν) log (1 + 2) .

K-correcting closer to the median redshift value of the QSO population has the
advantage that we need to extrapolate less the QSO spectra. Furthermore, in the
particular case of the SDSS i-band, the effective wavelength of the filter projected
on the restframe of the QSO at redshift z = 2 is ∼ 2250 A◦; around this wave-
length, QSO spectra are relatively free of strong emission lines as can be seen in
Fig. 5.4.

As the ILMT will mainly image through the SDSS-i’ filter, we are interested
in the QSO optical LF expressed in terms of the absolute magnitudeMi′ in the i′-
band. Because the SDSS i and i′ bands are very similar to each other and because
most of the literature publications are expressed in the i band, we have performed
the simulation of the QSO population in the SDSS i magnitudes, instead of i′.

Consequently, in what follows, except whenever mentioned otherwise, we use
the absolute continuum magnitude in the SDSS i band, K-corrected with the zero
point of the continuum K-correction at z = 2. We subsequently omit the [z = 2]
subscript in our notations.
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5.2.2 LF and evolution

The QSO LF has been shown to be well represented by a double power law form
(see Johnston (2011) for a review on the topic). When expressed as a function of
the absolute magnitude M

Φ (M) =
Φ∗

100.4(α+1)(M−M∗) + 100.4(β+1)(M−M∗)
, (5.20)

where Φ∗ is the characteristic density, M∗ the characteristic absolute magnitude,
and α and β the bright and faint end slope, respectively. The typical shape of the
QSO LF with this expression is shown in Fig. 5.6. Adopting a semi-logarithmic
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Figure 5.6: Typical double power law LF of QSOs. The LF shown corresponds to
the LF in Ross et al. (2012) at a redshift z = 2.

scale, the LF presents a break at the absolute magnitude M∗, the two parameters
α and β fixing the slope of the LF for objects brighter and fainter than M∗,
respectively. The LF characteristic density Φ∗ represents the double of the LF
value at the characteristic absolute magnitude.

The space density of QSOs evolves strongly with redshift and luminosity and
the determination of the QSO LF and its redshift dependence have been the
subject of many studies (see Table 5.2 for instance, for an overview of the recent
determination of the QSO LF evolution in the UV, the optical and the near infra-
red).

The redshift dependence of the QSO population space density is modelled
by introducing a redshift dependence of the LF parameters Φ∗, M∗, α and β.
Different families of evolution models exist depending on the choice of the redshift
dependence of these parameters. We differentiate
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• Pure Luminosity Evolution (PLE) models where only the characteristic ab-
solute magnitude M∗ evolves with redshift. In this model, the LF redshift
dependence is due to an evolution of the luminosity of the QSOs with time,
their comoving density remaining constant.

• Pure Density Evolution (PDE) models where only Φ∗ shows a redshift de-
pendence, reflecting a change in the number density of QSOs with time, the
luminosity of the individual objects remaining unchanged.

• Evolution models where both the characteristic luminosity and density vary
with redshift. In this case, the LF behaviour is the consequence of both a
density evolution of the QSOs and a modification of their individual lumi-
nosity. In this category, different models exist depending on whether the LE
and DE are independent or correlated.

Finally, some authors also introduce a modification in the slope parameters α and
β with redshift.

The optical QSO LF and its redshift dependence have been studied over a
wide range of redshifts and magnitudes through numerous surveys. An overview
of these LF determinations in the optical, near infrared and UV domains are
shown in Table 5.2.

For each of them, the limiting apparent magnitude of object detection and
the completeness limitation due to different observational biases (such as colour
selection biases,...) limit the range of redshift and absolute magnitude over which
the QSO LF can be determined.
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Author z range magnitude NQSO Survey coverage Survey Acronym
(deg2) (when cited)

Croom et al. (2004) 0.4 < z < 2.1 bJ < 20.85 23338 2 2QZ
bJ < 18.25 322 6 6QZ

Croom et al. (2009) 0.4 < z < 2.6 bJ < 20.85 10637 191.9 2SLAQ

Palanque-Delabrouille et al. (2012) 0.7 < z < 4 g < 22.5 1877 SDSS-III & MMT MMT

Richards et al. (2006) 0.3 < z < 2.2 i < 19.1 15343 1622 SDSS-DR3 DR3-DR7
3 < z < 5 i < 20.8

Ross et al. (2012) 0.3 < z < 2.2
2.2 < z < 3.5 i . 21.8 22301 2236 SDSS-III:BOSS BOSS-DR9

Fontanot et al. (2007) 3.5 < z < 5.2 F07

Ikeda et al. (2011) z ∼ 4 22 < i′ < 24 31 COSMOS

Ikeda et al. (2012) z ∼ 5 22 < i′ < 24 14 COSMOS

Masters et al. (2012) z ∼ 3.2 IAB < 24 155 COSMOS
z ∼ 4

Glikman et al. (2011) z ∼ 4 R < 24 3.75

Table 5.2: Overview of QSO luminosity function determinations obtained from different recent surveys in the optical, near
infra-red and UV domains.
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5.2.3 The LF for the ILMT QSOs

In order to simulate the ILMT QSO population, we need the QSO LF in the i-band
and its redshift behaviour to be determined over the Mi − z plane area defined
by the limiting magnitude of the survey i ∼ 22.5. Fig. 5.7 shows the accessible
area in the Mi − z plane for the ILMT survey. The lower dark curve corresponds
to a source with an apparent magnitude equals to the limiting magnitude of
the survey whereas the upper curve corresponds to a source with an apparent
magnitude i = 16.5. The latter magnitude cut is imposed because it is not likely
that we shall be able to detect a QSO brighter than 16.5 with the ILMT, due to
saturation of the CCD detector.
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Figure 5.7: Accessible area in the Mi − z with the ILMT survey defined by the
limiting magnitude i ∼ 22.5 for the case of a flat FLRW universe with Ωm = 0.3
and H0 = 70 km s−1 Mpc−1. The figure displays also the footprint of the surveys
used to determine the luminosity function of the ILMT QSOs. The two black
curves correspond to sources with an apparent magnitude i = 16.5 and i = 22.5.

We want the largest possible redshift range, and we are especially interested
in distant bright sources as these are the most likely to be gravitationally lensed.
The higher redshift for which the LF has been determined being z ∼ 5, we limit
the redshift range to this maximum value.

We thus want to simulate the QSO population in the redshift range 0 < z < 5,
brighter than the apparent magnitude i ∼ 22.5. None of the LF determinations in
Table 5.2 spans over a sufficiently wide redshift and apparent magnitude ranges.
We thus have to combine different LF determined by different authors in different
redshift ranges.

In the redshift range 0.3 < z < 3.5, we use the LF determined by Ross et al.
(2012). The authors combine the QSO population from different surveys in order



112

to construct a uniform sample spanning over a redshift and magnitude range as
wide as possible. The footprint of the different combined surveys are shown in
Fig. 5.7, in order to place them in the context of the ILMT survey. Ross et al.
(2012) combines QSOs from

• the SDSS-III(DR9): BOSS survey from which they derive a uniform sample
of 22301 QSOs with i ≤ 21.8 and redshift in the range 2.2 < z < 3.5;

• the SDSS-DR7 survey: this survey being mostly complete for i ≤ 19.1 and
0.3 < z < 2.2. This survey also spans over the redshift range 3 < z < 5 and
down to i ≤ 20.8. Richards et al. (2006) already determined the QSO LF of
this QSO sample, Ross et al. (2012) thus extending their work;

• the SDSS-III & MMT survey. Ross et al. (2012) use a sub-sample resulting
from the combination of the two surveys described in Palanque-Delabrouille
et al. (2012), in order to cover the fainter sources in the redshift range
0.7 < z < 2.2, not accessible by the two previous surveys.

The footprint of the different sub-samples of the surveys used by Ross et al. (2012)
are shown in Fig. 5.7.

For the more distant sources in the redshift range 3.5 < z < 5.2, we use the LF
dependence determined by Fontanot et al. (2007) who combined the known QSOs
in the SDSS-DR3 in this redshift range with distant faint QSOs detected in the
GOODS survey. Although this work has been made for a fairly small number of
QSOs, it has the advantage of giving an evolution model for the LF whereas other
authors only determine the LF for discrete redshift values (Ikeda et al. (2011),
Ikeda et al. (2012), Masters et al. (2012), Glikman et al. (2011)).

Ross et al. (2012) and Fontanot et al. (2007) have both used the double power
law model from Eq. 5.20 for their determination of the LF. Nevertheless, they use
different evolution models. In order to combine the LFs derived by the others,
we use Eq. 5.20 and the dependence of the LF parameters derived by Ross et al.
(2012) and Fontanot et al. (2007) in their own redshift range.

Ross et al. (2012) test different evolution models on their data to reproduce
the dependence of the LF as a function of redshift but unfortunately, they were
not able to describe the redshift behaviour over the whole redshift range with a
single model. Consequently, they use two different models in the redshift range
0.3 < z < 2.2 and 2.2 < z < 3.5.

In the lower redshift interval, their data are well described by a PLE model
with the characteristic absolute magnitude M∗

i evolving as

M∗

i (z) =M∗

i (z = 0)− 2.5
(

k1z + k2z
2
)

. (5.21)

In the higher redshift range (2.2 < z < 3.5), the authors adopt a Luminosity Evo-
lution - Density Evolution (LEDE) model where both the characteristic absolute
magnitude and density evolve with redshift, but with no correlation between the
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two parameter behaviour. The LEDE evolution model is defined by

log (Φ∗ (z)) = log (Φ∗ (z = 2.2)) + c1 (z − 2.2) . (5.22)

M∗

i (z) = M∗

i (z = 2.2) + c2 (z − 2.2) . (5.23)

Both evolution models consider a constant value for the slope parameters α and
β over the corresponding redshift range. The best values for the fit parameters of
the PLE and LEDE models in the different redshift ranges are given in Table 5.3.

0 < z < 2.2, PLE (Ross et al. (2012))

M∗

i (0) k1 k2 α β log (φ∗0)

-22.85 1.241 -0.249 -3.37 -1.16 -5.96

2.2 < z < 3.5, LEDE (Ross et al. (2012))

M∗
i (z = 2.2) c1 c2 α β log (φ∗0)

-26.70 -0.576 -0.774 -3.71 -1.46 -6.06

3.5 < z < 5.2, PDE (Fontanot et al. (2007))

M∗
1450 - α β Φ∗ (Mpc−3) kz

-26.31 - -3.31 -1.45 1.67.10−6 -1.27

Table 5.3: Luminosity function parameters taken for the different redshift ranges.
k1, k2 are the characteristic absolute magnitude evolution parameters of the PLE
(Eq. 5.21), c1 and c2 are the evolution parameters of the LEDE model in Eq.
5.22 and Eq. 5.23 and kz, the PDE parameter from Eq. 5.24.

The redshift dependence of the LF parameters adopted by Ross et al. (2012)
are shown in Fig. 5.8.

Although the transition between the models (PLE and LEDE) at z = 2.2
works out pretty smoothly for the characteristic magnitude Mi, there is a break
at the transition of the characteristic density and also for both slope parameters.

First of all, the presence of discontinuities is not surprising as the authors
fit the two redshift ranges separately with no constraint on the continuity of the
parameters.

The authors fit their data in two small redshift intervals (0.3 < z < 2.2
and 1 < z < 2.2) and conclude that the PLE models represent the data better
when restraining the data to z > 1. In this work, we take the fit parameters
corresponding to the largest redshift interval (1 < z < 2.2) in an attempt to
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Figure 5.8: Redshift dependence of the parameters Φ∗ andM∗ and α and β of the
QSO LF. The characteristic absolute magnitude is expressed for the SDSS i band
luminosity. For redshifts below 2.2, we use the dependence introduced by Ross
et al. (2012) with a PLE model and its LEDE in the redshift range 2.2 < z < 3.5.
We use the estimation of Fontanot et al. (2007) for redshifts larger than 3.5. Cubic
spline interpolation guarantees continuity at the junction redshifts 2.2 and 3.5.

reproduce the QSO population at low redshifts as well. The discrepancies between
the two models at z = 2.2 (i.e. the break at z = 2.2 of the log Φ∗ in Fig. 5.8a
and in α and β in Fig. 5.8c) are smaller when taking the fit parameters for the
smaller redshift range (1 < z < 2.2).

We thus associate these discrepancies to the inclusion of the lower redshift
QSO sample (0.3 < z < 0.7). This is probably the sign of an evolution model
that does not reproduce well all the physics at lower redshifts.

In the redshift range 3.5 < z < 5, Fontanot et al. (2007) use a PDE evolution
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model with the characteristic density evolving as

Φ∗ = Φ∗,z=2 exp (kz ((1 + z)− 3)) . (5.24)

The parameter values for the best fit are given in Table 5.3 and the redshift depen-
dence of the parameters is shown in Fig. 5.8. In the model we chose, the authors
only fit the characteristic absolute magnitude and the characteristic density evolu-
tion parameter kz in Eq. 5.24. The slope parameter and the characteristic density
parameter were taken from Croom et al. (2004), who have fitted a LF on data in
the redshift range 0.4 < z < 2.1. Fontanot et al. (2007) fixed these parameters to
match the value found by Croom et al. (2004) at redshift z = 2.1.

Fontanot et al. (2007) express the QSO LFs in terms of the monochromatic
absolute AB magnitudes M1450 at 1450 A◦ (Oke and Gunn (1983)). Following
Richards et al. (2006), assuming that a QSO spectrum can be described as a power-
law with spectral index αν (i.e., F (ν) ∝ ναν ), the monochromatic magnitude at
1450 A◦ is linked to Mi,[z=2] through the relation

M1450 = Mi,[z=2] + 2.5 (1 + αν) log10 (1 + 2) + 2.5αν log

(

1450A◦

7471A◦

)

.

In Fig. 5.8, at the transition redshift z = 3.5, there is a clear break in the
characteristic density and the bright end slope parameter. In order to ensure a
continuous and smooth LF, and a smooth redshift distribution of the simulated
QSO population, we have interpolated the parameter behaviour around redshifts
z = 2.2 and z = 3.5 with cubic spline curves. The interpolated curves are shown
as continuous black lines in Fig. 5.8.

The final LF used to simulate the QSO population is thus obtained by inserting
the redshift dependence of Φ∗,M

∗
i , α and β in Fig. 5.8, into the double power law

LF expression given by Eq. 5.20. The final LF used is shown in Fig. 5.9. The left
panel shows the dependence of the LF as a function of the absolute magnitude,
for different redshifts. The right panel shows the dependence of the LF as a
function of the redshift, for different absolute magnitudes. In the latter, we have
plotted with thin black lines the LF obtained without the spline interpolation of
the redshift dependence of the parameters in Fig. 5.8.

Although the LF transitions at redshifts z = 2.2 and z = 3.5 are more or less
consistent for absolute magnitudes near the characteristic absolute magnitude
(M∗

i (z = 2.2) ∼ −26.7 and M∗
i (z = 3.5) ∼ −27.5), the transition of the LF is not

physical for absolute magnitudes very far from M∗
i because of the difference in

the slope parameter values.
The overall aspect of the LF redshift dependence is not physical. Nevertheless,

our goal is to reproduce reasonably well the QSO population observed over all
the redshift and magnitude ranges or sub-samples of the population and not to
study the phenomenological implication of the LF shape on the QSO evolution or
cosmological evolutionary scenarii. In this spirit, this piecewise continuous LF is
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Figure 5.9: Final QSO LF in the i band as a function of Mi[z = 2] and z.

expected to better represent the observed population over the entire Mi− z space
than simply extrapolating a LF model determined over a restricted Mi − z plane
area.

In the next sections, after explaining how we simulate the QSO population to
be detected within the ILMT survey, we check the reliability of both the generation
method and the LF by reproducing the number counts observed in other surveys.

5.3 ILMT catalogue generation

In the previous sections, we have derived the volume accessible through the ILMT
survey as well as the space density of QSOs in this volume, as a function of the
absolute magnitude and redshift. We have thus all what is needed to simulate the
expected population of QSOs in the volume and generate the catalogue of QSOs
to be detected with the ILMT.

We first divide space in redshift shells with ∆z = 0.2 for redshifts ranging
from zmin = 0.01 to zmax = 5. For each redshift interval, we calculate the volume
∆V of the shell in the comoving reference frame defined by the ILMT field of
view ΩILMT . This volume is calculated through the difference of the comoving
volumes at redshifts z +∆z and z, i.e.

∆V = VC (z +∆z)− VC (z) , (5.25)

where VC is calculated numerically by integrating Eq. 5.5.

For each redshift shell, we consider the absolute SDSS i band magnitude Mi

intervals ∆M = 0.25 ranging from Mmin = −30 to Mmax = −22.5. The absolute
magnitude range corresponds to the SDSS DR3 limits (see Richards et al. (2006),
Fig. 17).
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For each redshift interval ∆z and absolute magnitude interval ∆M , we eval-
uate the number NQSO of QSOs in the shell within that absolute magnitude and
redshift ranges

NQSO = ∆V ∆M Φ (M +∆M/2, z +∆z/2) , (5.26)

where Φ (M,z) is the QSO LF described in Section 5.2.3.
We then generate the number of expected QSOs with redshifts and absolute

magnitudes randomly chosen in the redshift and absolute magnitude bins, respec-
tively. For each generated source, we calculate the apparent magnitude m in the
i band through (see Eq. 5.19)

m =M +DM +Kcont,[z=2] (z) +Kem (z) , (5.27)

where the K-correction is taken from the online material in Ross et al. (2012),
as described in Section 5.2.1. We only keep the sources that have an apparent
magnitude brighter than the critical magnitude of the ILMT survey i ∼ 22.5.

5.4 Checking the catalogue generation

In order to check the reliability of the QSO LF determined by combining different
LFs over different redshift intervals and in order to check the QSO population
generation algorithm, we reproduce the QSO number counts as a function of
the apparent magnitude, for existing surveys in different redshift ranges. In Fig.
5.10a, we first reproduce the Cumulative Number Counts Function (CNCF) of
QSOs as a function of the apparent magnitude i that was observed in the SDSS-
DR9 BOSS survey and is given as on-line material by Ross et al. (2012). For
clarity, the error bars of the BOSS data are not shown in the figure: for magnitudes
fainter than 19.5, they are samller than the maker size. The QSO population of
the survey is restricted to the redshift range 2.2 < z < 3.5 and to apparent
magnitudes brighter than i = 21.8. We thus impose the same restriction to the
simulated catalogue.

The simulated CNCF was calculated as follows. We have generated 10 catalogs
of QSOs that would be detected in a survey spanning over 500 deg2. For each of
the generated catalogue, we calculated the CNCF per square degree, as a function
of the apparent magnitude. For each apparent magnitude, we calculated the mean
value and the standard deviation of the CNCF.

From Fig. 5.10 we see that the simulated CNCF in this redshift range is in
very good agreement with the BOSS observations.

In the right panel of Fig. 5.10, we reproduce the CNCF of the sub-sample of the
BOSS & MMT QSO catalogue (Palanque-Delabrouille et al. (2012)) used by Ross
et al. (2012) to determine their LF. The QSOs of this sub-sample are restricted
to the redshift range 1 < z < 2.2. Because this catalogue has been constructed
by imposing an absolute magnitude cut in the g-band (see Palanque-Delabrouille
et al. (2012) for details), it is difficult to determine the corresponding magnitude in
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Figure 5.10: Cumulative number counts function of QSOs as a function of the
apparent magnitude in the SDSS i band. (a) QSOs restricted to the redshift range
2.2 < z < 3.5. The observational data come from the BOSS DR9 survey (Ross
et al. (2012)), after correction for selection effect incompleteness. (b) redshift
range restricted to 1 < z < 2.2. The observational data come from the BOSS &
MMT sample presented in Palanque-Delabrouille et al. (2012).

the i-band precisely as it varies with redshift. We restrict the simulated catalogue
to the same redshift interval and keep sources withMi,[z=2] < −22.5−0.569. This
limit corresponds to the QSO definition of Richards et al. (2006) (i.e. Mi,[z=0] <
−22.5). We then calculate the CNCF for sources with apparent magnitude in the
same range.

The agreement between the simulated and observed CNCF are pretty good for
sources fainter than i ∼ 20. The data is marginally consistent for sources brighter
than i ∼ 20 , where the simulated catalogue apparently overestimates the number
of sources. The possible reasons for these differences are:

• the difficulty to define the QSO absolute magnitude cut in the i-band (since
the original catalogue cut was done in the g-band absolute magnitudes),

• the BOSS-MMT data show a strange shape in this magnitude interval which
could be the sign of its incompleteness or due to cosmic variance.

In Fig. 5.11, to test the reliability of the QSO LF in the redshift range 0.3 <
z < 2.2, we now compare the QSO Differential Number Counts Function (DNCF)
as a function of magnitude obtained for the simulated population of QSOs in
this redshift range with observational data from different surveys. For clarity, we
plot the error bars for the simulated catalogue only. In the observational data,
for magnitudes fainter than 18.5, the error bars are smaller than the size of the
markers.
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Figure 5.11: Comparison of the Differential Number Counts Function between
the simulated QSO population restricted to the redshift range 0.3 < z < 2.2, and
observational data from 3 surveys: the SDSS-DR3, the 2SLAQ and the 2QZ/6QZ.

First of all the DNCF of the SDSS-DR3 in the i-band from Richards et al.
(2006) is shown with grey disks. The sample has been limited to sources brighter
than the apparent magnitude i ∼ 19.1 because the SDSS-DR3 is incomplete over
this magnitude. The SDSS-DR3 from Richards et al. (2006) was used by Ross
et al. (2012) for the determination of the LF in this redshift range, in combination
with the SDSS-MMT data from Palanque-Delabrouille et al. (2012) shown in Fig.
5.10. The simulated catalogue reproduces very well the observed population of
bright sources in this redshift range.

For fainter sources in the same redshift interval, we use the DNCF observed
in the 2dF-SDSS LRG QSO survey (2SLAQ) by Croom et al. (2009) and the
one from the combined 2QZ/6QZ surveys from Croom et al. (2004). The 2SLAQ
has been observed in the SDSS g-band and the conversion to the SDSS i-band
is done by using the average g − i colour difference for QSOs in this redshift
range in the SDSS-DR3 (g− i ∼ 0.255, Richards et al. (2006)) and assuming that
the DNCF in the i and g bands has the same shape. The 2SLAQ is limited to
objects with an absolute g band magnitude brighter than Mg,z=0 < −22.5, with
a K-continuum zero point at redshift z = 0. The 2QZ/6QZ data were acquired
in the bJ magnitude system. The bJ magnitudes were converted to i magnitudes
assuming bJ ∼ g and g − i ∼ 0.255.

The simulated catalogue is restricted to the same interval and absolute mag-
nitude cut of Mi,z=0 < −22.5.

The simulated catalogue is in good agreement with both DNCF for sources
brighter than i ∼ 19.5. For the fainter sources, the simulated catalogue is
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marginally consistent with the 2QZ data, although slightly underestimating the
QSO population at these faint magnitudes. However, we underestimate the
2SLAQ data by 20-30 percent for such faint sources.

The discrepancies between the 2QZ and 2SLAQ DNCF were already observed
by Croom et al. (2009) with apparently no clear explanation. Croom et al. (2009)
associate these differences to a combination of different effects like a slight incom-
pleteness of the 2QZ, an overestimate of the incompleteness of the 2SLAQ in this
magnitude/redshift range.

Concerning our work, first of all, discrepancies between simulation and these
observations may appear due to the difficulty of defining the absolute magnitude
cut in the i-band (corresponding to the one in the g-band). We have also assumed
that the DNCF in the i-band has the same shape as in the g and bJ bands.

We apparently underestimate the population of QSOs for 19.5 < i < 21.5 and
in the redshift range 0.3 < z < 2.2. This trend is not observed in the CNCF of
Palanque-Delabrouille et al. (2012) on the right panel of Fig. 5.10 that is limited
to 1 < z < 2.2. This would mean that we are underestimating faint sources in the
redshift range 0.3 < z < 1. This is however incompatible because this redshift
region does not contribute much to these faint source populations, but contributes
rather to sources with bright apparent magnitudes. Nevertheless, if we do consider
that we underestimate the QSO population in the redshift range 0.3 < z < 2.2
with apparent magnitudes in the range 19.5 < i < 21.5, what are the implications
for our results? These sources do not have a very high amplification bias (because
they are close or fainter than the break in the DNCF) and are not the most distant
in the sample. Consequently this source population is not the one contributing
the most to the lensing probability of the overall population. However, because
the QSO population peaks at a redshift z ∼ 2 and that faint sources are more
numerous than bright ones, this population does contribute considerably to the
number of QSOs detected with the ILMT survey. This would thus lead to an
underestimate of the number of detected QSOs but would have a small impact on
the number of detected muultiply imaged quasars.

5.5 Properties of the simulated catalogue

In the previous section, we have shown that using the composite LF and the
catalogue generation algorithm described in sections 5.2.3 and 5.3, we reproduce
reasonably well different observational data spanning over various redshift and
magnitude ranges. We now use the same procedure to simulate the QSO popula-
tion to be detected with the ILMT, spanning over a redshift range from 0.01 to
5. In our simulation, we follow Richards et al. (2006) and define QSOs as objects
with Mi,[z=0] < −22.5. All results are obtained assuming i ∼ i′.

The limiting magnitude after a single scan of the region of the sky is i ∼ 22.5.
Co-addition of images will lead to an increase of the signal-to-noise ratio and thus
enable to detect fainter sources. The catalogue of QSOs detected will depend on
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how faint an object can be detected with the ILMT, knowing that QSOs will be
detected based upon variability criteria.

Another unknown is the critical galactic latitude under which QSO detection
will not be possible. Table 5.4 gives the expected numbers of QSOs for different
configurations (i.e. icrit = 20, 22.5 or 23 and bcrit = 30◦, 27.5◦ or 25◦).

bcrit = 30◦ bcrit = 27.5◦ bcrit = 25◦

icrit = 22 7738 8609 9370
icrit = 22.5 9072 10109 11016
icrit = 23 11032 12293 13396

Table 5.4: Expected numbers of QSOs in the ILMT survey for different detec-
tion limiting magnitudes icrit and critical galactic latitude values bcrit. For all
calculations, we defined a QSO as being an AGN brighter than Mi,z=0 < −22.5
(Richards et al. (2006)) and we assume i ∼ i′.

The final QSO population for which we calculate the lensing probability has
been selected adopting the parameters icrit = 22.5 and ΩILMT = 70 deg2 (corre-
sponding to bcrit = 30◦).

The DNCF, redshift distributions and CNCF of the QSO population per
square degree brighter than icrit = 22.5 are shown in Fig. 5.12.

The DNCF and CNCF are estimated by simulating onne hundred catalogues
spanning over 70 sq.deg. and calculating the DNCF and the CNCF for each
catalogue. Then for every magnitude bin, we calculate the value and standard
deviation of the counts in each catalogue.

The importance of the DNCF for the estimation of the amplification bias has
been emphasized in Chapter 4. The DNCF is fitted using a power law of the form

N (i) ∝ 10P4(i), (5.28)

where P4 (i) is a fourth order polynomial in i for sources brighter than i = 20.5.
For the fainter sources, we extrapolate the slope of the DNCF in the range 20.5 <
i < 22.5. The resulting fit is shown in Fig. 5.12a as a light grey line.



122

16 17 18 19 20 21 22 23 24

10
−2

10
−1

10
0

10
1

10
2

i

N
(i)

  (
de

g−
2  [0

.2
5 

m
ag

]−
1 )

 

 

ILMT
fit

(a)

0 1 2 3 4 5
0

10

20

30

40

50

60

z

N
 (

z)
 (

 d
eg

−
2  )

(b)

16 17 18 19 20 21 22 23
10

−2

10
−1

10
0

10
1

10
2

10
3

i

N
(<

i) 
 (

de
g−

2 )

(c)

Figure 5.12: (a) DNCF, (b) redshift distribution and (c) CNCF of the simulated
QSO population to be detected with the ILMT.



Chapter 6

Lensing statistics for the ILMT
QSO population

In Chapter 5, we have estimated the population of QSOs to be detected with the
ILMT. In this Chapter, we estimate the number of sources NGL in this sample that
will be multiply imaged due to the presence of a deflector near their lines-of-sight.
NGL is estimated through the relation

NGL = 〈τ〉 NQSO, (6.1)

where NQSO is the total number of QSOs to be detected with the ILMT and
where 〈τ〉 (≪ 1) is the averaged value of the lensing probability τ over the source
population. 〈τ〉 is the mathematical esperance of the lensing probability and it
is estimated by calculating the lensing probability τ associated with each source
and by taking the average value.

In Chapter 4 we have derived the expressions τSIS (Eq. 4.38) and τSIE (Eq.
4.43) for the lensing probability of a source with known redshift and apparent
magnitude, when considering a population of deflectors modelled with an SIS or
an SIE mass distribution, respectively.

The calculation of τSIS and τSIE necessitates the knowledge of the lensing cross
section ΣdimSIS and ΣdimSIE associated with the population of deflectors. The cross
section calculation has to be done for each distance configuration of the deflector
and the source (i.e. each set of distances DOD and DOS). The calculation of the
cross sections necessitates much calculation time because, in most cases, there
is no simple analytical expression and they have to be calculated numerically
through Monte-Carlo integration.

The dimensional lensing cross sections ΣdimSIS and ΣdimSIE may be expressed as
a function of the dimensionless lensing cross sections ΣSIS and ΣSIE that are no
longer a direct function of the geometrical configuration of the lens system (i.e.
the set of distances DOD and DOS). Although the dimensionless cross section still
necessitates to be calculated numerically, we have seen in Chapter 3 that we can
generated a database for the dimensionless cross section that we use to calculate
the dimensional cross sections and the lensing probability for each source.

123
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The lensing probability τ associated with a single source as well as the di-
mensional Σdim and dimensionless cross section Σ are the fundamental tools in
the estimation of the number of multiply imaged QSOs to be detected with the
ILMT.

In this Chapter, we calculate the expected number of multiply imaged QSOs
in the ILMT survey and we analyse the impact of different factors on this expec-
tation. Namely, we look at the impact of the instrumental resolution in Section
6.2, the type of deflector population (early or late type galaxy population) in
Section 6.3 and the cosmological model parameters in Section 6.4. The impact of
the different factors is studied through their effect on the mean probability, the
probability associated with each source and/or the influence on the cross sections.

6.1 Perfect instrument and early type galaxy deflec-
tors

Let us first consider a perfect instrument (i.e. all the lensed images are detected,
independently on their angular separation).

We only consider early type galaxies as forming the deflector population. The
statistical properties of the deflector population are described through their VDF
presented in Table 4.1 and the axis ratio distribution in Fig. 4.7.

Before applying the probability calculation to the entire simulated catalogue
from Chapter 5, let us consider the influence of the characteristics of a single source
on its lensing probability, namely the source redshift and its apparent magnitude.

6.1.1 Geometrical lensing probability

Let us consider the impact of the source redshift on the lensing probability. We
have derived in Chapter 4 an expression for the dimensional geometrical cross sec-
tion of an SIS deflector with a known line-of-sight velocity dispersion (Eq. 4.4).
Furthermore, for an SIE deflector, we have calculated numerically the dimension-
less geometrical cross section (as a function of the deflector ellipticity) and we
know the relation between the dimensionless and the dimensional cross section
(Eq. 4.2).

We can thus insert the geometrical cross sections in the expressions of the
lensing optical depth τSIS and τSIE when modelling the deflectors as SIS (Eq.
4.38) and SIE (Eq. 4.43), respectively.

Fig. 6.1 shows the dependence of the geometrical optical depth as a function
of the source redshift, when modelling the deflector population as SIS or SIE de-
flectors. As the SIE population of deflectors is able to reproduce lensing events
with the formation of 2, 3 or 4 images, we have represented the geometrical prob-
ability associated with the formation of each possible number of lensed images, as
well as the total lensing probability. The calculations were done assuming a flat
FLRW universe with H0 = 70 km s−1 Mpc−1 and Ωm = 0.3. In the following,
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unless mentioned otherwise, all calculations were done assuming such a universe
model.
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Figure 6.1: Dependence of the geometrical lensing probability as a function of the
source redshift for a population of deflectors modelled with an SIS or an SIE mass
profile.

The geometrical lensing optical depth corresponds to the probability that a
source with a known redshift zs undergoes a gravitational lensing event, if we
do not know the source apparent magnitude. It is thus only dependent on the
geometrical lensing volume of the source.

The first observation is that all the lensing probabilities increase with the
source redshift. This is a direct consequence of the increase of the geometrical
lensing volume with the source redshift (cf. Chapter 4). This volume is a function
of the line-of-sight velocity σ distribution of the deflectors (and of the axis ratio
f distribution for an SIE). τgeom is an averaged value over all σ (and all f) of the
deflector population.

When considering the SIE population with a perfect instrument, the fraction
of events with a given number of lensed images is independent on the source
redshift. The lensing probability of lensing events with more than two images is
less than 4% of the total geometrical probability.

Finally, we see that when modelling the deflectors with an SIS, we overestimate
the geometrical lensing probability with respect to the SIE (τSIE/τSIS ∼ 0.96).
We will come back to this point in Section 6.2.

6.1.2 Amplification bias effect

We have seen in Chapter 4 that the gravitational lensing phenomenon can lead
to an amplification of the lensed images of a background source. One of the
possible implication of this bias is the inclusion of intrinsically fainter sources in
a flux limited sample, thanks to the lensing amplification. To take into account
the bias introduced by the amplification, we introduced a correction factor in the
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calculation of the dimensionless cross section, namely, the amplification bias B

B =
N (m+ 2.5 log(Atot (y))

N (m)
, (6.2)

where N (m) represents the differential number counts of QSOs as a function of
their apparent magnitude m. Because QSOs with a fainter apparent magnitude
are more numerous than brighter ones, the amplification bias increases the value
of the cross section, and thus increases the total lensing probability of a source.

Let us analyse the impact of the amplification bias on the dimensionless lensing
cross section. In this Section and in the following one, we consider the QSO DNCF
fitted on the simulated QSO population to be detected with the ILMT (see Section
5.5).

Fig. 6.2 shows the dependence of Σeff as a function of the object apparent
magnitude m for an SIS or an SIE deflector, considering a perfect instrument. In
the case of the SIE deflector, we have represented the total lensing cross section
as well as the cross sections associated with the formation of 2, 3 or 4 lensed
images, for a deflector with f = 0.3. Although such elliptic deflectors are not
very common in the early type galaxy population, we have considered this value
because, thanks to the presence of a naked cusp, Σ3 is different from 0.
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Figure 6.2: (a) Dependence as a function of the source apparent magnitude, of the
dimensionless effective lensing cross section Σeff for an early type galaxy modelled
as an SIS or an SIE deflector (with f = 0.3). (b) Dependence of Σeff for a given
number of images, relatively to Σeff,tot, for the case of the SIE deflector (f = 0.3).

A first observation is that the amplification bias leads to an increase of the
dimensionless cross section for the brighter sources (and thus an increase in their
lensing probability). Secondly, if we look at the lower value of the total cross
section for the SIE and SIS (i.e. for the fainter sources), we see that the cross
sections are larger than the geometrical dimensionless cross section (ΣSIS,geom =
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π, the surface of the unitary circle). For the fainter magnitudes, there is no more
dependence of the cross section as a function of the source apparent magnitude.
This is due to the fact that the QSO DNCF has been extrapolated linearly (in a
logarithmic scale, see Fig. 5.12a) for magnitudes fainter than i = 20.5.

The SIS cross section is once again larger than that for the SIE model when
considering all the lensed image configurations, independently on their number.

The increase of the cross section with the object brightness is not uniform for
Σ2, Σ3 and Σ4.

Fig. 6.2b shows the dependence as a function of the source magnitude, of Σ2,
Σ3 and Σ4 relatively to the total cross section for the SIE deflector. We clearly
see that the amplification bias acts in favour of configurations with 3 and 4 lensed
images, thus reducing the fraction of 2-image events.

Let us now look at Fig. 6.3a illustrating the dependence, as a function of the
source apparent magnitude, of the ratio Σeff/Σgeom. This ratio is a measure of
the effect of the amplification bias, averaged over the whole cross section.
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Figure 6.3: (a)Dependence of Σeff/Σgeom as a function of the QSO apparent
magnitude for an SIS and an SIE deflector (with f = 0.3). (b) Total amplification
probability density associated with the configurations leading to the formation of
2, 3 and 4 lensed images for an SIE deflector with f = 0.3.

We see that the amplification bias act the most in favour of the configurations
with 3 and 4 lensed images.

On the other hand, when comparing the mean amplification bias effect on
the total lensing cross section of the SIE and that of the SIS, we see that the
amplification increases similarly the two cross sections for the bright sources. We
conclude from this common trend that the average amplifications induced by an
SIS and an SIE deflector are the same.

To understand why the amplification bias leads to an excess of lensing config-
urations with 3 and 4 images, we have calculated the probability density nAtot for
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having a total amplification Atot, depending on the number of lensed images.

nAtot was calculated as follows, using the different libraries developed during
this thesis. For the considered SIE deflector (f = 0.3), we have randomly gener-
ated 5 106 source positions. For each source position, we have inverted the lens
equation to determine the lensed image positions and their amplifications. The
total amplification associated with each source position is the sum of the moduli
of the lensed image amplifications. We have then constructed a histogram (as
a function of Atot) of all the configurations leading to a given number of lensed
images. This histogram is then normalised by the number of source positions
leading to the considered number of lensed images.

The results are shown in Fig. 6.3b, illustrating the amplification probability
density for configurations leading to 2, 3 and 4 lensed images, for an SIE deflector
with f = 0.3. The mean value of the total amplification associated with each
probability density is indicated with dashed lines. We see that the mean ampli-
fication of the source position with more than 2 images is higher. This can be
understood as follows. We have seen in Chapter 3 that source positions near the
tangential caustic lead to the most amplified lensed images (see the amplification
map in Fig. 3.5b, for instance) because the images formed near the tangential
critical curve are very amplified. In this case (f = 0.3) most of the three image
configurations are due to a source located inside the naked cusps, thus a source
very close to the tangential caustic and with highly amplified images. 4 image
configurations are due to sources inside both the (pseudo-)caustics and thus highly
amplified tangential images are also present. On the other hand, most of the 2
image configurations occur when the source is inside the radial pseudo-caustic but
outside the tangential one. Consequently, the highly amplified images near the
tangential caustic are not present and the total amplification is lower 1.

6.1.3 Probability distribution

In the two previous sections, we have analysed the impact of a source redshift and
that of its apparent magnitude on the lensing optical depth. An increase of the
source redshift leads to an increase of its lensing volume and its lensing optical
depth. On the other hand, sources with a brighter apparent magnitude see their
lensing probability increased thanks to the bias induced in a flux limited sample
by the amplification phenomenon.

Let us now analyse the distribution of the lensing probability in the simulated
catalogue of QSOs to be detected with the ILMT, and how the effects induced by
the source redshift and the amplification bias affect this distribution.

We have calculated the lensing probability for all the sources in the simulated
ILMT QSO samples presented in Chapter 5. Fig. 6.4 shows the lensing probability
for each source as a function of its redshift (a) and its absolute magnitude (b).

1We do not consider the configurations where the point-like source is located exactly on the
tangential caustic, as the probability of such a configuration is null for a point-like source.
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We here show the probability of forming 2 lensed images with the population of
deflectors modelled by an SIE mass distribution.
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Figure 6.4: Probability distribution of forming 2 lensed images for the early type
galaxies modelled as SIE deflectors, as a function of (a) the source redshift and
(b) their absolute magnitude.

Let us first analyse Fig. 6.4a illustrating the distribution of the source proba-
bility as a function of their redshift.

First of all, we see that sources with a high lensing probability are pretty rare.
All QSOs are located in an area delimited by the two black curves. These curves
represent the dependence of the lensing optical depth as a function of the source
redshift, for sources with a constant apparent magnitude (i = 16.5 and 22.5,
respectively). These apparent magnitude cuts correspond to the cuts applied to
the simulated catalogue: 22.5 is the limiting magnitude of the ILMT survey and
the cut at i = 16.5 is applied because sources brighter than this limit are very
unlikely to be detected with the ILMT. If we look at the redshift dependence of the
lensing probability, for a source with constant apparent magnitude (black curves),
we see the same redshift dependence as in Fig. 6.1 showing the geometrical lensing
cross section as a function of the redshift. Indeed, as the apparent magnitude is
constant along these curves, the amplification bias remains constant; the curve
dependence is thus entirely determined by the increase of the lensing geometrical
volume.

If we consider all sources with a given redshift (a vertical line in Fig. 6.4a),
the lensing probability increases as the sources becomes brighter. This is due to
the increase of the amplification bias as the source gets brighter.

Let us now look at the lensing probability dependence as a function of the
redshift for a source with a constant absolute magnitude (the dashed curve).
As the source redshift increases, its geometrical lensing volume increases but its
apparent magnitude decreases. As the overall probability increases with redshift,
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this means that, for the 2 image lensing probability, the probability distribution
is mostly determined by the redshift of the source. This is linked to the fact that
2-image configurations tend to be low amplification events, and thus not highly
biased by the amplification phenomenon.

Let us now analyse Fig. 6.4b showing the lensing probability of the sources as a
function of their absolute magnitude. The two dashed curves show the probability
dependence for sources with a constant redshift, as a function of their absolute
magnitude. In both cases (z = 2 and z = 5), the probability remains constant
at first and starts to increase after a given magnitude. This trend is the same as
the dependence of the lensing cross section with the source apparent magnitude
shown in Fig. 6.3. When the apparent magnitude of a source is fainter than
i ∼ 20.5, a change in its apparent magnitude does not change the amplification
bias (as the slope of the DNCF remains constant for the fainter sources); thus the
lensing optical depth remains constant with the absolute magnitude. For these
faint sources, the higher the redshift, the higher the probability.

For an apparent magnitude brighter than 20.5, an increase in brightness leads
to a higher amplification bias and thus increases the lensing probability. For
sources intrinsically very bright, we see that the amplification bias effect overcomes
that of the redshift and the sources at lower redshift (z = 2) have a higher lensing
probability than the one further away (z = 5).

6.2 Finite angular-resolution effect

In the previous section, we have considered a perfect instrument, i.e. an instru-
ment capable of detecting all the lensed images, independently of their angular
separations and their relative fluxes.

In the case of the ILMT, the telescope PSF core has a finite width avoiding
to distinguish two separate point-like sources once their angular separation is too
small. This finite width is due first of all to the wave nature of light, and secondly
to the atmospheric seeing. We have also seen that, if not corrected for, aberrations
due to the TDI imaging mode leads to a deformation of the PSF. As the telescope
is meant to be seeing limited, the main limitation to the PSF core width is the
seeing.

Furthermore, the presence of wavelets over the mercury layer of the primary
mirror tends to diffract light in the wings of the PSF, reducing the amount of
energy in the PSF central core (Hickson and Racine (2007)).

In this section we study the impact of the ILMT finite angular resolution on
its ability to detect the multiply imaged QSOs.

6.2.1 Impact on the dimensionless cross section

The critical angular separation under which multiple point-like sources are undis-
tinguishable from a single one is also a function of their flux ratio(s). The smaller
angular distance at which sources are distinguishable occurs for sources that have
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the same flux. As the difference in flux between the point-like sources increases,
they have to be more distant angularly from each other in order to be resolved.

When calculating the dimensionless lensing cross section, thanks to the ampli-
fication bias, the regions leading to a very high amplification of the lensed images
contribute the most to the cross section. These regions are located along the
tangential caustic (cf. the amplification map in Fig. 3.5b). When the source is
just located inside the tangential caustic, the two closest images are the highly
amplified images located near the tangential critical curve (i.e. the two images
appearing when the source crosses the diamond-shaped tangential caustic). These
two images are about equally amplified. Consequently, what determines the de-
tectability of these images is the critical angular separation (above which point-like
sources are distinguishable) for sources with a same amplification. As these con-
figurations (where the closest images are the brightest, and with a very similar
amplification) are the ones contributing the most to the lensing cross section, the
most important parameter to characterise the impact of the instrument resolution
on the cross section is thus the angular resolution for images with the same flux.
Consideration of the instrument dynamic limitation will have very little impact
on the cross sections.

We have introduced in Chapter 4 the projection R of the instrumental reso-
lution on the deflector plane, normalised to the Einstein radius. R should be a
function of the relative amplification of the lensed images. But, thanks to the fact
that, in the regions contributing the most to the cross section, the closest very
bright images have a very similar amplification, we assume that R is independent
on the relative image amplification.

Let us analyse the impact of the R parameter (the instrumental resolution,
normalised to the Einstein angular radius) on the calculation of the dimensionless
lensing cross sections. Fig. 6.5a shows the dependence of the dimensionless effec-
tive cross section Σeff as a function of R, for an SIS and an SIE mass distribution,
with an axis ratio f = 0.3, for a source with an apparent magnitude i = 18.5.

For the SIS deflector (the black dotted curve), Σeff remains constant up to
R = 2 where it drops to 0. We have seen in Chapter 3 that an SIS deflector leads
to the formation of two lensed images with the same angular separation, twice
the Einstein angular radius. As R is normalised to θE, we thus detect all lensed
images for values of R smaller than 2, and none when R > 2.

For the SIE deflector, the total cross section (plain black curve) remains fairly
constant up to R ∼ 1.3 and then decreases up to R ∼ 2.2 where its becomes null.
In this case, the angular separation between the lensed images is not constant.
Consequently, Σeff starts decreasing for larger values of R. An SIE deflector is also
able to produce lensed images with angular separations greater than the Einstein
angular diameter which explains why Σeff gets null for a value of R slightly above
that of the SIS case.

Let us now look at how the total SIE cross section is distributed with respect
to the number of lensed images. For R values between 0 and ∼ 1.2, an increase
of R leads to an increase of the fraction of lens events with the formation of 3
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Figure 6.5: (a)Dependence of the dimensionless effective cross section Σeff as a
function of R, for an SIS or an SIE with an axis ratio f = 0.3, for a source with
an apparent magnitude i = 18.5.

images, and a decrease of the 4-image configurations. This corresponds mostly to
the instrument becoming unable to distinguish the two images near the tangential
critical curve. Then for larger values of R, the merging of two inner images leads
to an increase of the fraction of 2-image configurations, that eventually, represents
all of the detected lens systems.

If we compare Σeff for the SIS and SIE deflector (with f = 0.3), we see
that the SIS cross section overestimates the lensing event probability by ∼ 50%
with respect to the SIE deflector. To understand this, let us look at Fig. 6.5b
showing the dependence of Σeff for an SIE deflector as a function of its axis ratio
f . We have considered R = 0 (i.e. a perfect instrument) and a source apparent
magnitude i = 18.5. For comparison, the value of the SIS cross section is shown
as a black dotted line.

For f ∼ 1, the SIE deflector is almost spherical and Σeff is equal to that of
the SIS deflector. As the SIE deflector becomes more elliptical, its overall cross
section diminishes. This is due to the flattening of the radial pseudo-caustic with
the increasing deflector ellipticity, noticed in Chapter 3. For f = 0.3, we retrieve
the same cross section values as in Fig. 6.5a for the case of a perfect instrument.
For a given axis-ratio f , the decrease of the cross section of the SIE deflector is
thus due to the flattening of the SIE radial pseudo-caustic.

The effective cross section Σeff for an SIE deflector with a given axis ratio is
thus not a practical quantity to compare the efficiency of the SIS and SIE lens
populations to produce multiple images of the background QSOs. We thus intro-
duce a new quantity: the SIE cross section averaged over the deflector-population
ellipticity distribution. In Eq. 4.43 giving a convenient expression for τSIE, we
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can perform the integration over f . This leads to

τSIE = Cselφ∗
Γ ((α+ 4) /β)

Γ (α/β)
∫ zs

0
dz

∫ 1

0
df

{

(1 + z)3
cdt

dz
p (f)Σdimeff (σ∗, f,m)

}

,

= Cselφ∗
Γ ((α+ 4) /β)

Γ (α/β)
∫ zs

0
dz

{

(1 + z)3
cdt

dz

∫ 1

0
df
{

p (f)Σdimeff (σ∗, f,m)
}

}

,

= Cselφ∗
Γ ((α+ 4) /β)

Γ (α/β)

∫ zs

0
dz

{

(1 + z)3
cdt

dz
Σdim<f> (σ⋆,m)

}

,

where we have introduced

Σdim<f> =

∫ 1

0
df
{

p (f)Σdimeff (σ∗, f,m)
}

. (6.3)

Σdim<f> is the lensing cross section averaged over the axis ratio distribution of the
deflector population. We then define dimensionless lensing cross section Σ<f>
averaged over the axis ratio distribution of the deflector population by means of
the relation

Σdim<f> = πb20Σ<f>. (6.4)

Fig. 6.6 shows the dependence of Σ<f> as a function of the instrumental
resolution R, normalised to the Einstein angular radius, for a source with an
apparent magnitude i = 18. For comparison, the dimensionless SIS cross section
is shown as a black dotted line. The overall behaviour of Σ<f> is the same as
when considering Σeff for one particular value of the axis ratio f . Nevertheless,
we are now able to compare the overall efficiency of the population of deflectors
when modelled with an SIE or an SIS mass distribution.

For R < 1.5, the cross section for the SIS case overestimates that of the SIE
by less than 10%. It is the overestimate of the cross section, due to the SIE
flattening of the radial pseudo-caustic for very elliptical deflectors, that induces
the overestimation of the lensing optical depth with the SIS model, observed in
Fig. 6.1 and Fig. 6.2a.

If we look at the fraction of events with a given number of lensed images
induced by the deflectors, when modelled with an SIE mass profile, we see that
the instrumental resolution increases the fraction of events with 3 images with
respect to the 4 images ones. Furthermore, the finite resolution tends to increase
the fraction of 2 image events relatively to the ones with more than 2 images.

The value of R, the projection of the instrumental resolution on the normalised
deflector plane, will of course depend on the position of the deflector plane with re-
spect to the source and the observer. The different redshifts between the observer
and the source are thus impacted differently by the instrumental resolution.
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Figure 6.6: Σ<f> as a function of the instrumental resolution R, normalised to
the Einstein angular radius, for a source with apparent magnitude i = 18.

Let us calculate the contribution of each possible deflector redshift to the
overall lensing probability by differentiating the expression of τSIE (Eq. 4.43)
and τSIS (Eq. 4.38) with respect to the deflector redshift. This gives

dτSIS
dz

= Cselφ∗
Γ ((α+ 4) /β)

Γ (α/β)
(1 + z)3

cdt

dz
Σdimeff (σ∗,m, z, zs) , (6.5)

dτSIE
dz

= Cselφ∗
Γ ((α+ 4) /β)

Γ (α/β)
(1 + z)3

cdt

dz
Σdim<f> (σ∗,m, z, zs) . (6.6)

Fig. 6.7 shows the dependence of dτSIS/dz and dτSIE/dz (defined in Eq. 6.5 and
Eq. 6.6) as a function of the deflector redshift, for the case of a source with a
redshift zs = 2.5 and an apparent magnitude i = 18. The plain curves show the
SIE case whereas the SIS case is represented as dashed-dotted lines.

Let us first consider the case of a perfect instrument (the black curves). The
redshift range contributing the most to the lensing optical depth is 0.5 to 1, with
a maximum for the distribution at z ∼ 0.7.

If we now consider that only the lensing events with an image angular separa-
tion larger than 0.5” are detected (grey curves), we see that the contribution to
the lensing optical depth vanishes for deflector redshifts larger than z ∼ 1.2. If
we consider the critical angular separation to be 1”, the contribution of redshifts
larger than z ∼ 0.5 vanishes.

Thus, the effect of the finite angular resolution of the telescope is to reject all
the lens systems with a high redshift deflector. This can be understood as follows.
The Einstein angular radius θE as defined in Eq. 3.37 scales as DDS/DOS (where
DDS and DOS are the angular distances between the deflector and the source,
and between the observer and the source, respectively). As θE is a measure of the
typical angular separation between the lensed images, for a fixed source redshift,
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Figure 6.7: Illustration of dτSIS/dz and dτSIE/dz as a function of the deflec-
tor redshift, for the case of a source with a redshift zs = 2.5 and an apparent
magnitude i = 18. We have considered 3 different telescope resolutions, namely
AR = 0, 0.5 and 1”.

distant deflectors tend to form lensed images closer to one another. These are thus
the first ones not to be detected once the instrumental resolution deteriorates.

6.2.2 Impact on the mean lensing probabilities

Now that we have analysed the impact of the instrumental finite resolution, let
us see how it influences the mean lensing optical depth over the whole QSO
population.

For the simulated QSO population to be detected with the ILMT, we have
calculated the average value of the lensing probability, as a function of the tele-
scope angular resolution (AR). Results are shown in Fig. 6.8. Results are shown
for the cases where the deflector population is modelled as SIS and SIE mass
distributions.

The angular resolution AR is to be understood as the largest angular separa-
tion below which multiple point-like sources cannot be resolved. For a PSF with
a good Strehl ratio and well sampled, we can use PSF fitting techniques to dis-
entangle point-like sources very close to each other. Typically, for a well sampled
and good Strehl ratio, we can hope to detect point-like sources separated by half
the PSF FWHM (for point-like sources with comparable flux).

In the case of the ILMT, the best case scenario would be that the telescope is
seeing limited. The average site seeing is 1.1” and is better than 1” 35% of the
time. The critical AR would then be in the range 0.5” - 0.6”.

In Chapter 5, we have seen that, assuming that the ILMT will detect all the
QSOs brighter than i ∼ 22.5 in fields with a galactic latitude |b| > 30◦, the
telescope should detect ∼ 9072 QSOs.
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Figure 6.8: Dependence of the mean lensing probability as a function of the
telescope critical resolution for the population of early type galaxies modelled as
SIS and SIE deflectors.

Among these QSOs, the ILMT is expected to detect 22 (23 with the SIS model)
multiply imaged sources, out of the 28 (29 for the SIS model) multiply imaged
QSOs formed in the ILMT sample. Among these gravitational lens systems, only
3 are expected to have more than 2 images. Only 1 gravitational lens system
with more than 2 images is ought to be detected with the ILMT for AR = 0.5”.
Assuming AR = 1”, the expectation goes down to 5-6 multiply imaged QSOs
(also assuming that, all of the QSOs are still detected).

As seen in Fig. 6.8, the critical resolution range between 0.5 and 1” is where
the curve is the steepest. The critical resolution achieved with the ILMT will
hopefully be within this range. As a small change in AR in this range induces a
big difference on the mean lensing probability, the sharpness of the ILMT is clearly
of a critical importance and many efforts will have to be deployed to achieve an
angular resolution as good as possible.

6.3 Impact of late type galaxies

So far, we have only considered the population of early type galaxies as possible
deflectors. In this section, we study the impact of the late type galaxy population.

Using the VDF parameters for the late type galaxies derived by Chae (2010)
(presented in Table 4.1), and the axis ratio distribution determined by Choi et al.
(2007), we have calculated the mean lensing optical depth through the ILMT
catalogue, as well as its behaviour as a function of the telescope angular resolution
AR. Results are shown in Fig. 6.9.

When considering a perfect instrument (AR = 0), the average lensing optical
depth due to the late type galaxies is about three times less than that due to the
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Figure 6.9: Dependence of the mean lensing probability as a function of the
telescope critical resolution for the population of late type galaxies modelled as
SIS and SIE deflectors.

early type galaxy population. This can be understood from Eq. 4.38 and Eq. 4.4.
We see that the lensing optical depth τ of a source scales as

τ ∝ Φ∗σ
4
∗

Γ ((α+ 4) /β)

Γ (α/β)
, (6.7)

where Φ∗ is the characteristic density of the deflector population, σ∗ its typical
line-of-sight velocity dispersion, and where α and β are the slope parameters of the
VDF. From Table 4.1, we see that although late type galaxies are ∼ 8 times more
numerous, their σ∗ is about twice as small as that for early type galaxies. Early
type galaxies are thus more efficient deflectors than the late type ones. Inserting
the parameter values for both populations, we find τearly/τlate ∼ 3.19.

Furthermore, as the Einstein angular radius of a lens system scales as θE ∝ σ2,
late type galaxies tend to form multiple images with smaller angular separations.
This explains why the average lensing probability diminishes very quickly as a
function of AR.

For AR = 0.5”, which is the best case scenario for the ILMT, we expect less
than one multiply imaged QSO due to the late type galaxy population. Conse-
quently, we neglect their effect in our estimations.

6.4 Impact of the universe model

The ILMT will detect a population of QSOs with a given redshift distribution
and number counts as a function of their apparent magnitude. As the redshifts
and the apparent magnitudes consit of observables, they are independent on the
assumed universe model.
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On the other hand, QSOs are defined on the basis of their absolute magnitudes:
they are point-like objects with an absolute (continuum) magnitude M brighter
than -22.5. The calculation of the absolute magnitude of an object necessitates
the assumption of a universe model.

To calculate the dependence of the average lensing probability over a sample
of sources as a function of the universe model parameters, we must thus clearly
define the sample we are using.

We calculate the mean lensing probability over a unique sample of sources.
We thus simulate the population of sources (with their redshift and apparent
magnitude) that are defined as QSOs in a flat FLRW with H0 = 70 km s−1

Mpc−1 and Ωm = 0.3. We have then calculated the dependence of the average
lensing probability over this sample as a function of Ωm.

The Ωm parameter will first have an impact on the distance and volume calcu-
lations. The impact of the value of Ωm on the comoving distances is given by Eq.
5.4 that we integrate to calculate the comoving distances. Because the comoving
distances are used to calculate the scale factor b0 of the lens systems, they affect
the dimensional lensing cross section and the lensing volume associated with a
source.

Furthermore, because the volume calculation is modified when changing the
value of Ωm, there is also an impact on the density of deflectors in the lensing
volumes. The density of deflectors is calculated through the VDF.

The VDF Φσ of early type galaxies has been determined in the local universe
by Choi et al. (2007) for a flat universe model with U = (H0,Ωm, ) = (70, 0.3).
Let us derive the relationship between Φσ and the VDF Φσ,2 that would have
been derived assuming another set of cosmological parameters U2 = (H0,2,Ωm,2).

In the nearby Euclidean universe, the volume element dv over a square degree
in the reshift range [z, z + dz] scales as (Weedman (1986))

dv = 8.2 1012 H−3
0 z2 dz

(

Mpc3deg−2
)

. (6.8)

Assuming a universe defined by U2, if dv2 is the corresponding volume element
over a square degree in the redshift range [z, z + dz], then it comes

dv

dv2
=
H3

0,2

H3
0

.

The measured central velocity dispersion for galaxies is independent on the
universe model parameters, consequently, when deriving the VDF Φσ,2 , the only
difference is the change in volume between the two different models. Consequently,
we find

Φσ,2 = Φσ
dv

dv2
= Φσ

(

H0,2

H0

)3

. (6.9)

Thus, thanks to the fact that the VDF has been measured in the local universe
and thanks to the assumption of non-evolution of the VDF, the deflector density
is not a function of Ωm.
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We have calculated the mean lensing probability for the QSO sample defined
by the catalogue of QSOs presented in Chapter 5, when considering Ωm = 0.3.
The dependence of the average lensing optical depth as a function of Ωm is shown
in Fig. 6.10.
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Figure 6.10: Dependence of the mean lensing probability as a function of Ωm for
early type galaxies modelled as SIS or SIE deflectors.

Results are shown when modelling the deflector population as SIS and SIE.
Because of calculation time considerations, we have calculated more points with
the SIS model (thanks to the structure of the dimensionless cross section database;
probability calculation with the SIS model takes about 10 times less than for the
SIE case).

The mean lensing probability for a same source sample decreases as the frac-
tion of matter in the universe increases. An empty flat universe has a lensing
probability about 10 times that of a universe full of matter (Ω = 1).

As there is a strong dependence of the mean lensing probability with Ωm,
the fraction of lensing events in a source sample was proposed by Turner and
Gott (1984) as a a statistical tool to constrain cosmological parameters. As the
dependence of 〈PGL〉 in Fig. 6.10 as a function of Ωm is steeper for small values of
Ωm, the fraction of multiply imaged sources in a QSO sample will be an efficient
tool to determine a lower limit on Ωm.

There are different ways to use a statistical sample of sources containing mul-
tiply imaged sources. In the next Chapter, we present different methods and
compare their sensitivity to a variation of Ωm.
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Chapter 7

Exploiting a sample of
gravitational lens systems

In the previous chapters, we have determined the number of QSOs to be detected
with the ILMT as well as an expectation for the number of multiply imaged sources
among them. We now introduce and compare the different statistical tools that
may be used to analyse the clean statistical sample formed by the ILMT sources.

7.1 Lensing statistics as a cosmological probe

Statistics of gravitational lenses have been considered as a cosmological tool since
the work of Turner and Gott (1984) who laid down the theoretical basis of strong
lensing statistics.

Since then, strong lensing statistics have been used to constrain values of the
cosmological parameters and test dark enery models (Keeton (1998), Chae et al.
(2002), Keeton (2002), Ofek et al. (2003), Mitchell et al. (2005), Dobke et al.
(2009), Cao et al. (2012)).

As the lensing optical depth depends on the deflector population properties,
strong lensing statistics have also been used to study the number density of the
deflecting galaxy population, their velocity dispersion function and their evolution
(Keeton et al. (1998), Keeton (1998), Ofek et al. (2003), Matsumoto and Futamase
(2008), Chae (2010)). It has also proven to be a useful tool for the study of the
structure of the deflecting galaxies, their distribution of dark matter and their
environment (Keeton et al. (1998), Keeton and Kochanek (1998), Faure et al.
(2011), Thomas et al. (2011)).

In the different strong lensing statistical studies, there are two commonly used
observables in the sample of gravitational lens systems: the fraction of lensed
events and the redshift distribution of the deflectors.

Let us consider a catalogue of sources, among which multiply imaged sources
are present. A first possibility is to use the fraction of lensing events as the
observable statistic of the catalogue. The idea is to let the parameters of the cos-
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mological model vary in order to reproduce the fraction of observed lensing events
in the source population. The catalogue is then exploited by using a maximum
likelihood technique: we determine the values of the cosmological parameters that
are the most likely, i.e. that allow to reproduce at best the fraction of observed
lensing events.

A second observable statistic introduced by Turner and Gott (1984) is the
redshift distribution of the deflectors in the sample of multiply imaged sources.
To exploit this observable statistic, we introduce a new quantity (dτ/dzd) /τ .
((dτ/dzd) /τ) dzd represents the probability that, when observing a multiply im-
aged source, the deflector leading to the formation of the multiple images has a
redshift in the range [zd, zd + dzd]. It is the relative contribution of the redshift
range [zd, zd + dzd] to the lensing optical depth of the source.

Let us consider a source at redshift zs potentially deflected by a foreground
galaxy modelled as an SIS. We have determined in Eq. 4.38 the expression of
τSIS, assuming a non-evolving deflector population, uniformly distributed in the
comoving reference frame. The derivative of Eq. 4.38 with respect to zd leads to

dτSIS
dzd

= Cselφ∗
Γ ((α+ 4) /β)

Γ (α/β)
(1 + z)3

cdt

dz
Σdimeff (σ∗,m)

= Cselφ∗
Γ ((α+ 4) /β)

Γ (α/β)
(1 + z)3

cdt

dz

(

4π
(σ∗
c

)2 DODDDS

DOS

)2

Σeff (m) .

(7.1)

Dividing Eq. 7.1 by the expression of τSIS in Eq. 4.38 leads to

1

τSIS

dτSIS
dzd

=
Cselφ∗

Γ((α+4)/β)
Γ(α/β) (1 + z)3 cdtdz Σ

dim
eff (σ∗,m)

Cselφ∗
Γ((α+4)/β)

Γ(α/β)

∫ zs
0

{

(1 + z)3 cdtdz Σ
dim
eff (σ∗,m)

}

dz
,

=
(1 + z)3 cdtdz

(

DODDDS

DOS

)2
Σeff

∫ zs
0

{

(1 + z)3 cdtdz

(

DODDDS

DOS

)2
Σeff

}

dz

.

(7.2)

This quantity depends on the geometrical configuration of the lens system (i.e.
the different distances DOD,DDS and DOS), the universe model and the effective
cross section. If we express the amplification bias in terms of the source differential
number counts as a function of the apparent magnitude and if the instrumental
resolution is considered independent of the redshift, then the only dependency
of (dτ/dz) /τ to the source distribution is through its DNCF. In other words,
(dτ/dz) /τ is a function of three observables (zs, zd and the DNCF) and the
universe model parameters.

Fig. 7.1 shows the relative contribution to the lensing optical depth, as a
function of the deflector redshift. We show the dependence of (dτ/dz) /τ for two
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different source redshifts (z = 2 and z = 4) and for 3 different values of the
cosmological parameter Ωm.
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Figure 7.1: The (dτ/dz) /τ dependence as a function of the deflector redshift for
a population of SIS deflectors. We consider 2 different source redshifts and 3
different flat universes with Ωm = 0.1,Ωm = 0.3 and Ωm = 0.5.

When using the quantity (dτ/dz) /τ as a cosmological probe, the idea is to
maximise the likelihood of a set of universe parameters by maximising the likeli-
hood of the deflector redshifts for the detected lenses.

Other observable statistics have been proposed as well such as the angular
separation distribution between the lensed images (Turner and Gott (1984)). As
most of the work in strong lensing statistics uses the fraction of lens events or the
deflector redshift distribution, we will concentrate on their study and compare
their sensitivity to the cosmological model parameters in order to determine the
most efficient way to exploit the information contained in the catalogues.

Both statistics use a maximum likelihood method, where the likelihood for
each object is added. When considering the fraction of lens events in a sample,
we add the likelihood of the lensed sources to effectively be lensed and that of the
others of not being lensed. When considering the deflector redshift distribution,
we add the likelihood of each deflector to be located at its observed redshift.

We have developed a new formalism for gravitational lensing statistics, allow-
ing to calculate the fraction of lensing events and the distribution of deflector
the redshifts, but now taking into account the entire population at once and the
average distributions over the population of detected sources.

This new formalism also enables to calculate a new quantity which we propose
to use as a cosmological tool : the redshift distribution of the sources among the
lensing events. We test as well the sensitivity of this distribution as a function of
the universe model parameters.
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7.2 QSO joined probability density dobs (M, z)

We now introduce a new concept that we will use to calculate the different distri-
butions: the QSO joined probability density dobs (M,z).

Let us consider a QSO survey that detects a population of NQSO sources.
Each QSO is characterised by its absolute magnitude M and its redshift z.

If we want to estimate the expected number NGL of gravitationally lensed
sources with formation of multiple images to be detected in the source population
(as it has been done in Chapter 6), we may use the relationship

NGL = 〈τ〉NQSO,

where τ is the optical depth associated with a single source and 〈τ〉 the mean
value of the optical depth over the whole catalogue.

For a given source and assuming a universe model, τ is a function of the
source redshift z and apparent magnitude m (necessary to calculate the amplifi-
cation bias). As the source apparent magnitude is calculated from the absolute
magnitude Mi and redshift zi, it is possible to derive an expression for the lensing
probability τ (M,z) as a function of M and z. Let us assume known such an
expression for τ (M,z)1.

So far, in the previous chapters, the mean value of the lensing probability for
all the quasars was evaluated through

〈τ〉 =
NQSO
∑

i=1

1

NQSO
τ (Mi, zi) , (7.3)

where Mi and zi are the absolute magnitude and the redshift of the ith QSO in
the detected population.

Now let us suppose that we do a two-dimensional histogram of the sources by
sampling the absolute magnitude M and the redshift z using the borders of the
interval values Mk and zj defined as

Mk = Mmin + k∆M ,with k = 0, 1, ..., kmax ,

zj = zmin + j∆z ,with j = 0, 1, ..., jmax .

Introducing the Mk and zj in Eq. 7.3, 〈τ〉 can be expressed as

〈τ〉 =
jmax
∑

j=0

kmax
∑

k=0

Njk

NQSO
τ (Mk, zj) , (7.4)

1τ (M, z) is obtained using the developed Matlab libraries described in Chapter 4. We make
use of a function returning the apparent magnitude as a function of M and z as an argument to
the function τ (m, z) calculating the lensing optical depth as a function of the apparent magnitude
m. Thus

τ (M, z) = τ (m (M, z) , z)
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where Njk represents the number of QSOs observed in the survey interval

M ∈ [Mk −∆M/2,Mk +∆M/2[ ,

z ∈ [zj −∆z/2, zj +∆z/2[ .

(7.5)

Let us now consider the limit to the continuous case, i.e. we consider ∆M → 0
and ∆z → 0 in expression 7.4 which leads to

〈τ〉 =
∫ Mmax

Mmin

∫ zmax

zmin

{dobs (M,z) τ (M,z)} dzdM. (7.6)

Mmin and Mmax are the minimum and maximum absolute magnitudes of the
observed population of QSOs. zmin and zmax define the range of redshifts for the
detected sources, and we define

dobs (M,z) = lim
NQSO→∞

lim
∆M → 0
∆z → 0

Njk

NQSO
.

If we consider the absolute magnitude M and the redshift z of the sources as ran-
dom variables (the random event being to pick a QSO in the population detected
by the survey), then dobs (M,z) is the joined probability density associated with
the random variables M and z. In other words,

dobs (M,z) dMdz

represents the probability that observing a source in the survey, this source has
an absolute magnitude and a redshift in the range [M,M + dM [ and [z, z + dz[,
respectively.

The QSO joined probability density dobs (M,z) in the (M,z) space is the
cornerstone of our new formalism. Before showing how we can express the fraction
of multiply imaged sources and the average redshift distribution of the deflectors
as a function of dobs (M,z), we explain in the next subsection how the QSO joined
probability density is linked to the observations.

Determining dobs from observations

We may define the joined Cumulative Distribution Function (CDF) Dobs (M,z)
of the observed QSOs

Dobs (M,z) =

∫ M

Mmin

∫ z

0
dobs

(

M ′, z′
)

dz′dM ′. (7.7)

Dobs (M,z) represents the probability that a source, randomly chosen in the pop-
ulation observed in the survey, has an absolute magnitude smaller than M and a
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redshift lower than z. Furthermore, for the two continuous random variables M
and z, we have

dobs (M,z) =
∂2Dobs (M,z)

∂M∂z
. (7.8)

When considering a survey, the Cumulative Distribution Function Dobs (M,z)
can be directly determined from the observations (after choosing a cosmological
model in order to calculate the absolute magnitudes). Indeed, Dobs (M,z) cor-
responds to a cumulative histogram of the population of detected sources as a
function of their absolute magnitude and redshift, normalised by the total num-
ber of detected sources. By fitting this histogram in the (M,z) plane, we directly
determine Dobs (M,z) and thus, through Eq. 7.8 we determine the joined proba-
bility density dobs associated with the random variables M and z.

We can thus consider dobs to be directly accessible from the observations.

Estimating dobs for simulation purposes

The joined probability density dobs (M,z) of the observable population is a difficult
distribution to simulate. It will depend on the intrinsic source distribution through
space as a function of their absolute magnitude, as well as the universe model.
Furthermore, it will be highly dependent on the selection effects due to the survey
characteristics and detection strategies; colour selection of QSOs for instance will
lead to a bias at redshifts where QSO colours become similar to those of certain
types of stars.

For the purpose of this chapter, we will use a simplified model for dobs (M,z):
we consider as the only selection effect the flux of the source that must be higher
than a critical value. This represents a perfect flux limited sample. This would
thus represent the dobs (M,z) distribution of a perfect flux limited survey. Al-
though such survey characteristics are very hardly achievable, the simulated dobs
is sufficient to show the main trends of the dependence of the different distribu-
tions on the universe models.

We estimate dobs (M,z) through

dobs (M,z) = S (M,z) ΦQSO (M,z)
dVC
dz

1

NQSO
, (7.9)

where

• S (M,z) is a function accounting for the survey selection effect (in this case
only flux limited). This function equals 1 if the apparent magnitude of a
QSO having an absolute magnitude M and redshift z is brighter than the
limiting apparent magnitude of the survey;

• ΦQSO (M,z) is the QSO luminosity function;
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• dVC
dz

is the variation of the comoving volume accessible by the survey at

redshift z. It is calculated, in a flat FLRW universe, by means of the relation

dVC
dz

= D2
C (z)

dDC

dz
ΩSurvey,

where DC is the line-of-sight comoving distance, dDC/dz its variation with
redshift, and ΩSurvey the survey solid angle;

• NQSO is the number of sources detected in the survey. This is a normalisa-
tion factor to ensure that dobs has a unitary norm, necessary to consider it
as a probability density.

7.3 Calculating distributions with dobs (M, z)

7.3.1 Lensing optical depth distribution

Let us consider M and z as two random variables following a probability law de-
scribed by the joined probability density dobs (M,z). Because a randomly chosen
source, characterised by the value of the random variables M and z, has an asso-
ciated lensing optical depth τ , we can consider τ (M,z) as a function of these two
random variables. The calculation of the average lensing optical depth 〈τ〉 over
the sources of the catalogue can thus be done by calculating the mathematical
expectation E [τ ] of τ , seen as a function of the two random variables, i.e.

〈τ〉 =
∫ Mmax

Mmin

∫ zmax

zmin

{dobs (M,z) τ (M,z)} dzdM. (7.10)

〈τ〉 is thus the mathematical expectation of τ through the population of detected
QSOs. Furthermore, the calculation of the variance σ2τ for τ over the catalogue
can be done through the calculation of

σ2τ =
〈

(τ − 〈τ〉)2
〉

=

∫ Mmax

Mmin

∫ zmax

zmin

{

dobs (M,z) (τ (M,z)− 〈τ〉)2
}

dzdM. (7.11)

So far, we have considered τ (M,z) as a function of the random variables M
and z and we have calculated the expectation of the mean value of this function
as well as the expectation of the variance of the function for the randomly chosen
sources.

On the other hand, we may consider τ as being itself a random variable as-
sociated with the randomly chosen sources. Consequently, we can define a prob-
ability density wτ associated with this variable within the detectable population
of sources. wτdτ thus represents the probability that a randomly chosen QSO
(within the population of detectable QSOs in the survey) has a lensing optical
depth in the range [τ, τ + dτ ].
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We have no explicit expression for ωτ . Nevertheless, in order to have an idea
of how the probability density is distributed as a function of τ , we have estimated
ωτ by doing a histogram, as a function of the lensing optical depth, for the ILMT
QSOs simulated in Chapter 5, for which we have calculated the optical depth in
Chapter 6. The resulting estimation of ωτ for a flat FLRW universe with Ωm = 0.3
is shown in Fig. 7.2.
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Figure 7.2: Probability density ωτ as a function of the lensing optical depth τSIS
for the ILMT QSOs. ωτ is estimated through the histogram of the ILMT QSO
catalogue.

We may use wτ to calculate the expectations E [τ ] and E
[

(τ − 〈τ〉)2
]

of the

random variable τ through

E [τ ] =

∫ 1

0
wττdτ

= 〈τ〉 = m1

E
[(

τ2 − 〈τ〉2
)]

=

∫ 1

0
wτ (τ − 〈τ〉)2 dτ

= σ2τ = µ2, (7.12)

where 〈τ〉 and σ2τ are thus the values given by Eq. 7.10 and Eq. 7.11, respectively.
We recognise through these relationships the definitions of the first moment m1

of the random variable τ and its second centred moment µ2 (i.e. its standard
deviation). Indeed, the centred moment µk of order k (> 0)is defined as

µk =

∫

wτ (τ) (τ − 〈τ〉)k dτ. (7.13)

In Fig. 7.2, the value of m1 is shown as a grey dashed-dotted line, and the values
of τSIS within a distance of one µ2 are marked with vertical dotted lines.
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Consequently, when using the observed number of detected gravitational lenses
within a catalogue of sources, we are actually calculating the first moment of the
optical depth probability density wτ . Since the observed number of lenses has
been proposed as a tool to probe the universe, the reliability of this approach thus
depends on the sensitivity of the wτ distribution to the cosmological parameters.

We propose to test the sensitivity of this distribution to the universe models
through the sensitivity of the two first moments of the distribution, namely its
mean 〈τ〉 and variance σ2τ . These dependence to the universe will be analysed in
Section 7.4.

As the distribution wτ is not easy to calculate, we estimate these two param-
eters by considering τ as a function of the two random variables M and z. We
thus use Eq. 7.10 and Eq. 7.11 to calculate 〈τ〉 and σ2τ , respectively.

7.3.2 Redshift distribution of the lens deflectors

In Section 7.3.1, we have derived the expression of the mean lensing probability in
a sample of sources, as a function of the QSO joined probability density dobs (M,z).
In this section, we derive the expression of the redshift distribution of the deflectors
for the detected lensing events. We calculate the expected redshift distribution
of the deflectors that are effectively forming multiple images of the background
sources.

Let us first define P (GLE) the probability of having a gravitational lens event
in the source population and P (zd = Z) the probability of having a foreground
galaxy at a redshift zd in the range [Z,Z + dZ[ (independently of the fact that
this deflector leads to the formation of multiple images of a background source).

We can now define the conditional probability P ((zd = Z) |GLE) of having
a deflector with a redshift zd in the range [Z,Z + dZ], knowing that there is a
lensing event produced by this deflector. By definition of a conditional probability

P ((zd = Z) |GLE) =
P ((zd = Z) ∩GLE)

P (GLE)
. (7.14)

P ((zd = Z) |GLE) is linked to the probability density wzd (Z) such that

P ((zd = Z) |GLE) = wzd (Z) dZ. (7.15)

wzd (Z) is thus the probability density of having a deflector with a redshift zd = Z,
knowing that this deflector is near the line-of-sight of a background source and
leads to the formation of multiple images of this source.

In other words, the deflectors of the multiply imaged sources in our sample
are distributed as a function of the redshift according to the distribution wzd (Z).
Thus, when observing the redshift of a deflector in a lens system chosen randomly
in our sample, we may consider the deflector redshift as a random variable and
the probability of the variable to take a value zd in the range [Z,Z + dZ] is given
by wzd (Z) dZ.
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Let us now express Eq. 7.15 in terms of the probability density dobs (M,z).
As in Section 7.3.1, the probability of having a lensing event in the source sample
P (GLE) is given by

P (GLE) =

∫ zmax

zmin

∫ Mmax

Mmin

{dobs (M,z) τ (M,z)} dMdz (7.16)

= 〈τ〉 .

For a single source, at redshift zs, the probability of being multiply imaged
by a deflector with a redshift in the range [Z,Z + dZ] is given by (dτ/dzd) dZ.
The probability through the whole detected population, of having a deflector
with a redshift zd in the range [Z,Z + dZ] is thus given by the average value of
(dτ/dzd) dZ over the source population, i.e.

P ((zd = Z) ∩GLE) =

∫ zmax

zmin

∫ Mmax

Mmin

{dobs (M,z) (dτ/dzd) dZ} dMdz. (7.17)

Inserting Eq. 7.16 and Eq. 7.17 in Eq. 7.15 and using Eq. 7.14, we find

ωzd (Z) =
1

〈τ〉

∫ zmax

Z

∫ Mmax

Mmin

{

dobs (M,z)
dτ (M,z)

dz

}

dMdz. (7.18)

Since we have an explicit expression for dobs (M,z) and of dτ (M,Z) /dz (see Eq.
7.1), we can use Eq. 7.18 to calculate the probability distribution ωzd (Z) as a
function of the redshift deflector zd.
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Figure 7.3: ωzd as a function of zd for different universe models.

Fig. 7.3 shows the evolution of ωzd as a function of zd for different universe
models, when considering the population of early type galaxies modelled as SIS
deflectors and a perfect instrument.
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7.3.3 Redshift distribution of the lensed sources

Use of the QSO joined probability density dobs gives access to a new distribution:
the redshift distribution of the sources that are effectively multiply imaged.

Let us define the probability P (zs = Z) of having a source with a redshift zs
in the range [Z,Z + dZ], independently of the fact that this source is detected as
being multiply imaged.

We may define the conditional probability P ((zs = Z) |GLE) of having a
source with a redshift zs in the range [Z,Z + dZ], knowing that this source is
multiply imaged. P ((zs = Z) |GLE) is defined as

P ((zs = Z) |GLE) =
P ((zs = Z) ∩GLE)

P (GLE)
. (7.19)

P (GLE) is given by Eq. 7.10. P ((zs = Z) |GLE) is linked to the probabil-
ity density wzs (Z), which is the probability density of having a source with
a redshift zs = Z knowing that this source is multiply lensed. wzs (Z) and
P ((zs = Z) |GLE) are linked through the relation

P ((zs = Z) |GLE) = wzs (Z) dZ. (7.20)

For a single source with an absolute magnitude M and a redshift zs, the
probability of having a redshift zs in the range [Z,Z + dZ[ and being multiply
imaged is given by δ (zs − Z) τ (M,zs) dZ. This can be averaged over the whole
population of the detected QSOs to find P ((zs = Z) ∩GLE). Thus, proceeding
similarly as in Section 7.3.2, we find

P ((zs = Z) |GLE) =

∫ zmax

zmin

∫Mmax

Mmin
{dobs (M,z) δ (z − Z) τ (M,z)} dMdz

∫ zmax

zmin

∫Mmax

Mmin
{dobs (M,z) τ (M,z)} dMdz

dZ.

(7.21)

The redshift distribution ωzs (Z) of the sources that are detected as multiple
images is thus given by

ωzs (Z) =
1

〈τ〉

∫ Mmax

Mmin

{dobs (M,Z) τ (M,Z)} dM. (7.22)

As we know the explicit expressions of 〈τ〉 (Eq. 7.10), dobs (M,Z) (Eq. 7.9) and
τ (M,Z), we are able to calculate the value of the distribution ωzs (Z) as a function
of the source redshift. The dependence of ωzs as a function of the redshift is shown
in Fig. 7.4, for different values of Ωm. For comparison, we have represented as a
dotted black line the normalised redshift distribution of all the detected QSOs in
the ILMT survey.

Compared to the redshift distribution of all the sources, ωzs is shifted towards
higher redshifts. As expected, the lensed sources tend to be very distant sources
as they are characterised by a higher geometrical lensing volume.
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Figure 7.4: ωzs as a function of zs for different universe models. For comparison,
the redshift distribution of all the QSOs is shown as the dotted light-grey curve.

A second observation, is that for redshifts higher than z ∼ 2, although ωzs
decreases as a function of the redshift in all cases, the distribution is not smooth.
For instance, there seems to be an excess of the density of quasars with a redshift
in the range 3.36 - 4.32. This is an effect caused by the emission lines in the spectra
of the QSOs. In the range 3.36 - 4.32 for instance, the CIV line enters the SDSS-i
filter2. Thus thanks to this strong emission line, the sources in this redshift range
will appear brighter. Because their apparent magnitude is decreased thanks to the
emission line, the effect of the amplification bias is increased. Consequently, there
is an increase of ωzs in this redshift range compared to the situation corresponding
to a pure continuum spectrum.

Inspection of Fig. 7.4 leads to the conclusion that the source redshift distri-
bution among multiply imaged quasars is not very sensitive to Ωm.

7.4 Sensitivity comparison to Ωm

In the previous section, we have described three probability densities, namely

• ωτ : the probability density of the optical depth associated with the multiply
imaged sources;

2The SDSS i filter spans over the wavelength range 675 to 825 nm. As the CIV line is located
at 154.9 nm, it enters the i filter at a redshift

zin =
675

154.9
− 1 = 3.36
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• ωzd: the normalised redshift distribution of the deflectors forming the mul-
tiply imaged sources;

• ωzs : the normalised redshift distribution of the sources that are detected as
multiply imaged.

These three distributions determine the behaviour of an observable in a sample of
sources containing multiply imaged QSOs (the fraction of multiply imaged sources,
the deflector and multiply imaged source redshift distribution, respectively).

We would like to compare the sensitivity of these distributions to the cosmo-
logical parameter Ωm. Although we do have an explicit formulation allowing us to
calculate ωzd and ωzs (Eq. 7.18 and Eq. 7.22, respectively), we do not have such
an expression for ωτ . Consequently, we cannot calculate the direct dependence of
ωτ as a function of Ωm.

To compare the behaviour of the three probability densities, we will thus
compare the mean value of their distribution and their standard deviation. For
ωτ , these are calculated using Eq. 7.10 and Eq. 7.11. For the other distributions,
we calculate the probability density as a function of the redshift through Eq. 7.18
and Eq. 7.22, and then calculate the mean value and standard deviation.

We have already explained in Chapter 6 how the universe model parameters
affect the calculation of the lensing optical depth τ (and dτ/dz is affected in the
same way). In the next section, we explain how the choice of a universe model
impacts on the QSO joined probability density dobs (M,z).

7.4.1 Modification of the simulated dobs with the universe model

In Eq. 7.9, we see that dobs depends on the QSO luminosity function that has
been determined assuming a FLRW flat universe model with H0 = 70 (km s−1

Mpc−1) and Ωm = 0.3. Thus assuming a FLRW universe model defined by the
set of parameters, U1 = {H0,1,Ωm,1,ΩΛ,1} = {70, 0.3, 0.7}, the LF Φ1 (M1, z) has
been determined from a set of observations. M1 is the absolute magnitude of a
source with apparent magnitude m at redshift z (as determined in U1). M1 and
m are linked through

M1 = m−K (z)−DM1 (z) ,

where K is the K-correction and where DM1 is the distance modulus associated
with the redshift z as calculated for U1.

Φ1 has been determined to be consistent with the observed distribution of the
sources as a function of the redshift and apparent magnitude. Consequently, if we
define dn (m, z) as the number of sources detected with a redshift and an apparent
magnitude in the range [z, z + dz[ and [m,m+ dm[, respectively , it comes

dn (m, z) = Φ1 (m−K −DM1, z)

(

dVc
dz

)

U1

, (7.23)
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where
(

dVc
dz

)

U1
is the redshift variation of the comoving volume accessible to the

survey at redshift z. In a flat universe

(

dVc
dz

)

U1

= ΩD2
C
dDC

dz
, (7.24)

where DC is the comoving distance and Ω the solid angle of the survey.

If the determination of the QSO LF were done assuming a universe with char-
acteristics U2, we would obtain a LF Φ2 (M2, z), with M2 = m−K −DM2. This
second LF would also need to be consistent with the observed (m, z) distribution
of the observations. Consequently, relation 7.23 would also be satisfied for Φ2.
This implies

Φ1 (m−K −DM1, z)

(

dVc
dz

)

U1

= Φ2 (m−K −DM2, z)

(

dVc
dz

)

U2

.

Consequently, Φ2 is linked to Φ1 by means of the relation

Φ2 (M,z) = Φ1 (M −DM1 +DM2, z)

(

dVc
dz

)

U1

(

dVc
dz

)−1

U2

. (7.25)

When changing the universe model, the QSO LF is changed according to Eq. 7.25.

In Eq. 7.9, we see that dobs (M,z) depends on the selection function S (M,z).
When considering the universe model U2 we should consider in the selection func-
tion the absolute magnitude M2 as calculated for this universe model. We have
seen that the definition of a QSO is arbitrary and implies to be brighter than
a critical absolute magnitude of -22.5 in the i band. To be consistent with the
calculation done in Chapter 6, we want to calculate the lensing statistics for a
same sample of sources. We thus select the sources that are defined as QSOs in
the universe model characterized by U1.

7.4.2 Comparison between the different distributions

Fig. 7.5 shows the dependence of the mean value of ωτ (a), ωzd (b) and ωzs (c),
as a function of Ωm.

Let us first consider the dependence of the mean optical depth (Fig. 7.5a).
The dark curve shows the quantity 〈τ〉, calculated using the formulation with
dobs (M,z) (i.e. Eq. 7.10).

As the dependence of the mean optical depth has already been calculated in
Chapter 5 (cf. Fig. 6.10) by simulating a catalogue and calculating the lensing
probability of all sources, we have plotted the results previously obtained as the
black circles. The very good agreement attests the reliability of the new method
for the calculation of 〈τ〉.

If we now compare the dependence of 〈τ〉 with those of 〈zd〉 (b) and 〈zs〉 (c),
the mean optical depth shows the highest relative variation.
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Figure 7.5: (a)Dependence of 〈τ〉 as a function of Ωm. For comparison, the results
derived in Chapter 6 are shown as black circles. The bottom figures show the
dependence as a function of Ωm of 〈zd〉 (b) and 〈zs〉 (c). In both cases, the limits
of the area included by 3 and 10 times the standard deviation of the distribution
are shown. In figure (a) the 3 σ limit is not larger than the line thickness.

On figures (b) and (c) we have plotted the area defined by 3 and 10 times the
standard deviation of the distributions. In figure (a), the area defined by 3 times
the standard deviation is smaller than the line thickness.

Thus when comparing the sensitivity of the distributions on the basis of the
relative change of the mean value of the distribution (i.e. 〈τ〉, 〈zd〉 and 〈zs〉), ωτ
is clearly the most sensitive to the choice of a universe model, followed by ωzd.

For what concerns ωτ , the only thing directly accessible through the observa-
tion is its first moment 〈τ〉 (i.e. the fraction of lens events in the sample). The
distribution itself may be estimated by calculating τ for each source and doing a
histogram of the source lensing optical depth. Nevertheless, this estimation of ωτ
is model dependent as we have to calculate τ for each source.



156

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

z

ω
zs

/ω
Q

S
O

 

 
Ω

m
=0.1

Ω
m

=0.2

Ω
m

=0.3

Ω
m

=0.4

Ω
m

=0.5

Ω
m

=0.6

Ω
m

=0.7

Ω
m

=0.8

Ω
m

=0.9

Ω
m

=1

Figure 7.6: Dependence of the ratio ωzs/ωQSO as a function of the source redshift,
for different values of Ωm.

On the other hand, ωzd and ωzs are directly observable. Thus the distribu-
tions calculated through Eq. 7.18 and Eq. 7.22 can be directly compared to the
observed ones in order to constrain the cosmological parameters.

One problem in the use of ωzd is the possible importance of biases: because
the deflectors are faint objects, they are not always detectable, and thus it is not
possible to determine the deflector redshifts for all the lenses.

As the redshift of all the lensed sources is measurable (because they are all
detected, which is not the case for the deflectors), ωzs is expected to be determined
with a better accuracy than ωzd .

We have noticed in Section 7.3.3, that ωzs tends to have an excess with respect
to ωQSO at high redshift. In Fig. 7.6 we have plotted the ratio ωzs/ωQSO as a
function of the source redshift, for different values of Ωm. As can be seen in the
figure, the redshift dependence of this ratio is significantly modified by the value
of Ωm. Measurement of this excess of the density population of the lensed sources
at high redshift could be a way to efficiently constrain the value of Ωm.

Furthermore, the use of the distributions ωzd and ωzs gives access to a prob-
ability. Indeed, let us consider the probability P ((zd = Zd) ∩ (zs = Zs) | GLE)
of having a deflector with a redshift zd in the range [Zd, Zd + dZd[ and a source
at a redshift zs in the range [Zs, Zs + dZs[, knowing that the source is multiply
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imaged. It comes

P ((zd = Zd) ∩ (zs = Zs) | GLE)

= P (((zd = Zd) | GLE) ∩ ((zs = Zs) | GLE)) ,

= P ((zd = Zd) | GLE) ∩ . P ((zs = Zs) | GLE) ,

= ωzd (Zd) ωzs (Zs) dZd dZs,

where the last relation is obtained by using the definition of ωzd and ωzs (Eq. 7.15
and Eq. 7.20, respectively). This expression can thus be used to calculate the
a posteriori probability of having a deflector and a source with a given redshift,
knowing that the source is being multiply imaged. In a sample of gravitationally
lensed sources, this expression can then be used for all the lensed sources for which
the deflector redshift is known. As we are calculating the a posteriori probability
of having all of the observables, this should be the most efficient way to constrain
the value of Ωm, using likelihood methods.

Finally, in this work we have considered a simplified model for the deflector
population, which is not able to account for the existence of multiply imaged
sources with more than 2 lensed images. The definition of the probability densities
ωzd and ωzs may be adapted by using the SIE mass distribution. We may thus
define the probability densities associated with the formation of a given number
of sources. The likelihood of an event for a single source will then be constrained
by the source and deflector redshift as well as the numbers of lensed images. As
we are using, simultaneously, all of the observables in the gravitationally lensed
source sample, this is the most efficient way to constrain the value of Ωm from a
sample of lensed sources.
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Chapter 8

Conclusions

As the size, complexity and cost of astronomical telescopes keep increasing, lead-
ing to constantly more pressure on the available observing time and on the as-
tronomers to extract results from every possible set of data, liquid mirror tele-
scopes offer an alternative allowing the construction of large collectors that, thanks
to their low cost, may be entirely dedicated and optimised for specific scientific
projects.

A large effort has been invested to make this technology viable for astronomical
observations, increasing the mirror optical quality and the field-of-view accessi-
ble by a fixed telescope. The technology has now been brought to maturity for
scientific applications. One of the key elements leading to the success of liquid
mirrors as viable astronomical tools has been the development of CCD cameras
working in the TDI mode, allowing zenith pointing telescopes to track objects
electronically.

The International Liquid Mirror Telescope (ILMT) project is the first attempt
to correct images for the particular distortions induced by TDI imaging, thanks to
a dedicated optical corrector. The ILMT should achieve very accurate photometric
measurements of all objects passing in its FOV thanks to the combination of such
an optical corrector with the ease of TDI data reduction as well as the low air
mass at the zenith.

Photometric and astrometric precision essentially rely on the quality of the
primary mirror. In the framework of the present thesis, we have developed an
innovative technique to determine the quality of liquid mirrors, by detecting and
characterising wavelets propagating on the mercury surface and affecting its qual-
ity. This technique is based on the use of a laser beam whose reflection on the
mercury surface is affected by local slope variations induced by the wavelets.

We have designed and manufactured the necessary equipment (the light source
and the detector) and have made preliminary tests on the ILMT primary mirror.

Thanks to the absence of a co-phased oscillation signature along the reflected
beam section, our instrument tends to reveal the absence of concentric wavelets,
possibly transmitted by the bearing. On the other hand, the presence of spiral
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wavelets was inferred from peaks at a frequency of ∼ 8 Hz in the Fourier trans-
form of the oscillations, which seem to indicate that their apparent frequency
is undersampled by the videos. Possible improvement of the measurements (the
acquisition of longer videos and/or the use of a faster detector) will allow the mea-
surement of the wavelet amplitude via the reflected beam oscillation amplitude.

We have also put in evidence the impact of vibrations transmitted to the
mirror by a nearby fan, inducing a complex frequency pattern of wavelets, leading
to the conclusion that sources of vibration should be avoided as much as possible
on site.

Besides our contribution to the development of the ILMT, we have considered
potential scientific applications of the project, among which the statistics of strong
gravitational lensing effects in the QSO population, a research work presented in
the second part of the present thesis. Thanks to the Earth rotation, the ILMT
will access a strip of sky, centred on a declination equal to the telescope latitude,
covering 150 square degrees, among which 70 sq.deg. at a high galactic latitude.
As the telescope will image parts of this strip night after night, on one hand,
image co-addition will lead to an increased Signal-to-Noise of the images making
possible the detection of much fainter objects. On the other hand, subtraction
between a reference CCD frame and those recorded each night will enable an
unprecedented photometric variability study of all objects detected in the narrow
strip, making the ILMT a very suitable tool for the detection and follow up of
photometric variable objects such as supernovae and quasars.

In Chapter 5, we have presented an estimate of the expected number of QSOs
to be detected with the ILMT, these being selected on the basis of their photo-
metric variability.

We have determined a synthetic quasar luminosity function from the interpo-
lation of LFs constructed from several recent and independent surveys (cf. SDSS-
Dr7, SDSS-BOSS III and the MMT survey), allowing to cover the entire redshift
and absolute magnitude ranges probed with the ILMT.

As a reliability test of our composite LF, we have succeeded in reproducing
the observed magnitude distribution of QSOs from various surveys, achieving a
very good agreement with the observations in the redshift range 2.2 < z < 3.2.
For the lower redshift range, although the brighter source distributions are very
well reproduced (cf. data from the SDSS-DR3), we seem to underestimate the
number of fainter QSOs at low redshift (compared to data from the 2SLAQ and
2QZ/6QZ surveys).

Assuming that the telescope will detect all objects brighter than i′ = 22.5 at
high galactic latitude (|b| > 30◦), we expect the detection of some ∼ 9000 quasars.
Furthermore, we have seen that degrading the limiting magnitude to i′ = 22 would
lead to the detection of only ∼ 7700 sources, thus reducing by more than 10 %
the number of detected sources.

Among these ∼ 9000 QSOs to be detected with the ILMT, some are expected
to be multiply imaged, due to the presence of a foreground deflecting galaxy near
the line-of-sight. In the second part of this thesis, we have tried to answer the
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following question: among these QSOs, how many sources will be detected as
being multiply imaged?

To answer this question, we have used two simple mass distributions to rep-
resent the deflectors, the SIS and SIE models, mainly motivated by the success
of the isothermal mass profile to reproduce the observed flat rotation curves of
galaxies.

In Chapter 4 we have derived some practical expressions for the calculation of
the lensing optical depth that a source, with a given redshift and apparent mag-
nitude, is lensed by a SIS or SIE deflector population, accounting for both the
increase of the lensing geometrical volume with the source redshift and the bias
induced by the amplification effect. Following earlier work done in lensing statis-
tics, we have expressed the amplification bias in terms of the source differential
number counts as a function of their magnitude. Furthermore, we have assumed
a non-evolving deflector population. The latter has been characterised thanks
to the measured local galaxy VDF and, comforted by recent results showing the
good correlation between the ellipticity alignments of the total and the luminous
mass distributions, we have adopted the same mass ellipticity distribution as the
one derived from the luminous isophotes of local galaxies.

In Chapter 5, we have applied the derived optical depth expressions to the
estimation of the mean lensing probability of the ILMT QSOs.

First, considering an instrument with a perfect resolution, among the 9000
QSOs to be detected with the ILMT, we should find about 28 multiply imaged
sources formed by early type galaxy deflectors. The total lensing expectation
is very similar when modelling the deflectors with the SIS or the SIE profiles,
although, because of the radial-pseudo caustic flattening with the deflector ellip-
ticity, the SIS tends to give a slightly overestimated value for the optical depth.

Modelling the deflectors with the SIE distribution showed that about ∼ 10%
of these lensing events are expected to be formed by more than 2 lensed images.
Furthermore, the amplification bias tends to increase the number of lensing events
with 3 and 4 lensed images, because of a higher amplification of their lensed
images, formed closer to the tangential critical curve.

The number of multiply imaged sources effectively detected is highly depen-
dent on the best angular resolution achievable with the ILMT, because lensed
images angularly close to each other may not be resolved. Motivated by the fact
that the lensed images close to the tangential critical curve, contributing the most
to the cross section thanks to the amplification bias, are the closest from one an-
other and have a similar amplification, we have subsequently assumed a telescope
angular resolution independent of the flux ratio between the nearby lensed images.

In the ILMT best case scenario, assuming that we can resolve sources with
an angular separation down to 0.5” using multiple PSF fitting techniques, we
expect the detection of 22 gravitational lens systems, ∼ 3 having more than 2
lensed images. Nevertheless in the resolution range 0.5-1”, the average lensing
optical depth is very sensitive to the telescope angular resolution and the number
of detected lens systems drops dramatically for an angular resolution deteriorated
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to 1”, with only a few (5-6 gravitational lens systems) detections. The first lensing
events to be missed because of the degraded instrumental resolution, are those
formed by very distant deflectors as they tend to form lensed images with smaller
angular separations.

The impact of the late-type galaxy population has also been studied showing
that, although more numerous, they are not very efficient deflectors. Furthermore,
as the multiple images tend to be closer to each other, even in the best case
scenario for the ILMT angular resolution, we should not detect any lensing event
due to a late type galaxy deflector.

Because the number of detected lens systems is highly and critically dependent
on the telescope angular resolution, many efforts ought to be made to improve
the latter as much as possible.

Since we intend to make use of this sample of lensed sources as a cosmological
probe, we have also studied for the case of FLRW universes the impact of the
cosmological mass density on the fraction of lensed sources, putting in evidence
that the fraction of lens events is highly affected by the value of Ωm, as it changes
by more than an order of magnitude in the range 0 to 1. As the mean optical
depth variation is steeper for low values of Ωm, this observable is a very efficient
tool to determine a lower limit on Ωm.

Finally, in the last chapter, we have introduced theoretical considerations to
determine the most efficient way to use the clean statistical sample of multiply
imaged QSOs that is to be detected with the ILMT.

When used as a cosmological probe, the sample of multiply imaged sources
is used by maximising the likelihood of the fraction of detected lensing events
or the observed redshift distribution of the deflectors, for the events where both
the source and deflector redshifts may be determined, or the observed redshift
distribution of the multiply imaged sources.

To compare the relative sensitivity of these methods on the cosmological
model, we have introduced a new formalism, based on the joined probability
density of the observed QSOs, allowing to calculate three different probability
densities; namely, the lensing optical depth distribution, the average of the deflec-
tor redshift and of the lensed source redshift distributions.

The main power of this formalism is that the joined probability density of the
QSOs, as well as the redshift distribution of the deflectors and the lensed sources
are directly accessible through the observations.

Using this new formalism, we have compared the sensitivity of the three dis-
tributions on the universe model parameter Ωm, by comparing the evolution of
their first and centred second moments, and concluded that the most sensitive
distribution is that of the fraction of lensing events, followed by that of the lens
redshift distribution. We have shown that the lensed source distribution mean
value and standard deviation are not very sensitive to variations of Ωm.

However, we have noticed that the QSO emission lines tend to produce an
excess of lensed sources at redshifts where strong emission lines enter the observed
spectral band (i′ in our case). Furthermore, compared to the redshift distribution
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of all the detected sources, the lensed ones show an excess at higher redshift. We
have proposed to use this excess of lensed sources at high redshift to probe the
value of Ωm.

As a final conclusion, we have shown that the introduction of the distribution
ωzd and ωzs with our new formalism gives access to a new probability calculation:
the probability for a source to be lensed for a given deflector redshift and source
redshift. Used in combination with the maximum likelihood method, this quantity
constitutes an efficient way to constrain the cosmological parameters, as it makes
use of all the accessible observables (i.e. the deflector and source redshifts, QSO i’
magnitude), and it may be further combined with the use of the SIE cross section
allowing to simultaneously include the observed number of lensed images as a
further constraint on the cosmological mass density.

As the ILMT QSOs will form a very clean statistical sample thanks to the
absence of observational biases, we expect them to provide a very high quality
sample for the application of our new formalism and for constraining the cosmo-
logical model, with the hope and belief that, along this path, the Universe has
still some surprises to offer.
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Appendix A

Detector to lens plane mapping

Determination of the detector characteristics

We here determine precisely the distance between the lens and the CMOS detector,
and thus the out of focus distance. We also want to determine the position of the
optical axis (the axis of symmetry of the lens) on the detector.

We have taken a calibration image where in front of the detector lens, we
introduced a transparent mask where we have drawn vertical lines every 5 mm.
These lines act as masks and decrease the apparent flux from the laser. In the
image, we can thus detect the points xd corresponding to the rays that impacted
on the vertical lines.
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Figure A.1: Experimental determination of the u (xd) relation, leading to the
precise knowledge of the optical axis position on the detector and the out-of-focus
distance of the detector.

In Fig. A.1, we represent the lens impact coordinate u as a function of the
CMOS detector impact coordinate xd, both expressed in meters. The origin of
the xd and u coordinates has been determined by fitting the relation u (xd) with
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a third order polynomial and taking as origin the point where the curvature sign
changes.

We clearly see that the mapping between xd and u is non linear. This non
linear mapping is due to both the non linear deflection law (as a function of the
impact radius) induced by the lens to the impacting rays, and to the divergence
of the impact rays (cfr emitter characteristics).

In order to determine the distance between the lens and the detector, let us
consider the paraxial case, i.e. we only consider the rays around the origin. In
the paraxial approximation, the relation u (xd) is linear, and this relation is given
by the linear approximation of the third order fit, around the origin. The linear
approximation is shown in Fig. A.1 with a dashed line.

We have seen that we can find a linear relation between the impact coordinates
Y and the one on the line u (i.e. u = SY , cfr Eq. 2.28). Thus, at the impact
point on the lens, the rays seem to arrive from a point-like source at a distance
ds

1

ds =
(d−X0))

sin (α− 2θX0
) (S − 1)

. (A.1)

As an indication, for the impact point at a radius of 1.59 m, ds ∼ 100 m.

Thus, defining di the distance from the lens to the plane where this point like
source is imaged, we have

1

ds
+

1

di
=

1

f
⇒ di =

fds
ds − f

, (A.2)

where f is the focal length of the lens.

Finally, defining dl as the distance between the lens and the detector, the
relation between u and xd is given by

xd = −udl − di
di

. (A.3)

Consequently, from the experimental measurement of the linear relation u (xd) in
the paraxial case, we determine the distance between the lens and the detector
(and thus, the out-of-focus distance of the detector). From the linear approxima-
tion in Fig. A.1, we find dl = 0.159485 (m).

1This can be shown using the linear relation between u and Y and

ds
u

=
ds − ¯ID

Y
,

where ¯ID is the distance between the impact point on the mirror and the lens. From Fig. 2.7,
simple geometrical arguments lead to

¯ID =
(d−X0)

sin (α− 2θX0
)
.
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The mapping u (xd) measured in the calibration video results from the deflec-
tion applied by the lens on the ray impacting the lens and from the inclination of
the incident ray. Let us separate the two contributions.

Let us consider a ray (contained in the lens equatorial plane) impacting at a
coordinate u and forming a small angle δu with the optical axis. The position xd
where the ray impacts the detector is given by

xd = u− dl tan (ρl (u)− δu) , (A.4)

≃ u− dl tan (ρl (u)) + dlδu, (A.5)

where ρl (u) is the deflection angle induced by the lens to a ray impacting at
u. The second relation has been derived assuming δu ≪ 1 and tan2 (ρl (u)) ≪
tan (ρl (u)) < 12. Let us now develop tan (ρl (u)) to the third order

tan (ρ) ≃= c1u
3 + c2u

2 + c3u, (A.6)

we consider c4 = 0 because a ray arriving along the optical axis at u = 0 is not
deflected. Furthermore, using the fact that

δu =
u

ds
, (A.7)

Eq. A.5 becomes

xd = u− dl
(

c1u
3 + c2u

2 + c3u
)

+ dl
u

ds
,

= (−dlc1) u3 + (−dlc2) u2 +
(

1 +
dl
ds

− dc3

)

u. (A.8)

As the value of dl is known, the coefficients of a third order fit of the relation
xd (u) (i.e. the data from Fig. A.1) allows to retrieve the parameters c1, c2 and
c3 characterising the lens deflection

c1 = 357.9113,

c2 = −0.9559993,

c3 = 6.619645.

Mapping relation

Let us now assume that a light ray is impacting at a point (u, v) on the lens, where
the coordinates u and v are in the sagittal and meridional planes, respectively.

2In our case, the maximum value tan ρl,max of tan (ρl (u)) is of the order

tan ρl,max ∼
umax

f
=

2 .10−2

1.5 .10−1
.
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Let us assume that the ray is impacting with an angle δu (and δv , respectively)
relatively to the optical axis, as measured in the sagittal (meridional, respectively)
plane. These two angles are given by

(

δu
δv

)

=

(

1/ds 0
0 1/dv

)(

u
v

)

, (A.9)

where ds has been previously defined and where

dv =
d−X0

sin (α− 2θX0
)

(A.10)

is the distance between the impact point on the mirror and the lens, as measured
along the lens optical axis.

In two dimensions, adapting Eq. A.8, the coordinates (xd, yd) on the detector
are given by

(

xd
yd

)

=

(

u
v

)

− dl
rl

(

c1r
3
l + c2r

2
l + c3rl

)

(

u
v

)

+dl

(

1/ds 0
0 1/dv

)(

u
v

)

, (A.11)

where rl =
√
u2 + v2 is the impact parameter in the lens plane. This relationship is

used to map the coordinates of the ray impacts on the detector to the lens plane.
For inverting the relation, we proceed by generating a grid in the (u, v) plane,
for which we calculate the image through the mapping. The (u, v) coordinates
corresponding to a given measured position on the detector is then obtained by
interpolating the original grid.


