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Small-angle scattering of X-rays (SAXS) or neutrons is one of the few

experimental methods currently available for the in situ analysis of phenomena

in mesoporous materials at the mesoscopic scale. In the case of disordered

mesoporous materials, however, the main difficulty of the method lies in the data

analysis. A stochastic model is presented, which enables one to reconstruct the

three-dimensional nanostructure of liquids confined in disordered mesopores

starting from small-angle scattering data. This so-called plurigaussian model is a

multi-phase generalization of clipped Gaussian random field models. Its

potential is illustrated through the synchrotron SAXS analysis of a gel

permeated with a critical nitrobenzene/hexane solution that is progressively

cooled below its consolute temperature. The reconstruction brings to light a

wetting transition whereby the nanostructure of the pore-filling liquids passes

from wetting layers that uniformly cover the solid phase of the gel to plugs that

locally occlude the pores. Using the plurigaussian model, the dewetting

phenomenon is analyzed quantitatively at the nanometre scale in terms of

changing specific interface areas, contact angle and specific length of the triple

line.

1. Introduction
A multitude of technologies and chemical processes make use

of mesoporous materials: heterogeneous catalysis, including

electrochemical reactions in fuel-cell electrodes, adsorption

separation processes and kinetically selective membrane

processes are but a few examples. Mesopores are also relevant

to natural processes as diverse as the weathering of rocks and

ion transport through biological membranes. The unique

physicochemical properties of nanometre-scale systems –

large surface-to-volume ratios, dominant role of dispersive

forces (Van Honschoten et al., 2010), Gibbs–Thomson effects

(Zhang et al., 2007), metastability (Chen et al., 1997), thermal

fluctuations (Hänggi & Marchesoni, 2009), quantum confine-

ment (Häkkinen et al., 2003) etc. – potentially play a promi-

nent role in all applications of mesoporous materials

(Schoonheydt & Weckhuysen, 2009). This can lead to extre-

mely counterintuitive phenomena (Nguyen et al., 2010), many

of which have been predicted theoretically but are still

awaiting experimental confirmation (Harish et al., 2008). The

availability of a general method to reconstruct in situ the

nanostructure of phases confined inside mesoporous solids

would be invaluable to researchers in all these fields.

Numerous methods are available for the ex situ character-

ization of nanostructures, the most common being electron

microscopy and tomography (Midgley & Dunin-Borkovski,

2009; Friedrich et al., 2009). However, electron microscopy can

be used only exceptionally for in situ studies, for analyzing

some phenomena occurring at extremely low pressure

(Simonsen et al., 2010, 2011). General experimental methods

that can be used on porous materials for in situ studies with

nanometre resolution are scarce. Most experimental methods

are macroscopic, such as vapor adsorption measurements

(Neimark & Ravikovitch, 2001), intrusion porosimetry

(Galarneau et al., 2008), electric measurements (Powell et al.,

2011) etc. On the other hand, spatially resolved methods either

have a resolution much larger than the pore size [e.g. light

microscopy (Okamoto et al., 2004) and micro-imaging (Zhang

et al., 2009)] or can only track individual molecules. Nuclear

magnetic resonance (Valiullin et al., 2011), neutron spin echo

(Kusmin et al., 2010) and single-molecule microscopy (Lebold

et al., 2009) belong to the latter category. However, if one

wants to understand fully the properties of matter in nano-

pores it is necessary to investigate the collective behavior of a

large number of molecules on a mesoscopic scale comparable

to the pore size. On length scales relevant to mesoporous

materials, i.e. with pore size from 2 to 50 nm, small-angle

scattering (SAS) of X-rays (SAXS) or neutrons (SANS) is

close to being the only option (Glatter & Kratky, 1982; Sinha,

1999).

Small-angle scattering can in principle be used to analyze

any type of nanostructure, provided there is a sufficient

contrast between the various phases. SAS is also very flexible
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experimentally (Koch & Bras, 2008): measurements can be

done over a wide range of temperature and pressure (Mitchell

et al., 2008), in a variety of chemical environments and often in

a variety of working conditions (Marco & Veder, 2010).

Moreover, in the case of synchrotron SAS, time-resolved

measurements are possible with a resolution as low as a few

milliseconds (Henzler et al., 2008). The latter time resolution is

constantly being improved through the development of more

efficient detectors as well as more intense X-ray sources, most

notably free-electron lasers (Emma et al., 2010). However, in

the case of mesoporous materials with a complex structure, the

huge potential of SAS is considerably hindered by a nearly

complete lack of data analysis methods to reconstruct real-

space structures from scattering data.

Recently, the main difficulties pertaining to SAS data

analysis in disordered porous materials have been circum-

vented through the use of ordered mesoporous materials

(Ciesla & Schüth, 1999) for in situ studies (Hofmann et al.,

2005; Mascotto et al., 2010; Lefort et al., 2011). However, there

is increasing evidence that structural disorder plays a crucial

role in determining the properties of matter confined in

mesopores (Wallacher et al., 2004; Bonnet et al., 2008). Slight

deviations from geometrical ideality can act as nucleation sites

and trigger phase transitions that would otherwise take place

under different circumstances (Gommes, 2012). Moreover, the

choice of a material for any practical application generally

results from a compromise between several different proper-

ties, and having an ordered structure is never one of them

(Rolison, 2003; Gelb, 2009). Therefore, the problem of SAS

data analysis in disordered mesopores has to be addressed for

any in situ study of practical relevance.

In the present paper we introduce a general mathematical

method for the three-dimensional reconstruction of phases

dispersed in disordered mesoporous materials, starting from in

situ SAS data. The method is based on so-called plurigaussian

stochastic models (Armstrong et al., 2003), which are a multi-

phase generalization of clipped Gaussian random field models

that have been widely used to analyze the structure of emul-

sions (Teubner, 1991), porous glass (Levitz, 1998), polymer

blends (Jinnai et al., 1997; D’Hollander et al., 2010) and gels

(Gommes & Roberts, 2008).

We illustrate the potential of plurigaussian modeling by

applying it to the in situ analysis of partially miscible liquids

confined in nanopores. Liquid–liquid equilibria under

confinement are of interest for a host of applications related to

separation technologies, to oil recovery, to lubrication and to

coating. The numerous papers published about that topic since

the late 1980s testify both to the importance of the field and to

unsettled theoretical debates (see Gelb et al., 1999, and

references therein). The competing theories about liquid–

liquid equilibria put a different emphasis on the randomness

of the confining porous medium, on critical fluctuations and

how they are affected by the pore size, and on macroscopic

concepts pertaining to wetting phenomena, the very relevance

of which is unclear at the nanometre scale. The latter concepts,

in particular, predict a variety of possible morphologies for

confined liquids – adsorbed layers, capsules floating in the

middle of the pores or isolated plugs – depending on subtle

equilibria between dispersive forces and surface tension (Liu

et al., 1990; Monette et al., 1992). The difficulty in settling these

debates despite the numerous experimental SAS studies (Lin

et al., 1994; Frisken et al., 1995; Formisano & Teixeira, 2000;

Hellweg et al., 2003; Schemmel et al., 2005) results from the

lack of a data analysis method that would enable one to use

data of this type to reconstruct the nanostructure of the

confined liquids.

The specific system we investigate here is a resorcinol

formaldehyde (RF) gel permeated with a critical hexane/

nitrobezene binary solution. The choice of RF materials is

motivated by several factors. First, they are purely meso-

porous, which contrasts with other possible materials such as

controlled porous glass, the surface of which is often described

as a surface fractal (Mitropoulos et al., 1997; Levitz, 1998).

Second, their nanostructure has already been characterized

thoroughly by a variety of techniques (Pekala & Schaefer,

1993; Al-Muhtaseb & Ritter, 2003; Gommes & Roberts, 2008),

which makes them a suitable model of disordered mesoporous

materials. Last but not least, calcined RF aerogels are

promising materials for catalysis applications, notably as fuel

cell electrodes (Ouattara-Brigaudet et al., 2012). The present

work therefore paves the way to more complex studies of

technological relevance such as the mesoscopic analysis of

water production in working RF-based fuel cell cathodes.

2. Experimental

2.1. Sample preparation

The RF gel was synthesized via the polycondensation of

resorcinol and formaldehyde in water with sodium carbonate

as a basification agent, as fully described elsewhere (Job et al.,

2005). The resorcinol/formaldehyde molar ratio was set to 0.5.

The dilution molar ratio water/(resorcinol + formaldehyde +

sodium carbonate) was set to 6, and the resorcinol/sodium

carbonate molar ratio was set to 150. The resulting gel was

aged for three days at 343 K in a closed vial.

Based on the composition of the starting solution, the solid

fraction of the gel is estimated to be 25 vol.%. This estimation

results from assuming that the reaction is complete, which

leads to an overall stoichiometry of C8H7:33O2:66 for the solid

phase of the gel (Al-Muhtaseb & Ritter, 2003), and from the

known density �m ’ 1:5 g ml�1 of the solid phase of the gel

measured by helium pycnometry on the desiccated gel (Job et

al., 2005).

The mother solvent of the gel (mostly water) was exchanged

for a critical hexane/nitrobenzene solution. Since neither

hexane nor nitrobenzene is soluble in water, acetone was used

as an intermediate solvent. The gel was cut into small cubes,

1 nm in size, which were washed overnight in a large excess of

acetone and subsequently in a large excess of a critical hexane/

nitrobenzene solution, i.e. having 42.2 mol% nitrobenzene.

The latter step was repeated three times. An RF gel with pores

permeated with pure nitrobenzene was prepared in the same

way.

research papers

494 Cedric J. Gommes � Reconstruction of liquids in disordered mesopores J. Appl. Cryst. (2013). 46, 493–504

electronic reprint



There is a slight experimental uncertainty on the global

composition of the pore-filling liquid. Indeed, the SAXS

analysis shows that nitrobenzene adsorbs on the surface of the

solid, which increases the overall nitrobenzene concentration

in the pores of the gel compared to the supernatant solution.

The composition of the supernatant converts to 36 vol.%

nitrobenzene and 64 vol.% hexane assuming volume conser-

vation. For the SAXS data analysis we have assumed that the

global composition of pore-filling liquid is 50:50 vol.%.

However, the results remain qualitatively unchanged if slightly

different values are used, as we discuss further later.

2.2. Small-angle scattering

The SAXS measurements were conducted at the Dutch–

Belgian station, BM26, of the European Synchrotron Radia-

tion Facility (Grenoble, France). The SAXS patterns were

measured on a two-dimensional multiwire gas-filled detector

placed at 5 m from the sample.

A millimetre-sized piece of gel was taken out of the

supernatant solution and presented in hermetically closed

aluminium pans (Perkin–Elmer, Waltham, MA, USA). The

temperature was controlled using a Linkam HFS 191 heating/

freezing stage. The SAXS measurements were performed

while the sample was cooled from 303 to 213 K at a rate of

5 K min�1. The acquisition time was set to 12 s, which corre-

sponds to one pattern per kelvin.

The intensity was normalized to the intensity of the trans-

mitted beam, measured by a photodiode placed on the

detector beamstop, and corrected for the detector response.

The isotropic two-dimensional scattering patterns were aver-

aged azimuthally using custom-made software (Gommes &

Goderis, 2010) and expressed as a function of the scattering

vector modulus

q ¼ ð4�=�Þ sin 2�=2ð Þ; ð1Þ

with � being the wavelength (0.95 Å in the used setup) and 2�
the scattering angle. Finally, the patterns were corrected for

the scattering due to the empty setup, taking account of the

sample and sample holder transmissions.

The SAXS pattern of the RF gel used in the present work is

shown in Fig. 1 as the scattering intensity I against scattering

vector magnitude q. For practical reasons the pattern was

measured with pores of the gel permeated with pure nitro-

benzene. We shall come shortly to the thorough structural

analysis of the data and we only mention here that the pattern

is typical of disordered mesoporous materials. It has a broad

maximum around q ’ 0:03 Å�1, which corresponds to a

characteristic length 2�=q ’ 20 nm. The latter length can be

thought of as an approximate pore size for the present type of

low-density material (Roberts, 1997). When the temperature is

lowered to 258 K the SAXS patterns change minimally, as a

result of thermal contraction of both the nitrobenzene and the

solid phase. In the rest of the paper, we consider the pattern in

Fig. 1 as representative of the solid nanostructure of the gel

over the entire investigated temperature range.

Fig. 2 shows the SAXS intensity measured on the RF gel

permeated with the critical binary nitrobenzene/hexane solu-

tion, when the temperature is lowered from 303 to 243 K. The

SAXS patterns are initially qualitatively similar to that in

Fig. 1. Some extra scattering appears at low angles when the

temperature is lowered below 288 K, which points to struc-

tural changes in the system at the nanometre scale. The

evolution exhibits no sharp transition and it is continuous until

the temperature of 258 K is reached. Below that temperature,
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Figure 1
SAXS pattern of the (RF) gel (filled circles) permeated with pure
nitrobenzene, and its reconstructed nanostructure as a clipped Gaussian
random field. The solid red line is the SAXS pattern of the reconstruction.

Figure 2
Small-angle X-ray scattering patterns of the RF gel permeated with
critical nitrobenzene/hexane solution, during cooling from 303 to 243 K.
The same data are plotted in the top and bottom graphs on linear and
logarithmic scales, respectively. The two solid lines in the bottom graph
are Porod scattering of the type I ’ q�4, and the dashed line is the
I ’ q�2 scattering relevant to concentration fluctuations. The three
temperatures highlighted in red are 293, 278 and 259 K, which are
analyzed further in Fig. 5.
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the Bragg peaks of solid nitrobenzene appear in the wide-

angle scattering (see Fig. SI-1 in the supporting information1).

We shall focus our analysis on temperatures higher than

258 K, for which all pore-filling phases are liquid.

Observations qualitatively similar to those of Fig. 2 have

been reported for other nanoporous solids permeated with

binary solutions. These data have been analyzed either in

terms of concentration fluctuations in the pore-filling binary

solutions, the amplitude of which increases when the critical

point is approached (Frisken et al., 1995; Formisano & Teix-

eira, 2000; Hellweg et al., 2003), or in terms of liquid–liquid

phase separation whereby a nanoemulsion forms inside the

pores of the material, starting from a homogeneous binary

solution (Lin et al., 1994; Schemmel et al., 2005). Interestingly,

both scenarios can be ruled out in the present case. Indeed, the

intensity of X-rays scattered by statistical concentration fluc-

tuations is expected to decrease asymptotically as I ’ q�2 for

large values of q (Glatter & Kratky, 1982). Although such a

trend could be present for very large values of q (Fig. 2,

bottom), the SAXS patterns are dominated at large q by a so-

called Porod scattering, with I ’ q�4, which points to a

nanostructure with sharp interfaces (Glatter & Kratky, 1982).

The deviation of the data from Porod scattering is made

quantitative by fitting the data for q � 0:1 Å�1 by

IðqÞ ¼ IBG þ Aq�4; ð2Þ
where the values of the constants IBG and A are determined by

least squares. The values of IBG contribute to the discussion

section.

In addition to the critical fluctuations scenario, the phase

separation scenario has to be ruled out. This results from

considering the values of Porod’s invariant Q, calculated as

Q ¼ R1
0

IðqÞ 4�q2 dq; ð3Þ

after extrapolating IðqÞ at high q with a q�4 Porod scattering.

The values obtained from the SAXS data of Fig. 2 are plotted

in Fig. 3, and they are found to be remarkably constant. The

increase of Q below 258 K results from the crystallization of

the nitrobenzene, but we shall not investigate that tempera-

ture range in the present work. We show in the supporting

information that a phase separation in the present system

would be accompanied by a more than 50% increase of Q. The

process observed in Fig. 2 is therefore a morphological tran-

sition: the evolution of the SAXS data corresponds mostly to a

reorganization of existing phases within the pores of the RF

material. However, the nature and spatial distribution of the

phases inside the pores are unknown at this stage.

3. Data analysis and modeling

In order to gain qualitative insight into the nanostructure of

the pore-filling phases it is necessary to analyze quantitatively

the SAXS patterns. Quite generally, the SAXS intensity is

proportional to the Fourier transform of the electron density

correlation function,

IðqÞ ¼ K

Z1
0

sinðqrÞ
qr

CðrÞ 4�r2 dr; ð4Þ

where K is a constant that depends notably on the volume of

the sample that is irradiated and CðrÞ is defined as

CðrÞ ¼ hð�ðxþ rÞ � h�iÞð�ðxÞ � h�iÞi: ð5Þ
In this equation, �ðxÞ is the electron density at point x, and the

brackets h. . .i stand for the average value, calculated over all

possible x. When expressing IðqÞ, we have assumed that the

sample is statistically isotropic, so that CðrÞ depends only on

the modulus r ¼ jrj.
When analyzing the scattering by phases confined in

nanopores it is necessary to consider at least three phases,

namely the solid phase S and the two pore-filling phases A and

B. In our particular case, phases A and B are the nitro-

benzene-rich and hexane-rich phases, respectively. The elec-

tron density correlation function can then be written as

CðrÞ ¼ ð�S � �AÞð�S � �BÞ PSSðrÞ � �2
S

� �
þ ð�A � �SÞð�A � �BÞ PAAðrÞ � �2

A

� �
þ ð�B � �SÞð�B � �AÞ PBBðrÞ � �2

B

� �
; ð6Þ

where �S, �A and �B are the volume fractions of the corre-

sponding phases, and the functions PSSðrÞ, PAAðrÞ and PBBðrÞ
are the two-point correlation functions of phases S, A and B

(Debye et al., 1957; Ciccariello et al., 1981; Torquato, 2000).

These functions can be thought of as the probability that two

points randomly chosen in the system at distance r from each

other both belong to phase S, A or B, respectively. In the

particular case where the pores are filled with a single phase,

as is relevant to the SAXS data in Fig. 1, the electron corre-

lation function CðrÞ is simply proportional to PSSðrÞ, as it

should be.
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Figure 3
Kratky plots corresponding to the SAXS data of Fig. 2, whereby I q2 is
plotted against q. The inset shows Porod’s invariant Q calculated from the
area under the curves. The three temperatures are 293 K (black), 278 K
(blue) and 259 K (red).

1 Supplementary material is available from the IUCr electronic archives
(Reference: CE5149). Services for accessing this material are described at the
back of the journal.
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From a previous SAXS analysis of RF gel formation

(Gommes & Roberts, 2008), the structure of the solid phase of

the gel is known to be accurately described by a so-called

clipped Gaussian random field (GRF) model (Joshi, 1974;

Quiblier, 1984; Berk, 1987; Teubner, 1991; Levitz, 1998). A

GRF YðxÞ can be thought of as the superposition of a large

number of wave-like sinusoidal functions, such as

YðxÞ ¼ ð2=NÞ1=2 PN
n¼1

sin qn � x� ’nð Þ; ð7Þ

where qn are wavevectors that are random in both orientation

and magnitude, and ’n are random phases uniformly distrib-

uted in the interval ½0; 2�Þ. The values of Y obtained in this

way for any x are Gaussian distributed with average value 0,

and the factor ð2=NÞ1=2 ensures that the variance is equal to 1.

A GRF is therefore completely characterized by its power

spectral density fYðqÞ, which is equivalent to the statistical

distribution from which the vectors qn are drawn. In the

particular case of an isotropic GRF, the field correlation

function gY ðrÞ ¼ hYðxÞYðxþ rÞi is related to fYðqÞ through

gY ðrÞ ¼
Z1
0

fYðqÞ
sin qrð Þ
qr

4�q2dq: ð8Þ

Examples of two GRFs, YðxÞ and ZðxÞ, obtained with different

power spectral densities fY ðqÞ and fZðqÞ are shown in Fig. 4.

The solid phase of the gel is modeled here as the points of

space where YðxÞ takes values larger than a given threshold a.

Because YðxÞ is Gaussian distributed, the threshold a is

related to the volume fraction of the gel �S through the

following error function:

�S ¼
Z1
a

1

ð2�Þ1=2
exp � t2

2

� �
dt: ð9Þ

The known value �S ¼ 0:25 converts to a threshold a ¼ 0:67.

The two-point correlation function is calculated as (Teubner,

1991)

PSSðrÞ ¼ �2
S þ

1

2�

ZgY ðrÞ
0

1

ð1 � t2Þ1=2
exp � a2

1 þ t

� �
dt; ð10Þ

which enables one to use clipped GRF models to analyze

SAXS data. The reconstruction shown as the inset of Fig. 1

was obtained by optimizing the power spectral density fY ðqÞ so

as to match the experimental SAXS data, following the

procedure of Quintanilla & Jones (2007). The physical reason

for the accuracy of this geometrical model for RF gels is that

their nanostructure forms via a spinodal decomposition

process (Schaefer et al., 1995; Gommes et al., 2008), which is

governed by equations very similar to those of Gaussian

random fields (Cahn, 1965).

When the pores of the gel are not filled with a single

homogeneous phase, the nanostructure of the pore-filling

phases A and B contributes also to the SAXS intensity

through the functions PAAðrÞ and PBBðrÞ in equation (6), and a

geometrical model is needed for these phases as well. The

model we use here is a so-called plurigaussian model, which is

a generalization of the clipped GRF model used in Fig. 1.

Plurigaussian models have been introduced in the context of

geological engineering (Le Loc’h & Galli, 1999; Armstrong et

al., 2003), but to the best of our knowledge they have never

been used to analyze SAS data. In the particular version of the

model that we propose, two independent GRFs YðxÞ and ZðxÞ
are combined as illustrated in Fig. 4. The possible values taken

by the two fields at any given point x can be represented in a

ðY;ZÞ plane: in this context a given phase i is modeled as a

domain Di of the ðY;ZÞ plane. In other words, a point x

belongs to phase i if the values taken by the two fields at point

x satisfy ½YðxÞ;ZðxÞ� 2 Di. It has to be noted that the standard

clipped GRF model used to reconstruct the solid phase of the

RF gel in Fig. 1 is a particular case of this plurigaussian model,

where the ðY;ZÞ domain of the solid phase DS is a half-plane

with boundary parallel to the Z axis (displayed in gray in

Fig. 4). The model we shall use for the pore-filling phases is the

simplest possible: the region of the ðY;ZÞ plane complemen-

tary to DS is simply cut into two regions by a straight line. This

defines the two domains DA and DB corresponding to the

nitrobenzene-rich and hexane-rich phases.

Despite its conceptual simplicity, the plurigaussian model

can account for a variety of nanostructures of the pore-filling

phases, depending on the orientation and position of the A=B
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Figure 4
Plurigaussian modeling of the nanostructure of the RF gel with pores
filled by hexane-rich and nitrobenzene-rich phases. Two independent
Gaussian random fields YðxÞ and ZðxÞ are used, and each phase is
modeled as a particular region of the ðY;ZÞ plane. (a)–(e) Different
nanostructures obtained from Y and Z: the main figures are the real-
space nanostructures and the insets are the corresponding regions of the
ðY;ZÞ plane. The solid phase is shown in gray, the nitrobenzene phase in
red and the hexane phase in green.
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boundary line in the ðY;ZÞ plane. If the boundary is parallel to

the Z axis, one phase – either phase A or phase B – is a layer

that covers entirely the surface of the solid, and the other

phase occupies the remainder of the pore space (Figs. 4d and

4e). By contrast, if the boundary is parallel to the Y axis,

phases A and B are statistically independent of the solid phase

(Fig. 4a). In this case, phases A and B are simply obtained by

clipping the field ZðxÞ and limiting the phases to within the

pore space. For intermediate orientations of the A=B
boundary line (Figs. 4b and 4c), some correlation exists

between the nanostructure of the pore-filling phases and that

of the solid. In the case of Fig. 4(b) the solid phase is made A-

philic and B-phobic, and the reciprocal is true for Fig. 4(c).

In order to analyze the SAXS data in Fig. 2 with a pluri-

gaussian model, we shall assume that the structure of the solid

phase S of the gel does not depend on the temperature and

that it is identical to the one reconstructed from the gel

permeated with pure nitrobenzene (Fig. 1). Practically, this

implies that the ðY;ZÞ domain of the solid phase is the half-

plane where Y � a with a ¼ 0:67, and that the power spectral

density fYðqÞ of field Y is the one obtained previously. The

only geometrical parameters left to characterize entirely the

pore-filling phases are therefore the two parameters necessary

to define the A=B boundary in the ðY;ZÞ plane and the power

spectral density of the Gaussian random field Z, or equiva-

lently its correlation function gZðrÞ. For the latter, it proved

sufficient to model it as

gZðrÞ ¼ exp � r=lZð Þ2
� �

; ð11Þ

which introduces a single parameter lZ having the meaning of

a characteristic length. The particular form of equation (11)

satisfies the necessary condition that gZðrÞ should be quadratic

for small values of r (Berk, 1991). Another simple function

having that property is gZðrÞ ¼ 1= coshðr=lZÞ, which differs

significantly from equation (11) for large values of r. The latter

function was notably used by Gommes & Roberts (2008), but

equation (11) was chosen here because it enabled us to fit the

SAXS data more accurately. The nanostructure of the pore-

filling phases is therefore entirely specified through only three

independent parameters, namely, lZ and the two parameters

that define the A=B boundary line in the ðY;ZÞ plane.

The structural characteristics of phases A and B are entirely

specified through the statistical properties of the fields gYðrÞ
and gZðrÞ [or equivalently fY ðqÞ and fZðqÞ] and through the

domains DA=B. In particular, the volume fraction of phase A is

calculated as

�A ¼ RR
ðy;zÞ2DA

ð1=2�Þ exp �ðy2 þ z2Þ=2
� �

dy dz; ð12Þ

and an equivalent relation holds for �B. The two-point

correlation function PAAðrÞ is

PAAðrÞ ¼
R
DA

dy1dz1

R
DA

dy2 dz2 GgY ðrÞðy1; y2ÞGgZðrÞðz1; z2Þ;

ð13Þ
where Ggðx1; x2Þ is the bivariate Gaussian distribution with

mean 0, variance 1 and covariance g (Lantuéjoul, 2000). A

similar relation holds for PBBðrÞ. The way in which equation

(13) is practically evaluated to fit the SAXS data is reported in

Appendix A.

In addition to the structural parameters discussed so far, a

characteristic of the pore-filling phases that is a priori

unknown is their actual composition. The constancy of Porod’s

invariant Q suggests that their volume fractions �A and �B and

their composition are approximately constant but they need

not be pure hexane and pure nitrobenzene. A useful approx-

imation for analyzing SAXS data with phases having a chan-

ging composition is that of volume conservation (Gommes et

al., 2010). Making that assumption, the composition of phases

research papers

498 Cedric J. Gommes � Reconstruction of liquids in disordered mesopores J. Appl. Cryst. (2013). 46, 493–504

Figure 5
Reconstructed nanostructure of the nitrobenzene/hexane phases inside the pores of the RF gel, at 293, 278 and 259 K (from left to right, corresponding
to the temperatures highlighted in Figs. 2 and 3). The solid phase is in gray, the nitrobenzene phase is in red and the hexane phase is symbolized by the
green background. Two reconstructions are shown at each temperature, corresponding to two different scales. The experimental SAXS patterns are
shown (filled circles) together with the SAXS curves of the reconstructions (red line); the theoretical SAXS curve of the solid filled with a homogeneous
hexane/nitrobenzene solution is displayed for comparison (dotted red line).
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A and B is entirely specified through the four volume fractions

xAN, xBN, xAH and xBH, corresponding to the fraction of phase A=B
comprising nitrobenzene (N) or hexane (H), respectively.

With these notations, the electron densities of the two phases

are written as

�A ¼ �Nx
A
N þ �Hx

A
H

� �
= xAN þ xAH
� �

;

�B ¼ �Nx
B
N þ �Hx

B
H

� �
= xBN þ xBH
� �

;
ð14Þ

where �H and �N are the electron densities of pure hexane and

nitrobenzene. Not all the volume fractions x
A=B
N=H are indepen-

dent, however, because the global composition of the pore-

filling liquid is known (50% nitrobenzene and 50% hexane in

volume) and the volume fraction of each phase is fixed by the

plurigaussian parameters. We show in the supporting infor-

mation that the composition of phases A and B is entirely

specified through a single additional parameter. When this

parameter is left free, the fitting of the SAXS data system-

atically leads to the value for which the volume of nitro-

benzene in phase A is the maximum compatible with the

global composition of the pore-filling liquid. For the rest of the

analysis, this parameter was therefore fixed to its largest

permissible value.

The SAXS data in Fig. 2 were therefore fitted with a total of

three adjustable parameters for each temperature. The values

of the parameters are reported in Fig. SI-4 of the supporting

information. A single value for the normalization constant K

that appears in equation (4) is determined for the entire

temperature range. Fig. 5 displays realizations of the pluri-

gaussian model using the parameters derived from SAXS. At

high temperature, the nitrobenzene phase A forms a nano-

metre-thin layer that covers uniformly the surface of the solid.

It is noteworthy that in this configuration there is no contact

between the solid and hexane phases. A dewetting transition is

observed when the temperature is decreased, through which

the nanostructure of the nitrobenzene phase progressively

changes from a layer to a collection of isolated plugs that

locally extend over the entire pore section. When the

temperature is further decreased, a coarsening process is

observed, whereby the number of plugs decreases and their

size increases. This is visible in the large-scale reconstructions

shown at the top of Fig. 5.

The volume fraction of phase A obtained from the SAXS

data is given in Fig. 6 as a function of temperature. At 303 K

the nitrobenzene-rich phase A occupies about 40 vol.% of the

total pore space, which means that approximately 10% of the

nitrobenzene is still dissolved in the hexane-rich phase B.

When the temperature is decreased, however, the volume of

phase A increases at the expense of the benzene present in

phase B. At 263 K the pore-filling phases have reached

50:50 vol.%, which means that the phase separation is

complete. These results remain qualitatively unchanged when

a slightly different global composition is assumed for the pore-

filling liquid. Independently of the imposed global composi-

tion, one finds that phase B contains a small quantity of

nitrobenzene at 303 K and that the phase separation is

complete only at around 258 K.

This qualitative conclusion is confirmed by the analysis of

scattering by statistical concentration fluctuations. In binary

liquids, the local electron density necessarily deviates from the

average value through statistical concentration fluctuations,

leading to a SAXS intensity proportional to q�2 (Glatter &

Kratky, 1982; Formisano & Teixeira, 2000). This contribution

is absent in pure liquids. The SAXS data in Fig. 2 clearly

deviate from the Porod q�4 scattering at large values of q. The

deviation, referred to as IBG, is plotted in Fig. 6. The quantity

IBG is constant at high temperature and it starts decreasing

around 283 K, i.e. at the same temperature where the nitro-

benzene demixes completely from the hexane according to the

plurigaussian analysis. The absence of background scattering

at 263 K hints at the presence of pure liquids, and it is

therefore an independent confirmation that the phase

separation is complete at that temperature.

4. Discussion and conclusions
Strictly speaking, the reconstructions shown in Fig. 5 are

particular realizations of the plurigaussian stochastic model

with statistical properties identical to the measured system.
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Figure 6
Structural characteristics derived from the SAXS data: (top) fraction
�A=ð1 � �SÞ of the pore space occupied by the nitrobenzene-rich phase
(open circle), and background scattering intensity IBG (plus mark);
(middle) interface area SAB (open triangle) and SBS (diamond) between
the hexane-rich and nitrobenzene-rich phases and the solid, respectively;
contact angle �AS (open square) between the nitrobenzene-rich phase and
the solid; (bottom) specific length Lt of the triple line where phases A, B
and S touch each other.
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The stochastic nature of the model does not preclude the

accurate determination of structural characteristics of the

system. In particular, the interface areas between the three

phases can be calculated from the parameters of the model

(see Appendix A). The values are plotted in Fig. 6. In the

course of the temperature-induced dewetting process, the

contact area between the solid and phase A passes from 0 to

about 80 m2 cm�3. Over the same temperature interval the

contact area between phases A and B decreases by a factor

larger than two, from more than 200 m2 cm�3 to less than

100 m2 cm�3.

Moreover, when discussing Fig. 4 qualitatively we

mentioned that the slope of the A=B boundary line in the

ðY;ZÞ plane controls the A or B phobicity of the solid phase.

This observation can be made quantitative through the

calculation of an average contact angle �AS between the solid

and phase A (see Appendix B). The latter angle is plotted in

Fig. 6. It passes from 0� (complete wetting) to about 50� in the

course of the wetting transition. These nanometre-scale

contact angles may differ significantly from the macroscopic

angles that would be measured over a flat surface chemically

equivalent to the solid phase of the RF gel (de Gennes et al.,

2003; Delmas et al., 2011).

Yet a third interesting structural characteristic of the

investigated systems is the specific length Lt of the triple line

where phases A, B and S touch each other. The expression of

Lt in terms of the other parameters of the plurigaussian model

is given in Appendix B and the values obtained from the

SAXS data are plotted in Fig. 6. The length of the triple line

increases steeply when the temperature is decreased. The

values of Lt are huge; the order of magnitude is 1010 m2 cm�3,

as expected for nanometre-scaled systems. It has been hypo-

thesized by some authors that there is a thermodynamic cost

associated with a triple line, which would take the form of a

triple-line tension. However, we are not aware of any

experimental procedure to measure Lt in nanomaterials

beside the approach we propose here. We hope that our small-

angle scattering methodology can contribute to improving our

understanding of that interesting problem.

Our results and methodology have to be taken with the

same caveat as any small-angle scattering study. Indeed,

distinctly different nanostructures may in principle be

compatible with a given experimental scattering pattern

(Gommes et al., 2012a,b). This geometrical ambiguity is

traditionally tackled using neutron scattering with contrast

variation or through anomalous SAXS (Goerigk et al., 2003).

These two techniques enable one to obtain information on the

individual correlation functions PAAðrÞ, PBBðrÞ and PSSðrÞ
rather than only on their linear combination as in equation (6).

In the present context, however, it is known from direct

electron microscopy that clipped GRFs are very accurate

models for the structure of empty RF gels. Therefore, the only

significant uncertainty in the reconstruction is on the pore-

filling phases. It could be argued that the very confinement of

the latter phases inside the pores of a known material

constitutes a strong geometrical constraint that reduces the

ambiguity of the reconstruction.

It is beyond the scope of the present paper to analyze in

depth the physical origin of the observed wetting transition.

However, the values of the interface areas reported in Fig. 6

provide some insight about the driving force of the process. A

macroscopic nitrobezene/hexane solution has an upper critical

temperature at 293.5 K (Chen et al., 1983). Two distinct phases

would therefore not coexist at 303 K if it were not for a

difference in the dispersive forces exerted by the solid phase

on nitrobenzene and hexane molecules. The nitrobenzene-rich

phase A can therefore be viewed as merely a region of space

where nitrobenzene molecules concentrate under the influ-

ence of dispersive forces exerted by the solid, rather than as a

thermodynamic phase. Accordingly, there is no surface

tension associated with the nitrobenzene/hexane interface at

that temperature. However, this is no longer true when the

temperature is decreased: below the critical temperature there

is a thermodynamic cost to a nitrobenzene/hexane interface,

which drives the system to a configuration with a smaller

interface area. This is achieved via the dewetting process itself,

as well as via the coarsening process through which the

nitrobenzene plugs grow fewer in number and larger in size (as

visible in the large scale reconstructions in Fig. 5). The final

configuration and the wetting angles result from an equili-

brium between the dispersive forces and the surface tension.

The theoretical possibility of wetting transitions in nano-

pores has been discussed since the early 1990s (Liu et al., 1990;

Monette et al., 1992), and substantial indirect experimental

evidence has also been reported for its occurrence. For

instance, the existence of a wetting layer on the surface of the

porous solid was discovered indirectly through the overall

enrichment of the pore-filling liquids in one component

compared to the supernatant (Sliwinska-Bartkowiak et al.,

1997). Recently, the existence of an adsorbed layer above the

critical point was also suggested by SANS in the context of

supercritical CO2 adsorption in silica aerogels (Ciccariello et

al., 2011a,b). In addition, SANS studies have been conducted

on a variety of porous materials permeated with different

binary liquids (Lin et al., 1994; Formisano & Teixeira, 2000;

Hellweg et al., 2003; Schemmel et al., 2005). However, in the

latter studies the SAS data have been analyzed in terms of

general geometrical concepts, such as correlation and chord

lengths, which provided only a limited insight. Indirect

evidence of morphological transitions in nanoporous glass

have also been obtained by NMR (Valiullin & Furó, 2002) and

quasi-elastic neutron scattering (Schemmel et al., 2003). In the

present study, we were able to reconstruct for the first time the

nanostructure of liquid phases confined in nanopores, thereby

giving direct evidence for nanometre-scale wetting transitions.

Wetting transitions on flat or structured surfaces have been

documented for a long time (Herminghaus et al., 1998; Trice et

al., 2007; Bormashenko, 2010), and they are commonly used to

practically control the texture of thin films (Lu et al., 2002) or

to create regular patterns of nanoparticles on a surface

(Favazza et al., 2006). These nanoparticles can in turn be used,

for example, to catalyze the growth of carbon nanotubes (Fan

et al., 1999), thereby leading to extremely sophisticated

nanostructures that are difficult to obtain by any other means.
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The present observation of wetting transitions in nanopores

offers the prospect of using the same type of hydrodynamic

patterning to control the three-dimensional dispersion of

nanometre-scaled objects in the pores of complex materials,

rather than only on flat surfaces. Moreover, this offers also the

prospect of novel stimuli-responsive nanomaterials. Wetting

transitions can indeed be triggered thermally as we report

here, but other possible stimuli include the pH (Burtovyy &

Luzinov, 2008), the pressure (Bormashenko, 2010), electric

fields (Mugele & Baret, 2005) or light intensity in the case of

semiconductor solids (Arscott, 2011). In all these cases,

wetting transitions are expected to dramatically change the

connectedness of the various phases, which is a property that is

notoriously difficult to control at the nanometre scale.

Beyond the experimental observation of wetting transitions

in nanopores, the ramifications of the present work are mostly

methodological. Small-angle scattering is one of the very few

experimental methods that can be used for in situ studies in

nanoporous materials at the mesoscopic scale. So far, most

small-angle scattering studies have had to be restricted to

academic ordered materials owing to the lack of suitable data

analysis methods. The availability of data analysis methods to

reconstruct the nanostructure of phases in disordered pores

should broaden the applicability of SAS to in situ studies in

materials of practical relevance, thereby contributing to

reducing the gap between nanoscience and nanotechnology.

APPENDIX A
Two-point correlation functions and specific surface
areas of the plurigaussian model

The two-point correlation function of the pore-filling phases is

evaluated through equation (3) by developing the Gaussian

bivariate distribution as

Ggðx1; x2Þ ¼
X1
n¼0

gn

n!
Hnðx1ÞHnðx2Þ

1

2�
exp � x2

1 þ x2
2

2

� �
; ð15Þ

where the HnðxÞ are Hermite polynomials defined as

HnðxÞ ¼ ð�1Þn exp
x2

2

� �
dn

dxn
exp � x2

2

� �
: ð16Þ

Using this development, the two-point correlation function of

any phase X can be written as (Lantuéjoul, 2000)

PXXðrÞ ¼
X1
n¼0

X1
p¼0

gYðrÞn
n!

gZðrÞp
p!

�npðXÞ2; ð17Þ

with

�npðXÞ ¼
Z

ðy;zÞ2DX

HnðyÞHpðzÞ
1

2�
exp � y2 þ z2

2

� �
dy dz: ð18Þ

The series in equation (17) converges rapidly, except for small

values of r for which gY=ZðrÞ ’ 1. In practice, about 20 terms

are kept in the series and the small-r values are evaluated as

PXX ðrÞ ’ �X � ðSX=4Þr; ð19Þ
where SX is the specific surface area of phase X.

The only characteristics of the Gaussian fields Y and Z that

matter for the specific surface areas of the various interfaces

are the characteristic lengths lY=Z defined by the small-r

behavior of gY=ZðrÞ as

gY=ZðrÞ ’ 1 � r=lY=Z
� �2

: ð20Þ
In terms of fY=ZðqÞ the characteristic lengths are calculated as

1=l2Y=Z ¼ 1
6

R1
0

fY=ZðqÞq24�q2 dq: ð21Þ

Note that the value of lZ defined in equation (20) is consistent

with our notation in equation (11).

We show in the supporting information that the specific

interface area between any two phases 1 and 2 of a pluri-

gaussian model can be calculated through the following line

integral in the ðY;ZÞ plane:

S12 ¼
2

�3=2

Z
@D12

exp

 
� y2 þ z2

2

!
n2
Y

l2Y
þ n2

Z

l2Z

� �1=2

dl; ð22Þ

where @D12 is the common boundary between domains D1 and

D2, and nY=Z are two components of the unit vector locally

orthogonal to @D12.

Using equation (22), the following expressions are obtained

for the specific surface areas of the various phases discussed in

the main text, in terms of the parameters defined in Fig. 7. The

specific area of the A=B interface is

SAB ¼ 21=2

�

cosð�Þ
lY

� 	2

þ sinð�Þ
lZ

� 	2
( )1=2

exp � b2

2

� �

� 1 � erf
b cosð�Þ � a

21=2 sinð�Þ
� 	
 �

; ð23Þ

where erfðxÞ is the error function defined as

erfðxÞ ¼ 2

�1=2

Zx
0

expð�t2Þ dt: ð24Þ

The area of the A=S interface is

SAS ¼
21=2

�

expð�a2=2Þ
lY

1 � erf
b� a cosð�Þ

21=2 sinð�Þ
� 	
 �

ð25Þ
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Figure 7
Definition of the ðY;ZÞ domains of phases A, B and S for the
plurigaussian model, and definition of parameters a, b and �.
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and the area of the B=S interface

SBS ¼
21=2

�

expð�a2=2Þ
lY

1 þ erf
b� a cosð�Þ
21=2 sinð�Þ

� 	
 �
: ð26Þ

The total specific surface areas of the phases are obtained as

SA ¼ SAS þ SAB, SB ¼ SBS þ SAB and SS ¼ SAS þ SBS. The

latter relation in particular leads to

SS ¼
23=2

�
exp � a2

2

� �
1

lY
; ð27Þ

which is the classical expression for the surface area of clipped

Gaussian random fields (Berk, 1987).

APPENDIX B
Specific length of the triple line and average contact
angle

We derive here an expression for the specific length Lt of the

triple line at the contact of phases A, B and S, as well as for the

contact angle � between phases A and S, in terms of the

parameters of the plurigaussian model.

The general situation is sketched in Fig. 8. For a droplet with

a complex shape the wetting angle can only be defined in an

average way because it may be variable along the triple line.

The average wetting angle can be defined as follows from the

area dS of the droplet free surface at a distance smaller than �
from the surface:

dS=� ¼ Lt=sinð�Þ; ð28Þ
where Lt is the specific length of the triple line. In this equa-

tion, the left-hand side has to be understood as the ratio of two

infinitesimal quantities in the limit � ! 0. The equivalent of

Fig. 8 in the ðY;ZÞ plane is shown in Fig. 9, in which the

surface dS corresponds to the A0=B interface area. We shall

now successively calculate (i) the relation between " and the

distance � in real space, (ii) the length Lt of the triple line

corresponding to the contact of phases A0, B and S, and (iii)

the area of the interface A0=B. We will then be able to

calculate the wetting angle � through equation (28).

B1. Relation between d and """

The infinitesimal volume fraction between the iso-surfaces

Y ¼ a and Y ¼ a� " is, to the first order in ",

d� ¼ "

ð2�Þ1=2
exp � a2

2

� �
; ð29Þ

which results from Y being Gaussian distributed. On the other

hand, the same volume is calculated in real space as d� ¼ SS�,
where SS is the specific surface area of the solid as calculated

from equation (27). Equating these two independent estima-

tions of d� leads to

� ¼ ð�1=2=4Þ"lY ; ð30Þ

which is the relation that we sought between the real-space

distance � and the ðY;ZÞ plane distance ".

B2. Specific length Lt of the triple line

The ðY;ZÞ coordinates of the triple line are ða; cÞ with

c ¼ b� a cosð�Þ
sinð�Þ : ð31Þ

The specific length of the triple line can be calculated by

considering the volume fraction d2� corresponding to a small

square in the ðY;ZÞ plane, centered on the point Y ¼ a,

Z ¼ c, with size ".

In the ðY;ZÞ plane, the volume is calculated as

d2� ¼ "2

2�
exp � a2 þ c2

2

� �
ð32Þ

in the limit " ! 0. On the other hand d2� is calculated in real

space as

d2� ¼ Lt�Y�Z; ð33Þ

where �Y and �Z and the real-space distances associated with

Y and Z differences ", calculated through equation (30).

Equating (32) and (33) leads to

Lt ¼
8

�2
exp � a2 þ c2

2

� �
1

lY lZ
; ð34Þ

which is the relation that we sought between Lt and the

parameters of the plurigaussian model.

B3. Interface area dS

Using equation (22), the area dS can be written as
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Figure 9
Sub-partitioning of the ðY;ZÞ plane used to calculate the contact angle.
Compared to Fig. 7, a sub-phase A0 with extension " in direction y was
added. The reasoning is based on infinitely small values of ". The
thickness of A0 was exaggerated for clarity.

Figure 8
Sketch of a droplet on a flat surface: Lt is the length of the triple line, and
dS is the surface area between the solid surface and the plane at distance �
from the surface; � is the wetting angle.
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dS ¼ 2

�3=2
exp � a2 þ c2

2

� �
cosð�Þ
lY

� 	2

þ sinð�Þ
lZ

� 	2
( )1=2

"

sinð�Þ :

ð35Þ
On the other hand, using equation (30) to express � in terms of

", and the expression of Lt given in equation (34), the defi-

nition of � [equation (28)] can be written as

dS ¼ 2

�3=2
exp � a2 þ c2

2

� �
"

lZ sinð�Þ : ð36Þ

Equating dS in equations (35) and (36) leads to the simple

expression

tanð�Þ ¼ ðlY=lZÞ tanð�Þ; ð37Þ
which is the relation used in the main text to estimate the

wetting angle from the SAXS data.
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Delmas, M., Monthioux, M. & Ondarçuhu, T. (2011). Phys. Rev. Lett.
106, 136102.

D’Hollander, S., Gommes, C. J., Mens, R., Adriaensens, P., Goderis, B.
& Du Prez, P. (2010). J. Mater. Chem. 20, 3475–3486.

Emma, P. et al. (2010). Nat. Photon. 4, 641–647.
Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M.

& Dai, H. (1999). Science, 283, 512–514.

Favazza, C., Kalyanaraman, R. & Sureshkumar, R. (2006). Nano-
technology, 17, 4229–4234.

Formisano, F. & Teixeira, J. (2000). J. Phys. Condens. Matter, 12,
A351–A356.

Friedrich, H., De Jongh, P. E., Verkleij, A. J. & De Jong, K. P. (2009).
Chem. Rev. 109, 1613–1629.

Frisken, B. J., Cannell, D. S., Lin, M. Y. & Sinha, S. K. (1995). Phys.
Rev. E, 51, 5866–5879.
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Béguin, F. & Pirard, J. (2005). Carbon, 43, 2481–2494.

Joshi, M. Y. (1974). PhD thesis, University of Kansas, USA.
Koch, M. H. J. & Bras, W. (2008). Annu. Rep. Prog. Chem. Sect. C,
104, 35–80.

Kusmin, A., Gruener, S., Henschel, A., Holderer, O., Allgaier, J.,
Richter, D. & Huber, P. (2010). J. Phys. Chem. Lett. 1, 3116–3121.
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