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AbstractÐThe ototoxic damage that drugs such as neomycin, kanamycin, colistin, cisplatin, transplatin
and carboplatin cause on outer and inner hair cells in postnatal day 3 rat cochlear explants was investi-
gated. Phalloidin±¯uorescein conjugate-stained stereocilia bundles of sensory hair cells were quanti®ed
by video image analysis as a measurement of ototoxic e�ect. The video image quanti®cation system
established dose±response curves for ototoxic drugs (e.g. calculation of an IC50) and allowed compari-
sons between several ototoxins from the same family. This methodology provided the means to assess
the e�cacy of otoprotectant agents in preventing ototoxicity. Poly-l-aspartate (10ÿ5 M) and poly-l-gluta-
mate (10ÿ5 M) protected auditory hair cells from neomycin (10ÿ3 M) toxicity while reduced glutathione
(10ÿ3 M) provided protection against cisplatin (10ÿ4 M)-induced hair cell damage. # 1998 Published by
Elsevier Science Ltd. All rights reserved

Keywords: cochlea; aminoglycosides; cisplatin; ototoxicity; otoprotection.

Abbreviations: DMEM=Dulbecco's modi®ed Eagle's medium; GSH= reduced glutathione;
IHC = inner hair cells; OHC = outer hair cells; PBS = phosphate bu�ered saline.

INTRODUCTION

Hearing loss and impairment of balance are classi-

cal side-e�ects of important classes of therapeutic

agents, for example, antibiotics of the aminoglyco-

side family and anticancer agents such as platin de-

rivatives (Chiodo and Alberti, 1994; Harpur, 1981).

The primary targets of these drugs in the inner ear

are the sensory hair cells of hearing and balance,

but the molecular mechanisms that lead to hair cell

death remain poorly understood.

Assessment of toxicity is a major concern in the

pharmaceutical ®eld, and the development of in

vitro systems that can rapidly screen for toxicity

could help to avoid long, expensive in vivo studies.

Therefore, the ®rst goal of the present study is to

establish an in vitro semi-automatic system for the

quanti®cation of ototoxic damage that would allow

rapid screening of the auditory hair cells toxicity of

new drugs or of new derivatives of known ototoxic

drugs, in order to select new compounds and de-

rivatives that have the best therapeutic e�ect/tox-

icity ratios. As ototoxic compounds may have

di�erent biochemical mechanisms of toxicity, we

surmized that the number of hair cells would be a

good common parameter for the evaluation of tox-

icity. Pattern recognition of the inner and outer

hair cell stereocilia allows for the counting of these

two types of auditory hair cells. Hair cell stereocilia

and cuticular plates are known to be rich in F-actin

®laments that can be labelled with phalloidin±

FITC, thereby allowing visualization of the normal

pattern of stereocilia bundles of both the inner and

outer hair cells, since there is no speci®c marker for

hair cells.

One approach to minimize the functional conse-

quences of ototoxic side-e�ects is to prevent oto-

toxic damage by co-administration of substances
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that decrease or suppress the drug's ototoxicity
without interfering with their therapeutic e�ect.

In order to validate our in vitro model, we have
quanti®ed the e�ects of several well-known ototoxic
drugs: (1) antibacterial aminoglycosides (neomycin,

kanamycin); (2) polypeptide antibiotics (colistin);
and (3) antineoplastic drugs (cisplatin, carboplatin,
transplatin) (Gandara et al., 1991; Koegel, 1985;

WersaÈ ll, 1995). In a second part, we have investi-
gated the applicability of our system as a tool to
screen for otoprotective agents. We have chosen the

most ototoxic aminoglycoside and antineoplastic
drugs, respectively neomycin and cisplatin, in order
to evaluate the e�cacy of potential protective
agents in the in vitro model.

Besides hair cells toxicity, aminoglycosides anti-
biotics are known to be highly nephrotoxic agents
by inducing death of kidney proximal tubule epi-

thelial cells (Morin et al., 1980; Tulkens, 1989).
Several studies in rats have shown that poly-l-aspar-
tic acid, a polyanionic agent, prevents or suppresses

the nephrotoxic e�ects of aminoglycosides without
decreasing their antibiotic e�ectiveness (Williams
and Hottendorf, 1985; Williams et al., 1986). We

have therefore chosen to determine whether the
reported prevention of nephrotoxicity could be
e�ective in protecting the hair cells of the inner ear
from ototoxic damage.

Reduced glutathione (GSH) has been shown to
prevent the toxic peripheral neuropathy induced by
cisplatin, both in experimental animals (Cavaletti

et al., 1994; Hamers et al., 1993; Tredici et al.,
1994) and in humans (Cascinu et al., 1995).
Therefore we also have assayed for an e�ect of

GSH on cisplatin ototoxicity in vitro.

MATERIALS AND METHODS

Culture of explants containing the organ of Corti and
the spiral ganglion

3-Day-old Wistar rats were killed by cervical
transection, their bullae exposed and the temporal

bones removed and transferred into a glass petri
dish containing Dulbecco's phosphate bu�ered
saline (PBS). Using watchmaker forceps, cochleae
were dissected with the aid of a stereomicroscope.

After opening the bony capsule, the cochlear duct
was removed as a single piece together with its
band of spiral neurons. Explants were cultured in

Dulbecco's modi®ed Eagle's medium (DMEM) sup-
plemented with glucose (®nal concentration 6 g/
litre), the N1 cocktail (Bottenstein and Sato, 1979)

and 10% of foetal bovine serum (DMEM-FBS)
into wells of a 96-well microculture plate (Nunc).
Each explant of Corti's organ was cultured in sus-

pension in individual wells containing 100 ml med-
ium. The cultures were kept at 378C in a humidi®ed
atmosphere of 95% air and 5% CO2. For toxicity
screening, the medium was removed after an initial

period of 24 hr of culture and, after two rinses with
DMEM to remove the serum, replaced with 100 ml
DMEM containing an appropriate concentration of
the test drug for 48 hr, while control explants
received only DMEM. For the screening of otopro-

tective substances, the explants were ®rst cultured
in the presence of the potential otoprotective agent
for an initial 24-hr period. The medium was then

removed, and replaced by medium containing both
the ototoxic drug and the potential otoprotectant
for an additional 48 hr of culture. At the end of

each experiment, the explant specimens were ®xed
and stained for F-actin.

Tested substances

The toxicity of well known cochleotoxic drugs
such as neomycin, kanamycin, colistin, cisplatin,

carboplatin and transplatin were tested at concen-
trations ranging from 10ÿ3 to 10ÿ6 M (®ve concen-
trations at least per tested drug). Chloramphenicol,

a non-ototoxic antibiotic was used as a control. The
potential otoprotective agents tested were poly-l-
aspartate (mol. wt 5000±15,000), poly-l-glutamate

(mol. wt 2000±15,000) and poly-l-ornithine (mol. wt
5000±15,000) for neomycin and GSH for cisplatin.

Histochemical determination of F-actin

Explants were ®xed with paraformaldehyde 4%

at room temperature for 30 min and then incubated
in PBS-Triton X100 1% for 15 min. The ®xed-per-
meabilized cultures were subsequently exposed to
phalloidin±FITC (1:60) for 45 min at room tem-

perature. After 45 min, the explants were washed
twice in PBS and mounted on glass slides with non-
fading PBS/glycerol. In order to avoid variations

due to base to apex gradients of susceptibility to
ototoxic compounds (Harpur, 1987), only midpor-
tions of the phalloidin FITC-stained explants corre-

sponding to the midturn were selected.
Immunostained stereocilia bundles were observed
using a Bio-Rad MRC-1000 confocal system

coupled to a Zeiss Axiovert microscope.

Quanti®cation of ototoxicity

The number of hair cells was determined by
video imaging using an IBAS-2000 image analysis
system (Kontron). Confocal ®les were transfered to

the image analysis software. The ®rst step increased
the image contrast by ®rst superimposing it 200-
fold and, secondly, ``normalized'' it by scaling the

actual grey levels linearly into the full dynamic
range of the image memory. In a second step, a
threshold level of grey shading was established in

order to detect all of the hair cell stereocilia bun-
dles. A threshold low enough to detect all stereoci-
lia bundles must be used, otherwise part of them

will be lost during data acquisition and subsequent
analysis. After this step, each object that was under
threshold was in black and every object that was
above threshold was in white thus allowing visual-
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ization of a digitized microscopic image. The back-
ground of cell debris or particulate matter was
eliminated from the image by grey-level erosion.
Every object was assigned its own object label for

necessary identi®cation before counting. Computer-
recognized immunostained stereocilia bundles were
projected in colour over the original digitized

microscopic image in order to compare the pro-
cessed data with the original image. The length of
the preparation was measured and the results were

expressed in number of hair cell stereocilia bundles
per millimetre of Corti's organ. For each condition,
four adjacent ®elds selected from the midportion of

each explant were analysed blindly for three
explants representing each condition (total number
of ®elds = 12). This program also allows di�eren-
tial counting of outer (OHC) and inner hair cells

(IHC) by manual separation in the stored digitized
image of the three rows of outer hair cells from the
row of inner hair cells. Statistical analysis was

undertaken using a standard Student's t-test.

Products and reagents

DMEM and FCS were obtained from Gibco
(Gent, Belgium). In all experiments, DMEM was
supplemented with the N1 cocktail (bovine insulin
5 mg/ml, progesterone 10ÿ8 M, putrescine 100 mM,

transferrin 100 mg/ml and selenium 3�10ÿ8 M) and
the glucose concentration was increased to 6 g/litre.
All reagents used were of analytical grade and were

purchased from Sigma.

RESULTS

Image analysis of organ of Corti explants after phal-
loidin±FITC staining

It is well established that the mammalian organ of
Corti is equipped with three rows of OHCs and a

single row of IHCs and provided that each row has
the same number of cells, quantitative data obtained
from stereocilia bundles counts of normal organ of

Corti explants should be composed of 75% OHCs
and 25% IHCs. This is shown in Table 1, in which
the number of OHCs and IHCs is expressed per unit

length of Corti's organ for four di�erent control
samples and, as predicted, OHCs are about three
times more numerous per unit length than IHCs,
thus validating our procedure of image analysis.

Quanti®cation of hair cell toxicity of aminoglycosides
and platin derivatives

Plate 1 illustrates morphological aspects of phal-

loidin±FITC-stained mid-portions of organ of Corti
explants in six di�erent conditions: neomycin
(10ÿ3 M, Plate 1A), kanamycin (5� 10ÿ2 M, Plate

1B), colistin (10ÿ4 M, Plate 1C), cisplatin (10ÿ3 M,
Plate 1D) and carboplatin (10ÿ4 M, Plate 1E).
Chloramphenicol (10ÿ3 M), a non-ototoxic antibiotic,

was used as negative control (Plate 1F). As can be
see in photomicrographs A,B,C, D and E of Plate 1,
it is di�cult to identify OHC and IHC in the treated
cultures because of the disorganizing e�ect that these

agents have on stereocilia bundle integrity. We have
therefore established dose±response curves by con-
sidering only the total number of auditory hair cells

per unit length. These curves have allowed the calcu-
lation of an IC50 which corresponds to the concen-
tration of the test drug at which 50% of the hair cells

are no longer detectable by phalloidin±FITC stain-
ing (Table 2). In the analysis of ototoxic e�ects, it
has been observed that equimolar concentrations of

kanamycin are less toxic than neomycin, which ®ts
with clinical data that show a greater ototoxicity for
neomycin in clinical subjects (Harpur, 1989).
Similarly, equimolar concentrations of carboplatin

have been found to be less toxic to auditory hair cells
when compared with cisplatin. These observations
also agree with clinical observations (Saito et al.,

1989; Schweitzer et al., 1986; Taudy et al., 1992).

Protective e�ect of poly-l-glutamic and poly-l-aspar-
tic acid against neomycin toxicity

Poly-l-ornithine (a polycationic agent) was used
as a control for the investigation of the protective

Table 2. IC50* of various pharmacologicals agents
on auditory hair cells in vitro

IC50 (M)

Colistin 0.2� 10ÿ3

Neomycin 0.6� 10ÿ3

Kanamycin 4.0� 10ÿ3

Cisplatin 0.33� 10ÿ4

Carboplatin 1.0� 10ÿ4

Transplatin 1.3� 10ÿ4

*The IC50 represents the drug concentration at
which there is a 50% decrease in the total number
of hair cells as measured by video image analysis.

Table 1. Number of inner and outer hair cells in untreated organ of Corti explants as determined by video image analysis of phalloidin±
FITC stained stereocilia bundles

Field Length of explant (mm) No. of IHC (mm) No. of OHC (mm) IHC (%) OHC (%)

1 229.3 100 331 23 77
2 225.9 93 328 22 78
3 210.1 119 357 25 75
4 256.3 94 332 22 78

101 337 23 77
mean
SD

212 213

Each ®eld represents the quanti®cation of auditory hair cells in the middle part of an individual explant, n = 4.
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e�ect of poly-l-aspartate and poly-l-glutamate
(polyanionic agents). The protective e�ect on hair
cell survival measured by quanti®cation of hair cells
bundles of both poly-l-aspartate and poly-l-gluta-

mate is presented in Plate 2 and Table 3. A control
explant is illustrated in Plate 2A and poly-l-aspar-
tate and poly-l-glutamate exposed cultures had a

similar appearance. The protective agents have no
e�ect on hair cells morphology. No protection
against the ototoxic e�ect of neomycin was

obtained using poly-l-ornithine. Both polyanionic
drugs, poly-l-aspartate and poly-l-glutamate, protect
against neomycin-induced hair cell toxicity at the

highest tested concentration, namely 10ÿ3 M.

Protective e�ect of GSH against cisplatin toxicity

The number of cisplatin-damaged hair cells is sig-

ni®cantly reduced in the presence of GSH (Plate 3),
thus demonstrating a protective e�ect of GSH on cis-
platin-induced hair cell damage. GSH alone has no

e�ect on hair cell morphology or number (Plate 3A).
Quantitative analysis of the protective e�ect of GSH
is presented in Table 4, and shows that

10ÿ3 M GSH had a signi®cant protective e�ect up to
a 10ÿ4 M concentration of cisplatin but fails to pro-
tect at the 10ÿ3 M level of drug concentration. No
protection was obtained using GSH (10ÿ3 M) and

neomycin (10ÿ3±10ÿ4 M), showing that the mechan-
ism of GSH otoprotection appears to be selective.

DISCUSSION

Auditory hair cells have been well established as

the primary targets of various ototoxic agents, par-
ticularly with aminoglycosides antibiotics and anti-

cancer platin derivatives (Kroese and Van den

Bercken, 1980; Taudy et al., 1992). Their death in

the organ of Corti results in sensory deafness which,

in humans, is irreversible. Loss of hearing threshold

due to ototoxic poisoning of auditory hair cells in

birds has been shown to be transient. Indeed, in

avians, the damaged inner ear has been shown to

self-repair through the process of hair cell regener-

ation (Ryals and Rubel, 1988). As the induction of

hair cell regeneration appears to be far away from

clinical application in humans and since some oto-

toxic drugs still have to be administrated to the

patient for life-threatening diseases, an otoprotection

strategy should be developed in order to prevent

damage to the inner ear. Such an approach has

already been proposed, and the use of various mol-

ecules, such as radioprotectant (Pierson and Moller,

1981), thyroid hormone (Hangfu et al., 1992) or

high calcium concentrations (Takada and Schacht,

1982), has been shown to be e�ective in protecting

the inner ear from speci®c insults that result in hair

cell degeneration. However, to achieve the goal of

protecting hair cells from injury, we need to develop

a reliable and fast model to screen potential ototoxic

and otoprotective drugs. For this purpose, in vitro

models appear to be suitable (Kotecha and

Richardson, 1994; Richardson and Russell, 1991)

and are currently used in our laboratory (Lefebvre

et al., 1989, 1990, 1993). The semi-automatic method

of quanti®cation using a video image analysis system

presented in this paper allows rapid and objective

quanti®cation of the number of hair cells/mm of

Corti's organ in organotypic explants. Using this

technique, we have established dose±response curves

and calculated IC50s, which allow comparisons

between di�erent drugs (see Table 2). This screening

for ototoxic e�ects can potentially be extended to

any existing or newly synthesized molecules with

di�erent mechanisms of ototoxicity. However, it is

important to emphasize the limitations of our

model, which are: (1) our method does not in the

strict sense quantify hair cell death, but rather hair

cell injury as demonstrated after phalloidin±FITC

staining; (2) this in vitro model cannot explain or

study the toxicologic molecular mechanism of the

drugs; and (3) this in vitro system cannot reproduce

the in vivo accumulation of ototoxic drugs, especially

aminoglycosides, in the perilymph or the endolymph

Table 3. Protective e�ect of poly-l-aspartate and poly-l-glutamate on neomycin toxicity quanti®ed by video image analysis*

Neomycin
(mM) Alone

+poly-l-aspartate
(10ÿ5 M, 72 hr)

+poly-l-glutamate
(10ÿ5 M, 72 hr)

+poly-l-ornithine
(10ÿ7 M, 72 hr)

0.2 9227** 10926 106212 98210
0.4 8327 100212$ N.D. N.D.
0.6 5225 106210$ 103210$ 4828
1 122 99212$ 107215$ 222

N.D. = non determined
*Protection explants are pretreated with protective compound for 24 hr before exposure to neomycin.
**Results are expressed in percentage of hair cells as compared to control cultures (mean2SD, n = 12).
$Statistically signi®cant compared with cultures exposed to neomycin alone.

Table 4. Protective e�ect of GSH against cisplatin-induced damage
of auditory hair cells as quanti®ed by video image analysis*

Cisplatin (M) Untreated 2GSH (10ÿ3 M)

10ÿ6 10127 10326 **
10ÿ5 68212 10029.4$
3� 10ÿ5 49.9221 94.9223.2$
10ÿ4 28211 81.6219.2$
10ÿ3 9210 10212

*P3 rat organ of Corti explants: 24 hr untreated; 48 hr cisplatin or
cisplatin + GSH.
**Results are expressed in percentage of hair cells compared with
control (mean2SD, n = 12).
$Statistically signi®cant.
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Plate 1. Morphology of hair cell stereocilia bundles of organ of Corti explants, after 72 hr in vitro.
Treatments groups (initial 24 hr in vitro then 48 hr exposure to drugs); (A) neomycin 10ÿ3 M; (B) kana-
mycin 5�10ÿ2 M; (C) colistin 10ÿ4 M; (D) cisplatin 10ÿ3 M; (E) carboplatin 10ÿ4 M; and (F) chloram-

phenicol 10ÿ3 M. Phalloidin±FITC staining, Bar = 20 mm.

Plate 2. Otoprotection against neomycin ototoxicity in organ of Corti explants, after 72 hr in vitro.
Morphology of hair cell stereocilia bundles in: (A) and (C) neomycin alone for 48 hr (0.6 mM and
1 mM, respectively); (B) and (D) neomycin (0.6 mM and 1 mM, 48 hr, respectively) and poly-l-aspartic

acid (10ÿ5 M, 72 hr). Phalloidin±FITC staining, Bar = 20 mm.

Plate 3. Otoprotection against cisplatin ototoxicity in organ of Corti explants, after 72 hr in vitro.
Morphology of hair cell stereocilia bundles in: (A) glutathione (10ÿ3 M; 72 hr) alone; (B) cisplatin alone
(10ÿ4 M); (C) cisplatin (10ÿ4 M; 48 hr) and glutathione (10ÿ3 M; 72 hr). Phalloidin±FITC staining,

Bar = 20 mm.

Plates 2 and 3 [overleaf]
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(Tran Ba Huy et al., 1981). This could explain why

high concentrations had to be used in order to ob-
serve an ototoxic e�ect.
Perhaps the most interesting application of this

quanti®cation system is its ability to screen for sub-
stances that can be used to prevent the ototoxic
side-e�ect of various drugs for which no alternative

exists in terms of therapeutic strategies. In this
study, we have selected as potential otoprotective

agents, substances which could be used in the clinic
and which have been found to protect other target
organs from toxicity, namely polyanions and GSH.

Indeed, systemic administration of polyamino-
acids, including poly-l-aspartic and poly-l-glutamic
acid, has been reported to provide protection against

the development of aminoglycoside-induced nephro-
toxicity in the rat, as assessed by histopathology

scoring, and to prevent functional and biochemical
lesions (Ramsammy et al., 1988). One of the objec-
tives of this study was to extend and test in the inner

ear the observation that poly-l-aspartate protects the
rat kidney against the development of aminoglyco-
sides nephrotoxicity. As can be seen in Plate 2 and

Table 3, poly-l-aspartate and poly-l-glutamate to a
large extent protect auditory hair cells against neo-

mycin-induced ototoxic damage in our in vitro
model. Polyanions, such as poly-l-aspartate or poly-
l-glutamate, may protect against aminoglycoside

ototoxicity by forming electrostatic complexes with
these drugs and inhibiting their interaction with
critical intracellular or extracellular target, as has

been shown for the protection of their nephrotoxi-
city (Ramsammy et al., 1990). Another hypothesis

could be the direct interaction of the polyanion with
the plasma membrane instead of the aminoglyco-
sides, which may constitute one of the ®rst steps of

their toxic mechanism of action (Schacht, 1986;
Williams et al., 1987). That type of protection is also
speci®c for aminoglycoside antibiotics and explains

why we have not found any protection against cis-
platin ototoxicity (data not shown).

GSH is reported to diminish cisplatin-induced
neurotoxicity, and patients treated with cisplatin in
combination with GSH (doses ranging from 1.5 to

3 g/m2) exhibit a less severe neuropathic syndrome
with no negative interference of its anticancer ac-
tivity in these patients (Cavaletti et al., 1996;

Colombo et al., 1995; Di Re et al., 1993). Exper-
imental studies performed on rats have shown that

GSH provides protection against the cisplatin-
induced slowing of sensory nerve conduction vel-
ocity without interfering with the antitumour e�-

cacy of this drug (Hamers et al., 1993). Our in vitro
data demonstrate that GSH also protects hair cells
from cisplatin-induced injury, although not for the

highest cisplatin concentration. However, histo-
pathological studies of deafness resulting from cis-
platin poisoning demonstrate that not only are hair

cells damaged, but that auditory neurons are also
injured (Schweitzer et al., 1986). Therefore, similar

investigations have to be undertaken to look for a
potential protective e�ect of GSH on auditory neur-

ons. This assumption seems reasonable since our
preliminary data suggest that a protective e�ect of
GSH occurs in vitro on adult rat dorsal root

ganglion neurons, and since in vivo treatment with
GSH decreases the platinum concentration in DRG
neurons (Cavaletti et al., 1992). The otoprotective

mechanism has to be elucidated, since the mechan-
ism of cisplatin ototoxicity is still unknown.
Cisplatin ototoxicity may be a result of accumu-

lation of reactive oxygen species (Rybak et al.,
1995); in that case, GSH could protect by a detoxi-
®cation mechanism. A possible explanation is based
on the chemical structure of cisplatin: GSH would

form complexes with cisplatin thereby preventing
the formation of similar complexes between cispla-
tin and macromolecules of the inner ear responsible

of cisplatin ototoxicity, and such a protective mech-
anism would explain the absence of a GSH protec-
tive e�ect for aminoglycoside ototoxicity.

In conclusion, our results show that the potential
protective molecules testedÐpolyanions and GSHÐ
protect respectively against aminoglycosides and cis-

platin derivatives ototoxicity. To what extent these
data obtained in vitro on post-natal organ of Corti
material will be con®rmed in vivo and lead to preser-
vation of hearing remains to be shown. The in vitro

screening model presented in this report allows, for
the quanti®cation of ototoxicity, a comparison of
relative toxicity of various drugs from the same

family and the testing of otoprotective agents. This
system provides a powerful tool for the design and
evaluation of otoprotective strategies. Indeed, sys-

temic administration of poly-l-aspartate was recently
demonstrated to prevent the shift in the auditory
brain stem response threshold that occurs with gen-
tamicin treatment (Hulka et al., 1993).
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