C	
	0000

Cyclic behaviour of cohesionless soils under seismic loading

Cerfontaine Benjamin - Boursier FRIA

University of Liège - GEO³

February 2012

イロト イポト イヨト イ

Context ●0000	From reality to laboratory	From laboratory to numerical modelling	Conclusion
Don't forget the soil!			
Outline			

Don't forget the soil !

Prom reality to laboratory

- Equivalence in-situ/triaxial test
- Monotonic behaviour charaterization
- Cyclic behaviour characterization

3 From laboratory to numerical modelling

- Summary
- Prevost's model

4 Conclusion

Context 0●000

From reality to laboratory

From laboratory to numerical modelling

Conclusion

Don't forget the soil !

Nigata, 1964

Context	
00000	

From reality to laboratory

From laboratory to numerical modelling

Conclusion

Don't forget the soil !

Kobe, 1995

Context 000●0 From reality to laboratory

From laboratory to numerical modelling

Conclusion

Don't forget the soil !

San Fernando dam, 1971

Context
00000

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Don't forget the soil !

Soil-structure interaction

Context
00000

From reality to laboratory

From laboratory to numerical modelling

Equivalence in-situ/triaxial test

Outline

• Don't forget the soil !

- Prom reality to laboratory
 - Equivalence in-situ/triaxial test
 - Monotonic behaviour charaterization
 - Cyclic behaviour characterization
- 3 From laboratory to numerical modelling
 - Summary
 - Prevost's model

4 Conclusion

Context 00000	From reality to laboratory	From laboratory to numerical modelling	Conclusion
Equivalence in-s	itu/triaxial test		
Stress s	state in the soil		
	Ground $\overline{-}$ ∇ Ground Water Ta	able	
	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\$		
	Set K ₀ =1 σ, normal stress		
		< □ > < 酉 > < 壹 > < 三 > < 1	≣▶ ≣ -

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Equivalence in-situ/triaxial test

Stress state in laboratory

Essai triaxial :

- compression/extension
- monotonic/cyclic
- drained/undrained

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Equivalence in-situ/triaxial test

Stress state in laboratory

Essai triaxial :

- compresssion/extension
- monotonic/cyclic
- drained/undrained

And also :

• simple shear

(日)、

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Equivalence in-situ/triaxial test

Stress state in laboratory

Essai triaxial :

- compression/extension
- monotonic/cyclic
- drained/undrained

And also :

- simple shear
- torsional shear test

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Equivalence in-situ/triaxial test

Stress state in a triaxial test

◆□▶ ◆□▶ ◆目▶ ◆目▶ →目 − のへぐ

Context 00000	From reality to laboratory	From laboratory to numerical modelling	Conclusion
Monotonic behaviour	charaterization		
Outline			

1 Context

• Don't forget the soil !

2 From reality to laboratory

• Equivalence in-situ/triaxial test

• Monotonic behaviour charaterization

• Cyclic behaviour characterization

3 From laboratory to numerical modelling

- Summary
- Prevost's model

4 Conclusion

From reality to laboratory

Monotonic behaviour charaterization

Monotonic undrained test

Steady State :

- continuous deformation
- constant p'
- constant q

σ

Deviatoric stress

constant velocity

From reality to laboratory

From laboratory to numerical modelling

Conclusion

Monotonic behaviour charaterization

Monotonic undrained test

Quasi Steady State :

- transient state
- p' minimum
- q minimum

σ

Deviatoric stress

From reality to laboratory

Monotonic behaviour charaterization

Monotonic undrained test

Dilative state

σ

Deviatoric stress

- strain hardening
- no instability

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Monotonic behaviour charaterization

Triaxial undrained test examples (1)

Deformation controlled triaxial undrained tests : Toyoura sand [Verdugo and Ishihara, 1996] Dr = 18.5%

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Monotonic behaviour charaterization

Triaxial undrained test examples (1)

Deformation controlled triaxial undrained tests : Toyoura sand [Verdugo and Ishihara, 1996]

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Monotonic behaviour charaterization

Triaxial undrained test examples (1)

Deformation controlled triaxial undrained tests : Toyoura sand [Verdugo and Ishihara, 1996]

From reality to laboratory

From laboratory to numerical modelling 00000

э

Image: A matrix and a matrix

Conclusion

Monotonic behaviour charaterization

Triaxial undrained test examples (2)

Loose Toyoura sand [Hyodo and al., 1994]

Context 00000	From reality to laboratory	From laboratory to numerical modelling	Conclusion
Cyclic behaviour cl	naracterization		
Outline			

• Don't forget the soil !

Prom reality to laboratory

- Equivalence in-situ/triaxial test
- Monotonic behaviour charaterization
- Cyclic behaviour characterization
- 3 From laboratory to numerical modelling
 - Summary
 - Prevost's model

4 Conclusion

15/26

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Cyclic behaviour characterization

The cyclic triaxial test

• **load**/deformation controlled

∃⇒

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Cyclic behaviour characterization

The cyclic triaxial test

- **load**/deformation controlled
- drained/undrained

From reality to laboratory

From laboratory to numerical modelling 00000

Conclusion

Cyclic behaviour characterization

The cyclic triaxial test

- **load**/deformation controlled
- drained/undrained
- until failure : liquefaction or not

Liquefaction failure (general term)

Liquefaction and liquefaction failures encompass all phenomena involving excessive deformations of saturated cohesionless soils.

Initial liquefaction

Transient state when the soil sample is submitted to zero mean effective stress $(u = p_{conf})$ and zero deviatoric stress for the first time. This phenomenon involves very large deformations.

Liquefaction (specific term)

True liquefaction occurs when the soil reaches the steady state and deforms continuously.

Cyclic mobility

The cyclic mobility denotes the undrained cyclic soil response where the soil undergoes strain softening which is mainly a consequence of the build up of pore water pressure.

Flow deformation

Flow deformation is an instability characterized by a quick development of strain and pore pressure. If after this phenomenon, the strain increases slowly again, this behaviour is called limited deformation.

Context
00000

From reality to laboratory

From laboratory to numerical modelling

Conclusion

Cyclic behaviour characterization

Flow deformation

Structural collapse

In a loose sand in undrained conditions, the structural collapse is the specific response of the loose structure which is exhibited as vigorous pore pressure generation.

Context 00000	From reality to laboratory	From laboratory to numerical modelling	Concl
Cyclic behaviou	ur characterization		
Flow d	eformation		

Structural collapse

In a loose sand in undrained conditions, the structural collapse is the specific response of the loose structure which is exhibited as vigorous pore pressure generation.

usion

Context	From reality to laboratory	
00000	00000000000000000	0
Cyclic behaviou	r characterization	

Flow deformation

Structural collapse

In a loose sand in undrained conditions, the structural collapse is the specific response of the loose structure which is exhibited as vigorous pore pressure generation.

Context 00000	From reality to laboratory ○○○○○○○○○○○	From laboratory to numerical modelling	Conclusion		
Cyclic behaviour characterization					
Flow c	leformation				

Structural collapse

In a loose sand in undrained conditions, the structural collapse is the specific response of the loose structure which is exhibited as vigorous pore pressure generation.

From reality to laboratory

From laboratory to numerical modelling 00000

Image: A matched black

э

Conclusion

Cyclic behaviour characterization

Flow deformation examples

Context	

Outline

Summary

• Don't forget the soil !

Prom reality to laboratory

- Equivalence in-situ/triaxial test
- Monotonic behaviour charaterization
- Cyclic behaviour characterization
- From laboratory to numerical modelling
 Summary
 - Prevost's model

4 Conclusion

From laboratory to numerical modelling $\circ \bullet \circ \circ \circ$

Summary

The model has to take into account :

- the contractive/dilative transition and softening;
- the pore pressure build up;
- the different modes of failure;
- the failure anisotropy;

(日)、

From laboratory to numerical modelling 0000

Summary

The model has to take into account :

- the contractive/dilative transition and softening;
- the pore pressure build up;
- the different modes of failure;
- the failure anisotropy;

[Alarcon-Guzman and al.,1988]

Summary

The model has to take into account :

- the contractive/dilative transition and softening;
- the pore pressure build up;
- the different modes of failure;
- the failure anisotropy;

From laboratory to numerical modelling 0000

Summary

The model has to take into account :

- the contractive/dilative transition and softening;
- the pore pressure build up;
- the different modes of failure;
- the failure anisotropy;

Context 00000	From reality to laboratory	From laboratory to numerical modelling	Conclusion
Prevost's model			
Outline			

1 Context

• Don't forget the soil !

Prom reality to laboratory

- Equivalence in-situ/triaxial test
- Monotonic behaviour charaterization
- Cyclic behaviour characterization
- From laboratory to numerical modelling
 - Summary
 - Prevost's model

4 Conclusion

Context 00000	From reality to laboratory	From laboratory to numerical modelling	Conclusion
Prevost's model			
Character	rization		

- N nested conical yield surfaces associated with H', M, $\underline{\alpha}\,;$
- Kinematic hardening in the stress-space;
- Calibration using monotonic triaxial tests;
- Non-associative volumic plastic potential
- Sophistication : p' dependency, Lode angle dependency, ...

_{23/26} after [Yang ,Elgamal and Parra, 2003]

Context 00000	From reality to laboratory	From laboratory to numerical modelling	Conclusion
Prevost's mode			
Charac	terization		

- N nested conical yield surfaces associated with H', M, $\underline{\alpha}\,;$
- Kinematic hardening in the stress-space;
- Calibration using monotonic triaxial tests;
- Non-associative volumic plastic potential
- Sophistication : p' dependency, Lode angle dependency, ...

<ロ> (四) (四) (三) (三) (三)

Context 00000	From reality to laboratory	From laboratory to numerical modelling	Conclusion
Prevost's model			
Charact	terization		

- N nested conical yield surfaces associated with H', M, $\underline{\alpha}$;
- Kinematic hardening in the stress-space;
- Calibration using monotonic triaxial tests;
- Non-associative volumic plastic potential
- Sophistication : p' dependency, Lode angle dependency, ...

Context 00000	From reality to laboratory	From laboratory to numerical modelling	Conclusion
Prevost's model			
Charact	terization		

- N nested conical yield surfaces associated with H', M, $\underline{\alpha}$;
- Kinematic hardening in the stress-space;
- Calibration using monotonic triaxial tests;
- Non-associative volumic plastic potential
- Sophistication : p' dependency, Lode angle dependency, ...

$$egin{split} \mathcal{H}' &= \mathcal{H}'_0 \cdot \left(rac{p'}{p_{ref}}
ight)^n$$
 , $\mathcal{K} &= \mathcal{K}_0 \cdot \left(rac{p'}{p_{ref}}
ight)^n$, $\mathcal{G} &= \mathcal{G}_0 \cdot \left(rac{p'}{p_{ref}}
ight)^n \end{split}$

after [Yang and Elgamal, 2008]

00000	00000000000000000000000000000000000000	Conclusion
Prevost's model		
Numerica	al examples	

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへで

С	10	۱t	e	×t
\cap	0	0	\sim	\sim

From reality to laboratory

From laboratory to numerical modelling $\circ \circ \circ \circ \bullet$

Conclusion

Prevost's model

Numerical examples

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ⊙

Co	nt	ex	t
00	0	<u> </u>	

From reality to laboratory

From laboratory to numerical modelling $\circ \circ \circ \circ \bullet$

Conclusion

Prevost's model

Numerical examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Context 00000	From reality to laboratory 000000000000	From laboratory to numerical modelling ○○○○●	Conclusion
Prevost's model			
Numeric	cal examples		

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Context 00000	From reality to laboratory	From laboratory to numerical modelling ○○○○●	Conclusion
Prevost's model			
Numerica	al examples		

うせん 聞い ふぼう ふぼう ふしゃ

Context 00000	From reality to laboratory 000000000000	From laboratory to numerical modelling ○○○○●	Conclusion
Prevost's model			
Numerical	examples		

▲ロト ▲舂 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Numerica	l examples		
Prevost's model			
Context 00000	From reality to laboratory	From laboratory to numerical modelling ○○○○●	Conclusion

C	10	۱t	e	t
0	0	\sim	0	

From reality to laboratory

From laboratory to numerical modelling $\circ \circ \circ \circ \bullet$

Prevost's model

Numerical examples

・ロト・日本・日本・日本・日本・今日

To conclude

- pore pressure buildup
- different modes of failure
- contractive/dilative transition
- instability
- Prevost model : qualitatively OK...

BUT has to be modified quantitatively

