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Monotonic undrained test
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Deformation controlled triaxial undrained tests : Toyoura sand
[Verdugo and Ishihara, 1996]
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Cyclic behaviour characterization

The cyclic triaxial test

@ load/deformation
controlled

@ drained/undrained

@ until failure : liquefaction
or not

Liquefaction failure (general term)

Liquefaction and liquefaction failures encompass all phenomena
involving excessive deformations of saturated cohesionless soils.
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Cyclic behaviour characterization

Cyclic behaviour
after [Hyodo and al. 1994]
q

Dr=50% 9 Dr=70% 9 Dr=50%

Initial liquefaction

Transient state when the soil sample is submitted to zero mean
effective stress (u = peonf) and zero deviatoric stress for the first
time. This phenomenon involves very large deformations.

Liquefaction (specific term)

True liquefaction occurs when the soil reaches the steady state and
deforms continuously.
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Cyclic behaviour

after [Hyodo and al. 1994]

4, Dr=50% q Dr=70%

The cyclic mobility denotes the undrained cyclic soil response
where the soil undergoes strain softening which is mainly a
consequence of the build up of pore water pressure.
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Cyclic behaviour

after [Hyodo and al. 1994]
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Flow deformation

Flow deformation is an instability characterized by a quick
development of strain and pore pressure. If after this phenomenon,
the strain increases slowly again, this behaviour is called limited

deformation.
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Flow deformation

Structural collapse

In a loose sand in undrained conditions, the structural collapse is
the specific response of the loose structure which is exhibited as
vigorous pore pressure generation.

Metastable structure

(a)
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Structural collapse

In a loose sand in undrained conditions, the structural collapse is
the specific response of the loose structure which is exhibited as
vigorous pore pressure generation.

V=cste

(c)
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Flow deformation

Structural collapse

In a loose sand in undrained conditions, the structural collapse is
the specific response of the loose structure which is exhibited as
vigorous pore pressure generation.
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Flow deformation examples
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Deviator stress gq (kPa)
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Prevost's model

Characterization

N nested conical yield surfaces associated with H', M, «a;
Kinematic hardening in the stress-space;

Calibration using monotonic triaxial tests;
Non-associative volumic plastic potential

Sophistication : p' dependency, Lode angle dependency, ...

after [Yang ,Elgamal and Parra, 2003]
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Prevost's model

Characterization

@ N nested conical yield surfaces associated with H', M, «;

@ Kinematic hardening in the stress-space;

@ Calibration using monotonic triaxial tests;

@ Non-associative volumic plastic potential

@ Sophistication : p' dependency, Lode angle dependency, ...
H' = Hj -

after [Yang and Elgamal, 2008]
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Numerical examples

Influence de p‘init (kPa)
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Prevost's model

Numerical examples

Essai cyclique non drainé
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To conclude

@ Very complex actual behaviour

e pore pressure buildup
different modes of failure
contractive/dilative transition
instability

@ Prevost model : qualitatively OK...
BUT has to be modified quantitatively
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