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Stress state in a triaxial test
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Monotonic undrained test
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Monotonic undrained test

Dilative state

• strain hardening

• no instability

Dilatancy : ∆V > 0
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Deformation controlled triaxial undrained tests : Toyoura sand
[Verdugo and Ishihara, 1996]
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Triaxial undrained test examples (2)

Loose Toyoura sand [Hyodo and al., 1994]
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Cyclic behaviour characterization

The cyclic triaxial test

load/deformation
controlled

drained/undrained

until failure : liquefaction
or not

Liquefaction failure (general term)

Liquefaction and liquefaction failures encompass all phenomena
involving excessive deformations of saturated cohesionless soils.

16/26



Context From reality to laboratory From laboratory to numerical modelling Conclusion

Cyclic behaviour characterization

Cyclic behaviour

after [Hyodo and al. 1994]
q
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Initial liquefaction

Transient state when the soil sample is submitted to zero mean
effective stress (u = pconf ) and zero deviatoric stress for the first
time. This phenomenon involves very large deformations.

Liquefaction (specific term)

True liquefaction occurs when the soil reaches the steady state and
deforms continuously.
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Cyclic behaviour

after [Hyodo and al. 1994]
q

εa

q q

p' p'

Dr=50%Dr=70%Dr=50%Dr=50%

Cyclic mobility

The cyclic mobility denotes the undrained cyclic soil response
where the soil undergoes strain softening which is mainly a
consequence of the build up of pore water pressure.

17/26



Context From reality to laboratory From laboratory to numerical modelling Conclusion

Cyclic behaviour characterization

Cyclic behaviour

after [Hyodo and al. 1994]
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Flow deformation

Flow deformation is an instability characterized by a quick
development of strain and pore pressure. If after this phenomenon,
the strain increases slowly again, this behaviour is called limited
deformation.
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Cyclic behaviour characterization

Flow deformation

Structural collapse

In a loose sand in undrained conditions, the structural collapse is
the specific response of the loose structure which is exhibited as
vigorous pore pressure generation.

Arc

grosse

(a)

cavité

Metastable structure

1

3

X

E

18/26



Context From reality to laboratory From laboratory to numerical modelling Conclusion

Cyclic behaviour characterization

Flow deformation

Structural collapse

In a loose sand in undrained conditions, the structural collapse is
the specific response of the loose structure which is exhibited as
vigorous pore pressure generation.

Arc

grosse

(a) (b)

cavité

18/26



Context From reality to laboratory From laboratory to numerical modelling Conclusion

Cyclic behaviour characterization

Flow deformation

Structural collapse

In a loose sand in undrained conditions, the structural collapse is
the specific response of the loose structure which is exhibited as
vigorous pore pressure generation.
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Cyclic behaviour characterization

Flow deformation

Structural collapse

In a loose sand in undrained conditions, the structural collapse is
the specific response of the loose structure which is exhibited as
vigorous pore pressure generation.
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Cyclic behaviour characterization

Flow deformation examples

[Vaid and al., 2001]
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Prevost’s model

Characterization

N nested conical yield surfaces associated with H’, M, α ;
Kinematic hardening in the stress-space ;
Calibration using monotonic triaxial tests ;
Non-associative volumic plastic potential
Sophistication : p’ dependency, Lode angle dependency, ...
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To conclude

1 Very complex actual behaviour

• pore pressure buildup
• different modes of failure
• contractive/dilative transition
• instability

2 Prevost model : qualitatively OK...
BUT has to be modified quantitatively
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