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Abstract

We explore the optimal fertility timing in a four-period OLG econ-
omy with physical capital, whose specificity is to include not one, but two
reproduction periods. It is shown that, for a given total fertility rate,
the economy exhibits quite different dynamics, depending on the timing
of births. If all births take place in the late reproduction period, there
exists no stable stationary equilibrium, and the econony exhibits cyclical
dynamics due to labour growth fluctuations. We characterize the long-run
social optimum, and show that optimal consumptions and capital depend
on the optimal cohort growth factor, so that there is no one-to-one sub-
stitutability between early and late fertility. We also extend Samuelson’s
Serendipity Theorem to our economy, and study the robustness of our
results to: (1) endogenizing fertility timing; (2) assuming rational antici-
pations about factor prices; (3) adding a third reproduction period.
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1 Introduction

The postponement of births is a key stylized fact of the last four decades. That
change in the timing of births can be illustrated by the evolution of the average
age of mothers at the first birth (Figure 1).1 In Sweden, for instance, the
average age of first-time mothers has grown from 25 to 29 years over 1970-2010.
The postponement of parenthood is also illustrated by the observed rise in the
average age of mothers for all births (Figure 2).2
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Figure 1: Average age of women at
first birth (period)
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Figure 2: Average age of women at all
births (period)

The observed postponement of births raises several questions. A first issue
concerns the causes at work behind that phenomenon. In a pioneer article,
Gustafsson (2001) reviewed major theoretical and empirical papers aimed at
explaining that stylized fact. On the theoretical side, Happel et al. (1984)
showed that consumption smoothing may imply delaying births, while Cigno
and Ermisch (1989) argued that steeper earnings profiles induced by education
lead to postponing births.3 On the empirical side, the roles of the better earnings
opportunities and better educational achievements for women were emphasized
by Ermisch and Ogawa (1994) and Joshi (2002).4

Another important issue consists of the evaluation of the effects of that
change in the timing of births on long-run economic dynamics. Momota (2009)
examined, in a three-period overlapping generations (OLG) model with fixed
total fertility, the impact of changes in the timing of births on the dynamics of
the economy. D’Albis et al (2010) studied, in a continuous time OLG model,
the joint dynamics of demography and economy under endogenous childbearing

1Data source: Human Fertility Database (2012).
2Data source: Human Fertility Database (2012).
3Cigno and Ermisch (1989) also found, on the basis of UK data, empirical support for that

explanation of the observed heterogeneity in terms of fertility patterns.
4The timing of births influences in turn various outcomes. Ermisch and Pevalin (2005)

showed that teen births worsens later outcomes on the marriage market.
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ages, while assuming that the total number of children is decreasing in the
timing of births. They proved that there exists a monetary steady-state if the
average age of consumers is larger than the average age of producers.
A third question raised by the postponement of births consists of its social

optimality. Is births delaying desirable from a social perspective? In a two-
period OLG economy with a unique reproduction period, Samuelson (1975)
showed that the (interior) optimal fertility rate balances, at the margin, two
effects: on the one hand, the capital dilution effect due to a higher fertility; on
the other hand, the intergenerational redistribution effect.5 Samuelson proved
also that fertility allows for the decentralization of the social optimum. This is
the Serendipity Theorem: if there exists a unique stable stationary equilibrium,
a perfectly competitive economy will converge towards the long-run social op-
timum when the optimal fertility rate is imposed.6 Those results presuppose a
unique reproduction period, and, hence, say little on the optimal fertility timing.
The goal of this paper is twofold. First, we propose to explore the con-

sequences of fertility timing on long-run economic dynamics. That question
can be formulated as follows: for a given total fertility rate (TFR), that is, a
given total number of children along the lifecycle, is the timing of births neutral
for economic dynamics? Then, in a second stage, we characterize the socially
optimal timing of births. Here again, we examine the neutrality of fertility tim-
ing: is there, from the point of view of long-run social welfare, a one-to-one
substitutability between early children and late children?
In order to answer those questions, we study a four-period perfectly compet-

itive OLG economy with physical capital accumulation. The specificity of that
economy is that there is here not one, but two reproduction periods: the second
and third periods of life. To compare the long-run dynamics under different
timing for births, we first study, as a baseline, an economy where parents take
age-specific fertility rates as given, and analyze the impact of distinct fertility
profiles on the long-run dynamics, under myopic anticipations about future fac-
tor prices. Then, we characterize the long-run social optimum, and study the
optimal fertility timing. Finally, we explore the robustness of our results to
the introduction of rational expectations about factor prices and endogenous
fertility timing, as well as to the addition of a third reproduction period.
Anticipating on our results, we show that distinct timings for births lead to

very different economic dynamics, even under a given total fertility rate. In par-
ticular, when all births take place in the late reproduction period, there exists
no stable stationary equilibrium. Then, focusing on the long-run social opti-
mum, we show that optimal consumption paths and optimal capital are defined

5Note that, as shown by Deardorff (1976), an interior optimal fertility rate does not always
exist in a two-period OLG economy with Cobb-Douglas production and utility functions. In
a more general model with CES production and utility functions, Michel and Pestieau (1993)
emphasized that an interior optimal fertility rate requires a suffi ciently low substitutability
between capital and labour in the production process, and between first- and second-period
consumptions in utility functions. Abio (2003) and Abio et al (2004) complemented those
papers by studying optimal fertility under costly, endogenous fertility.

6Recently, Jaeger and Kuhle (2009) and de la Croix et al (2012) examined the robustness
of the Serendipity Theorem to the introduction of debt and of risky lifetime.

3



in terms of the optimal long-run cohort growth factor, in which early and late
fertility rates are no one-to-one substitutes (unlike in the TFR). We also derive
an extended Serendipity Theorem: a perfectly competitive economy converges
towards the social optimum, provided the government imposes the optimal long-
run cohort growth factor. Finally, those results are shown to be robust to the
introduction of rational expectations about factor prices, to the addition of a
third reproduction period, as well as to endogenous fertility timing.7

The rest of the paper is organized as follows. Section 2 presents the baseline
model. The long-run dynamics is studied in Section 3. Section 4 character-
izes the long-run social optimum and studies its decentralization in line with
Samuelson’s Serendipity Theorem. Section 5 considers three extensions: (1)
rational expectations about factor prices; (2) endogenous fertility; (3) addition
of a third reproduction period. Section 6 concludes.

2 The model

We consider a four-period OLG model with physical capital accumulation. Its
specificity lies in the existence of two - instead of one - reproduction periods.
Period 1 consists of childhood. In periods 2 and 3, agents supply their labour
inelastically, consume, save and make children. In period 4, they are retired.

2.1 Demography

Throughout this paper, we assume initial conditions insuring that the economy
exhibits a strictly positive number of births at any period: N−1 > 0, N0 > 0,
where Nt denotes the number of individuals born at period t.
Individuals have n children in period 2, and m children in period 3. The

total fertility rate (TFR) is, without loss of generality, assumed to be strictly
positive, i.e. n+m > 0. The total number of individuals born at time t is:

Nt = nNt−1 +mNt−2 (1)

The cohort size growth factor gt ≡ Nt
Nt−1

is obtained by dividing (1) by Nt−1:

gt = n+m
Nt−2

Nt−1
= n+

m

gt−1
(2)

If all children are born from young parents (i.e. m = 0), the cohort growth
factor gt is constant over time, and equal to n. If, on the contrary, all children
are born from old adults (i.e. n = 0), gt is no longer constant over time, but,
rather, exhibits a two-period cycle.8 In the general case where n > 0, m > 0, gt

7Except the Extended Serendipity Theorem.
8To see this, note that

g1 =
m

g0
; g2 =

m

g1
= g0; g3 =

m

g2
=
m

g0
= g1;

g4 =
m

g3
=
m

g1
= g0; g5 =

m

g4
=
m

g0
= g1, etc...
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converges, in the long-run, towards a unique level, equal to: g = n+ 2√n2+4m
2 .

To see this, denote gt+1 ≡ f(gt) = n+m
gt
. We have that limgt→0f(gt) = +∞,

and limgt→+∞f(gt) = n > 0. In the (gt, gt+1) space, f(gt) lies above the
45◦ line for low gt levels, but below the 45◦ line for high gt levels. Thus, by
continuity, f(gt) must cross the 45◦ line for some gt, whose value is obtained
by setting gt+1 = gt in f(gt), leading to g = n+ 2√n2+4m

2 . Given that f ′(gt) ≤ 0,
the intersection of f(gt) with the identity line is unique. Note also that, as
|f ′(g)| = 4m

2n2+4m+2n 2√n2+4m
< 1 when n > 0, gt converges, for any g0 > 0,

towards n+ 2√n2+4m
2 . This is not the case when n = 0, at which |f ′(gt)| = 1.

gt

gt
+1

F(gt) identity line

Figure 3: Dynamics of gt

Therefore, under a given TFR = n + m, the population dynamics vary
depending on the timing of births. Early and late births, although one-to-
one substitutes in the TFR formula, are no one-to-one substitutes as far as
population dynamics is concerned. That point is illustrated on Figure 4, which
shows the dynamics of the number of births under TFR = 1.15, under two
fertility profiles: n = 1.15, m = 0 and n = 0, m = 1.15.
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Figure 4: number of births under
distinct fertility timing.
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Figure 5: Total labour under distinct
fertility timing.

The differences between the two patterns are twofold. First, as expected, the
cohort size growth is larger when births take place earlier in the lifecycle. Sec-
ond, whereas Nt grows constantly under the fertility profile (1.15, 0), it exhibits
a cyclical growth under the fertility profile (0, 1.15).9

In order to examine the influence of birth timing on the economy, let us
first describe the total labour force. Given that all agents supply their labour
inelastically in their second and third periods of life, total labour force at t is:

Lt = Nt−1 +Nt−2 = gt−1Nt−2 +Nt−2 (3)

Dividing (3) by Lt−1 = Nt−2 +Nt−3 yields the labour growth factor:

Lt
Lt−1

=
gt−1Nt−2 +Nt−2

Nt−2 +Nt−3
= gt−2

1 + gt−1

1 + gt−2
(4)

If n > 0, gt converges, in the long-run, towards n+ 2√n2+4m
2 , which is also the

long-run labour growth factor. If n = 0, there is, in general, no convergence.
Since gt−2 × gt−1 = m, the labour force growth ratio is, in that case:

Lt
Lt−1

=
m(1 + gt−1)

m+ gt−1
(5)

thus varying over time, except in the special case of replacement fertility, i.e.
m = 1, for which the labour supply is constant over time.
As shown on Figure 5, total labour can exhibit, under a given TFR, quite

different patterns, depending on the timing of births. Labour grows at a constant
rate when births are located in the early reproduction period, but grows at a
fluctuating rate when births occur during the late reproduction period.

9Note that it is only in the special case where the TFR is at its replacement level (i.e.
n+m = 1) that the two curves, then horizontal, coincide.
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2.2 Production

The production of an output Yt involves capital Kt and labour Lt, according to
the function:10

Yt = F (Kt, Lt) = F̄ (Kt, Lt) + (1− δ)Kt (6)

where δ is the depreciation rate of capital. The function F̄ (Kt, Lt) is assumed to
be homogeneous of degree one. Hence, the total production function F (Kt, Lt)
is also homogeneous of degree one, and the production can be written as:

yt = F

(
kt, 1 +

Nt−2

Nt−1

)
(7)

where yt = Yt
Lyt

= Yt
Nt−1

denotes output per young worker, and kt = Kt
Lyt

= Kt
Nt−1

denotes the capital per young worker.
The resource constraint of the economy, which states that what is produced

is either consumed or invested, is:

F (Kt, Lt) = ctNt−1 + dtNt−2 + btNt−3 +Kt+1

where ct, dt and bt are first-, second- and third-period consumptions.11

Dividing that constraint by the young labour force Lyt = Nt−1, one gets:

F

(
kt, 1 +

1

gt−1

)
= ct +

dt
gt−1

+
bt

gt−1gt−2
+ kt+1gt (8)

Finally, we assume that the economy is perfectly competitive, so that pro-
duction factors are paid at their marginal productivity:

wt =

[
F

(
kt, 1 +

1

gt−1

)
− Fk

(
kt, 1 +

1

gt−1

)
kt

]
gt−1

1 + gt−1
(9)

Rt = Fk

(
kt, 1 +

1

gt−1

)
(10)

where wt denotes the wage rate, and Rt is the return on savings at period t.

2.3 Individual behavior

The problem of individuals can be written as:

max
ct,dt+1,bt+2

u(ct) + βu(dt+1) + β2u(bt+2)

s.t. wt +
wt+1

Rt+1
= ct +

dt+1

Rt+1
+

bt+2

Rt+1Rt+2

10 It is assumed that the undepreciated units of capital are sold on the goods market.
11 It is assumed that children live with their parents and share their consumption spending.
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where the temporal utility function u(·) satisfies u′(·) > 0 and u′′(·) ≤ 0. The
parameter β is a time preference factor (0 < β < 1).
Resolving that optimization problem allows us to derive savings in the second

and third periods, denoted by st and zt+1. Under perfect foresight, those optimal
savings are functions of current and future factor prices:12

st ≡ s (Rt+1, Rt+2, wt, wt+1)

zt+1 ≡ z (Rt+1,Rt+2, wt, wt+1)

3 Long-run dynamics

Backwarding the second savings equation by one period gives us zt, i.e. the old
worker’s savings chosen at t − 1. Then, substituting for st and zt in Kt+1 =
Nt−1st + Nt−2zt, and dividing by the number of young workers L

y
t+1 = Nt,

yields:

kt+1 =
s (Rt+1, Rt+2, wt, wt+1)

gt
+
z (Rt,Rt+1, wt−1, wt)

gt−1gt

Given that Rt = R(kt) and wt = w(kt), the dynamics of kt is described by a
difference equation of order 3.13 As stressed by de la Croix and Michel (2002),
the dynamics of capital under perfect foresight is quite complex when savings
are made at several periods. There exist only a few ways to overcome that
complexity. A first approach consists of imposing particular functional forms
for utility and production functions. A second approach consists of keeping
general functional forms, but of relaxing the perfect foresight assumption. If,
for instance, one considers myopic anticipations, the number of time lags in the
dynamic law of capital can be reduced.14 In this section, we consider the myopic
anticipations case. Then, in Section 5, we will consider rational expectations,
under standard utility and production functions.
Under myopic anticipations on factor prices, the savings st and zt+1 can be

rewritten by means of the following savings functions:

st = s (R(kt), R(kt), w(kt), w(kt)) ≡ σ (kt)

zt+1 = z (R(kt), R(kt), w(kt), w(kt)) ≡ ζ(kt)

Backwarding the second equation by one period and substituting for st and
zt in the capital accumulation equation yields: kt+1 = σ(kt)

gt
+ ζ(kt−1)

gt−1gt
. If one in-

troduces the variable Ωt ≡ ζ(kt−1)
gt−1

, the dynamics of the economy is summarized

12See de la Croix and Michel (2002, pp. 64-66).
13The highest-order term kt+2 comes from the interest factor at old adulthood for the young

adult at t, i.e. Rt+2, whereas the lowest-order term kt−1 comes from the wage faced by old
adults at t when being young workers at t− 1, i.e. wt−1.
14 In our context, myopic anticipations mean that agents, when choosing their savings, take

the current wages and interest rates as a proxy for future wages and interest rates.
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by the following three-dimensional dynamic system:

kt+1 ≡ G(kt,Ωt, gt) =
σ (kt)

gt
+

Ωt
gt

Ωt+1 ≡ H (kt) =
ζ(kt)

gt

gt+1 ≡ I(gt) = n+
m

gt
(A)

The following proposition summarizes our results.

Proposition 1 Assume myopic anticipations about factor prices. Assume that
σ (0) = 0, σ′(kt) > 0, ζ (0) = 0 and ζ ′(kt) > 0. Suppose n + m > 0. Denote
2
√
n2 + 4m by Ψ.

• If limk→0
Ψ+n

2

[
1− 2σ′(kt)

n+Ψ

]
< limk→0

2ζ′(kt)
n+Ψ and if limk→+∞

Ψ+n
2

[
1− 2σ′(kt)

n+Ψ

]
>

limk→+∞
2ζ′(kt)
n+Ψ , there exists a stationary equilibrium with k,Ω, g > 0.

• That stationary equilibrium is locally stable if and only if:

(i) 16mζ′(k)

(n+Ψ)4 < 1

(ii) 1 >
[
− 4ζ′(k)

(n+Ψ)2 − 8mσ′(k)

(n+Ψ)3

]
−
[

2σ′(k)
n+Ψ −

4m
(n+Ψ)2

] [
16mζ′(k)

(n+Ψ)4

]
+
[

16mζ′(k)

(n+Ψ)4

]2
(iii)

[
4ζ′(k)

(n+Ψ)2 + 8mσ′(k)

(n+Ψ)3 − 1
]
< 2σ′(k)

n+Ψ −
4m

(n+Ψ)2 + 16mζ′(k)

(n+Ψ)4 <
[
− 4ζ′(k)

(n+Ψ)2 − 8mσ′(k)

(n+Ψ)3 + 1
]

Proof. See the Appendix.
The necessary and suffi cient conditions for stability can be used to examine

the impact of the timing of births on economic dynamics. For that purpose,
Corollary 1 compares two economies differing on the timing of births.

Corollary 1 Assume myopic anticipations about factor prices.

• Assume n > 0 andm = 0. Provided σ(0) = 0, ζ(0) = 0, limk→0 n
[
1− σ′(kt)

n

]
<

limk→0
ζ′(kt)
n and limk→+∞ n

[
1− σ′(kt)

n

]
> limk→+∞

ζ′(kt)
n , there exists

a stationary equilibrium with k,Ω, g > 0. Provided ζ′(k)
n2 − 1 < σ′(k)

n <

− ζ
′(k)
n2 + 1, that equilibrium is locally stable.

• Assume n = 0 and m > 0. Provided σ (0) = 0, σ′(kt) > 0, as well

as ζ (0) = 0, ζ ′(kt) > 0, we have that, if limk→0
2
√
m
[
1− σ′(kt)

2
√
m

]
<

limk→0
ζ′(kt)

2
√
m

and limk→+∞ 2
√
m
[
1− σ′(kt)

2
√
m

]
> limk→+∞

ζ′(kt)
2
√
m
, there

exists a stationary equilibrium with k,Ω, g > 0, which is unstable.
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Proof. See the Appendix.
Corollary 1 shows that the timing of births plays a crucial role in long-

run economic dynamics. Whereas there exists, under mild conditions, a locally
stable stationary equilibrium when all births take place early in life (i.e. n > 0
and m = 0), there exists no stable stationary equilibrium when all births are
late births (i.e. n = 0 and m > 0).
The underlying intuition lies in the existence, under the latter fertility profile,

of permanent fluctuations in labour growth caused by cycles in the cohort growth
gt (see Figure 5). Those permanent fluctuations in labour growth generate
perpetual fluctuations in kt, as well as in output and wages, and, hence, prevent
the economy from converging towards a stationary equilibrium. As stated in
Proposition 2, the economy with only late births is, under mild conditions,
characterized by long-run cycles of period 2.

Proposition 2 Assume myopic anticipations about factor prices. Suppose σ(0) =
0, σ′(kt) > 0, ζ (0) = 0 and ζ ′(kt) > 0.

Denote D̂(kt) ≡ g0

[
σ−1

(
m
g0

(
kt − ζ(kt)

m

))
− σ(kt)

g0

]
.

Denote Ď(kt) ≡ m
g0

[
σ−1

((
kt − ζ(kt)

m

)
g0

)
− g0σ(kt)

m

]
.

Assume that the equation Ωt =
ζ(
σ(kt)
g0

+
Ωt
g0

)

g0
admits a non-negative solution

and denote it by Ωt ≡ Ê(kt).

Assume that the equation Ωt =
g0ζ(

g0σ(kt)
m +

g0Ωt
m )

m admits a non-negative so-
lution and denote it by Ωt ≡ Ě(kt).

• If limk→∞D̂(kt) > limk→∞Ê(kt) and limk→∞Ď(kt) > limk→∞Ě(kt),
the long-run dynamics is a two-period cycle (k̂, Ω̂, g0), (ǩ, Ω̌, mg0

).

• Convergence to the cycle (k̂, Ω̂, g0), (ǩ, Ω̌, mg0
) arises, iff:∣∣∣∣∣ Q̂2 ± 2

√
Q̂2mg2

0−4ζ′(
σ(k̂)+Ω̂

g0
)ζ′(k̂)

4mg2
0

∣∣∣∣∣ ,
∣∣∣∣∣ Q̌2 ± 2

√
Q̌2m3−4ζ′(

g0σ(ǩ)+g0Ω̌

m )ζ′(ǩ)

4m3

∣∣∣∣∣ < 1,

with Q̂ ≡
[
g2

0

(
σ′
(
σ(k̂)+Ω̂

g0

)
σ′(k̂) + ζ ′(k̂)

)
+mζ ′(

σ(k̂)+Ω̂

g0
)

]
/g2

0m

Q̌ ≡
[
mσ′

(
g0σ(ǩ)+g0Ω̌

m

)
σ′
(
ǩ
)

+mζ ′(ǩ) + ζ ′(
g0σ(ǩ)+g0Ω̌

m )

]
/m

2
.

Proof. See the Appendix.
In the light of this, the major role played by the timing of births could hardly

be overemphasized. Whether births occur in the early or the late reproduction
period makes a substantial difference. In the former case, the long-run dynamics
is, in general, stationary, whereas, in the latter case, the dynamics is cyclical.
Hence, even under an equal TFR = n + m, the two dynamics differ strongly,
because of the distinct timings of births.
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Finally, it is worth emphasizing a special case, where the economy will con-
verge, in the long-run, towards a stationary equilibrium, despite all births being
located during the late reproduction period.

Remark 1 Assume myopic anticipations about factor prices. Assume N−1 =
N0 > 0, n = 0 and m = 1. If σ (0) = 0, σ′(kt) > 0, ζ (0) = 0, ζ ′(kt) > 0,
limk→0 1−σ′ (kt) < limk→0 ζ

′(kt) and limk→+∞ 1−σ′ (kt) > limk→+∞ ζ ′(kt),
there exists a locally stable stationary equilibrium with k,Ω, g > 0.

Proof. See the Appendix.
Thus, under particular initial conditions (N−1 = N0 > 0), an economy

with replacement fertility converges towards a stationary equilibrium despite all
births being located in the second reproduction period. It should be stressed,
however, that this convergence is achieved only because the initial level of the
cohort growth factor g0 takes, under those postulated initial conditions, its
long-run equilibrium value (equal to unity). Therefore, in that special case, the
question of the convergence of the cohort growth factor towards its long-run
level is trivially solved. One can thus interpret the result presented in the above
remark as a kind of "conditional" convergence result, where the influence of
fertility timing is neutralized by initial conditions.
That special case, which involves specific initial conditions as well as a TFR

equal to the replacement fertility level, does not question the general result
obtained in this section (which does not presuppose specific initial conditions).
The long-run dynamics of the economy - in particular the existence of a stable
stationary equilibrium - is influenced by the timing of births, even for a given
TFR. Therefore, if one only looks at the TFR, one misses a central aspect of
the evolution of economies over time, since the nature of long-run dynamics -
stationary or cyclical - depends on n > 0 or n = 0, whatever the TFR is.

4 Long-run social optimum

Let us now characterize the long-run social optimum in our economy. For that
purpose, we will follow the approach pioneered by Samuelson (1975), who con-
siders the problem faced by a social planner, who chooses the optimal levels of
consumptions, capital and fertility, in such a way as to maximize the lifetime
welfare of an agent living at the long-run equilibrium. The major difference
with respect to Samuelson is that the social planning problem consists here of
choosing not one, but two fertility rates: n and m.

11



4.1 The social planner’s problem

Let us assume that there exists a unique stable stationary equilibrium in our
economy.15 Then, the social planner’s problem can be written as follows:

max
c,d,b,k,n,m

u(c) + βu(d) + β2u(b)

s.t. F

(
k,
n+ 2
√
n2 + 4m+ 2

n+ 2
√
n2 + 4m

)
− kn+ 2

√
n2 + 4m

2

= c+ d
2

n+ 2
√
n2 + 4m

+ b

(
2

n+ 2
√
n2 + 4m

)2

An interior optimum (c∗, d∗, b∗, k∗, n∗,m∗) satisfies the following FOCs:

u′(c∗)

βu′(d∗)
=

u′(d∗)

βu′(b∗)
=
n∗ + 2

√
n∗2 + 4m∗

2
= g∗

Fk (k∗, ·) =
n∗ + 2

√
n∗2 + 4m∗

2
= g∗

The first expression implies that the MRS between consumptions at two
successive periods is, at the optimum, equal to the optimal long-run cohort
growth factor, (n∗+ 2

√
n∗2 + 4m∗)/2. Thus, from the point of view of the optimal

consumption profile, it is not the TFR n∗ + m∗ that matters, but the cohort
growth factor g∗, in which early and late births are no one-to-one substitutes.
The second expression is the Golden Rule: the optimal stock of capital per

young worker k∗ is such that the marginal productivity of capital is equal to the
optimal cohort growth g∗. Here again, for a given total fertility rate n∗ + m∗,
the optimal capital will vary greatly with the optimal timing of births, since
there is no one-to-one substitutability between early births n and late births m.
Regarding the FOCs for optimal n∗ and m∗, we have:

FL (k∗, ·) 2
1 + n∗

(
n∗2 + 4m∗

)−1/2(
n∗ + 2

√
n∗2 + 4m∗

)2 + k∗
1 + n∗

(
n∗2 + 4m∗

)−1/2

2

= 2
1 + n∗

(
n∗2 + 4m∗

)−1/2(
n∗ + 2

√
n∗2 + 4m∗

)2 (
d∗ +

4b∗

n∗ + 2
√
n∗2 + 4m∗

)
and

FL (k∗, ·) 4

(
n∗2 + 4m∗

)−1/2(
n∗ + 2

√
n∗2 + 4m∗

)2 + k∗
(
n∗2 + 4m∗

)−1/2

= 4

(
n∗2 + 4m∗

)−1/2(
n∗ + 2

√
n∗2 + 4m∗

)2 (d∗ +
4b∗

n∗ + 2
√
n∗2 + 4m∗

)
15We know from Section 3 that this assumption makes sense only if n > 0, as, under n = 0,

the economy does not, in general, converge towards a stationary equilibrium. The assumption
n > 0 is thus made throughout this section.
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Those FOCs include the standard determinants of optimal fertility. On the LHS,
we have the negative effects of fertility on the marginal productivity of labour
(first term), as well as the capital widening effect (second term). That latter
effect is known as the "Solow effect": a larger growth in the cohort size makes
it more diffi cult to sustain a large capital per young worker level. On the RHS,
we find the gains from intergenerational redistribution. This is the "Samuelson
effect": a larger growth in the cohort size relaxes the resource constraint of the
economy, by reducing the weight assigned to the old’s consumption.
To interpret those FOCs, note that these can be written as:

g∗n

[
−FL (k∗, ·)

g∗2
− k∗ +

d∗

g∗2
+

2b∗

g∗3

]
= 0

g∗m

[
−FL (k∗, ·)

g∗2
− k∗ +

d∗

g∗2
+

2b∗

g∗3

]
= 0

where g∗n = 1
2 + n∗

2
1

2√n∗2+4m∗
> 0 and g∗m = 1

2√n∗2+4m∗
> 0 denote the deriva-

tives of the optimal cohort growth rate with respect to the optimal age-specific
fertility rates n∗ and m∗ respectively. Focusing on the case of interior optimal
age-specific fertility rates, i.e. n∗ > 0, m∗ > 0, it follows that g∗n and g

∗
m differ

from 0. Therefore, the two above FOCs are satisfied if and only if:

k∗ +
FL (k∗, ·)
g∗2

=
d∗

g∗2
+

2b∗

g∗3
(11)

The optimal cohort growth g∗ is such that the marginal welfare loss from a
higher cohort growth (the LHS) is equal to the marginal welfare gain from a
higher cohort growth (the RHS). The negative welfare effects due to a higher
cohort growth are the capital widening effect (1st term of the LHS) and the
negative productivity effect (2nd term of the LHS), whereas the positive welfare
effects are the intergenerational redistribution effects (1st and 2nd terms of the
RHS). That condition for optimal cohort growth rate can be rewritten as:

g∗3 +
(FL (k∗, ·)− d∗)

k∗
g∗ − 2b∗

k∗
= 0

In the Appendix, we solve that cubic equation, and derive the optimal cohort
growth rate g∗. That variable determines both the optimal consumption paths
and capital level k∗. Moreover, we know from above that, as long as g takes its
optimum level g∗, the two FOCs characterizing the optimal age-specific fertility
rates n∗ and m∗ are also satisfied. Hence the characterization of the social opti-
mum requires, above all, a characterization of the optimal cohort growth rate g∗,
rather than of the age-specific fertility rates, which affect optimal consumption
paths and capital only through the optimal cohort growth rate.

Proposition 3 Assume that there exists a unique stable stationary equilibrium.

13



• The long-run social optimum (c∗, d∗, b∗, k∗, n∗,m∗) is such that:

u′(c∗)

βu′(d∗)
=

u′(d∗)

βu′(b∗)
= g∗ = Fk (k∗, ·)

k∗ +
FL (k∗, ·)
g∗2

=
d∗

g∗2
+

2b∗

g∗3

• The optimal cohort growth g∗ is characterized as follows:

- if 4b∗2

k∗2 + 4Φ3

27k∗3 > 0, g∗ =
3

√
2b∗
k∗ + 2

√
4b∗2
k∗2 + 4Φ3

27k∗3
2 +

3

√
2b∗
k∗ −

2
√

4b∗2
k∗2 + 4Φ3

27k∗3
2

- if 4b∗2

k∗2 + 4Φ3

27k∗3 = 0, g∗ = 3

√
b∗

k∗ −
2

√
b∗2

k∗2 + Φ3

27k∗3 −
Φ

3k∗
3

√
b∗
k∗−

2
√

b∗2
k∗2 + Φ3

27k∗3

- if 4b∗2

k∗2 + 4Φ3

27k∗3 < 0, g∗ =

3

√
− 2b∗
k∗ −

2
√

4b∗2
k∗2

+ 4Φ3

27k∗3
+ 2b∗i 2√3

k∗ +i 2√3 2
√

4b∗2
k∗2

+ 4Φ3

27k∗3
4

+
3

√
− 2b∗
k∗ + 2

√
4b∗2
k∗2

+ 4Φ3

27k∗3
− 2b∗i 2√3

k∗ +i 2√3 2
√

4b∗2
k∗2

+ 4Φ3

27k∗3
4

where Φ ≡ (FL (k∗, ·)− d∗).

Proof. See the Appendix.
The social optimum depends on age-specific fertility rates n∗ andm∗ only in-

sofar as these yield the optimal cohort growth rate g∗. As long as n∗ andm∗ are
such that (n∗+ 2

√
n∗2 + 4m∗)/2 is equal to g∗, the levels of n∗ andm∗ do not mat-

ter.16 Hence there is not one, but several social optima (c∗, d∗, b∗, k∗, n∗,m∗),
since various pairs (n∗,m∗) yield the optimal cohort growth g∗.
Nevertheless, it should be stressed that there exists, from the perspective

of long-run social welfare, no one-to-one substitutability between early and late
births.17 Hence, focusing only on the TFR is, here again, misleading. The im-
portance of fertility timing is especially strong when the optimal cohort growth
g∗ is large, that is, when the intergenerational redistribution effect is large.
That point is illustrated on Figure 6, which shows iso-g lines, i.e. the set of

(n,m) pairs such that n+ 2√n2+4m
2 = g. An economy whose g∗ is equal to, for

instance, 2, and which undergoes a fertility postponement from n = 2 to n = 1,
can only sustain g∗ = 2 provided m is raised from 0 to 2, implying a rise in
TFR from 2 to 3. Thus the achievement of a high g∗ imposes, in case of birth
postponement, a strong rise in the total number of children.
In sum, an exclusive emphasis on the TFR n+m is quite misleading from the

point of view of long-run social welfare. There exists, in general, no one-to-one
substitutability between early and late births, so that fertility timing matters
for long-run social welfare.

16Remind, however, that the existence of a stable stationary equilibrium requires n > 0.
17The only exception is when g = 1. In that case, there is a one-to-one substiotuability

between n and m, since the formula (n+ 2
√
n2 + 4m)/2 = 1 can be simplified to n+m = 1.
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Figure 6: Iso-g lines.

4.2 The Serendipity Theorem

In his Serendipity Theorem, Samuelson (1975) showed that, if there exists a
unique stable stationary equilibrium in a two-period OLG model with physical
capital, then the perfectly competitive economy will converge towards the long-
run social optimum provided the optimal fertility rate is imposed on individuals.
The purpose of this subsection is to examine whether the Serendipity The-

orem remains valid in our environment. The question is the following. Assume
that individuals behave like price-takers on competitive markets, and take fer-
tility rates n and m as given. Is the economy going to converge towards the
long-run social optimum when the optimal fertility is imposed?
The approach adopted by Samuelson is counterintuitive, since fertility is not,

in the real world, taken "as given" by individuals, but is the outcome of par-
ents’decisions.18 However, we adopt Samuelson’s approach, since it allows us to
highlight the key role played by fertility - and fertility timing - in an intergener-
ational context, and, in particular, its capacity to allow for the decentralization
of the social optimum in an otherwise decentralized economy.
To evaluate the robustness of Samuelson’s result to the modelling of re-

production, let us first consider the problem faced by an agent living at the
steady-state, who chooses second- and third-period savings, so as to maximize
his lifetime welfare, while taking factor prices and fertility rates as given:

max
c,d,b

u(c) + βu(d) + β2u(b) s.t. w +
w

R
= c+

d

R
+

b

R2

where w =
[
F
(
k
(
, 1 + 1

g

))
− Fk

(
k, 1 + 1

g

)
k
]

g
1+g and R = Fk

(
k, 1 + 1

g

)
.

The FOCs are:
u′(c)

βu′(d)
=

u′(d)

βu′(b)
= R

18See Barro and Becker (1989), and Ehrlich and Lui (1991).
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Hence, if the planner fixes n and m such that Fk (k∗, ·) = (n+ 2
√
n2 + 4m)/2 =

g∗, where k∗ takes its socially optimal level, then individuals, being price-takers,
will choose their savings optimally, since the above FOC then coincide with the
FOC for optimal intergenerational allocations of resources.

Proposition 4 Assume that there exists a unique stable stationary equilibrium.
Then the perfectly competitive economy will converge towards the long-run social
optimum provided the optimal cohort growth g∗ is imposed. This amounts to
impose fertility rates n and m such that (n+ 2

√
n2 + 4m)/2 = g∗.

Proof. The proof follows from comparing the FOCs of the agent’s problem and
of the social planner’s problem.
Proposition 4 shows that Samuelson’s Serendipity Theorem is robust to the

introduction of different ages of motherhood. Provided the social planner can
impose optimal fertility, all other variables will, in a perfectly competitive econ-
omy, take their optimal values at the steady-state.
It is clear that fertility rates can hardly, in the real world, be "imposed" on

individuals. That point, which could be formulated against Samuelson’s initial
framework, remains relevant here. However, in comparison to Samuelson’s re-
sult, where the decentralization of the long-run social optimum was achieved by
imposing the optimal fertility rate n (m being equal to 0), the government has
here a larger degree of freedom, since it can play on both n and m. As shown
above, the optimal cohort growth g∗ can be achieved through various fertility
profiles (n,m). Hence the government can decentralize the long-run social opti-
mum through various fertility profiles. The only restriction is that there exists
no one-to-one substitutability between early births (n) and late births (m), as
shown on Figure 6. That limitation is especially strong when the optimal cohort
growth factor g∗ is large.

5 Extensions and robustness checks

5.1 Rational expectations

In Section 3, we showed that the long-run dynamics of the economy is, ceteris
paribus, significantly affected by the timing of births when agents’anticipations
about future production factor prices are myopic. In order to check the robust-
ness of that result to the assumptions made regarding agent’s anticipations, we
solve here the dynamic system under rational expectations.19 For that purpose,
we impose particular functional forms for preferences and production. Assuming
that u(c) = log(c), the problem of the agent is:

max
ct,dt+1,bt+2

log(ct) + βlog(dt+1) + β2log(bt+2)

s.t. wt +
wt+1

Rt+1
= ct +

dt+1

Rt+1
+

bt+2

Rt+1Rt+2

19That robustness check is necessary, since the precise distribution of market beliefs can
have a significant impact on the form of economic dynamics (see Kurz 2011).

16



From the FOCs, we obtain the savings st = (β+β2)Rt+1wt−wt+1

(1+β+β2)Rt+1
and zt+1 =

β2(wt+1+Rt+1wt)
(1+β+β2)

. Substituting for st and zt in the capital accumulation equation
yields:

kt+1 =
(β + β2)Rt+1wt − wt+1

gt
(
1 + β + β2

)
Rt+1

+
β2Rtwt−1 + β2wt

gtgt−1

(
1 + β + β2

) (12)

Assuming that Yt = AKα
t L

1−α
t , substituting for wt = Akαt (1−α)

(
gt−1

1+gt−1

)α
and

Rt = Aαkα−1
t

(
gt−1

1+gt−1

)α−1

, and denoting (1−α)kαt−1 by Xt, we can, under m >

0, describe the dynamics of the economy by means of the following system:20

kt+1 ≡ G(kt, Xt, gt) =
(β + β2)Akαt α(1− α)

(
m

gt−n+m

)α
(1 + gt)

gt
[(

1 + β + β2
)
α (1 + gt) + (1− α)

]
+
β2A2α2kα−1

t

(
m

gt−n+m

)α−1

Xt

(
m(gt−n)

m−ngt+n2+m(gt−n)

)α
(1 + gt)

gtm
gt−n

[(
1 + β + β2

)
α (1 + gt) + (1− α)

]
+

β2Aαkαt (1− α)
(

m
gt−n+m

)α
(1 + gt)

gtm
gt−n

[(
1 + β + β2

)
α (1 + gt) + (1− α)

]
Xt+1 ≡ H(kt) = (1− α)kαt

gt+1 ≡ I(gt) = n+
m

gt
(B)

The following proposition summarizes our results.

Proposition 5 Assume rational expectations about factor prices. Assume u(c) =
log(c) and F (Kt, Lt) = AKα

t L
1−α
t , as well as m > 0.

• Provided limk→∞
(2−α)k1−α

t g2[(1+β+β2)α(1+g)+(1−α)]
β2A2α2( 1+g

g )
α−1

(1+g)
> (1−α)g[g+gβ−1]

Aα(1+g) with

g = n+ 2√n2+4m
2 , there exists a stationary equilibrium with k,X, g > 0.

• That stationary equilibrium is locally stable if and only if:

(i)
∣∣∣Λαmg2

∣∣∣ < 1

(ii) 1 > −αm[1−AΛ]
g3 + Λ

(
Am(1−α)

g2 − α
)
−
[
α− ΛA− m

g2

]
Λαm
g2 +

[
Λαm
g2

]2
(iii) mα[1−ΛA]

g2 −Λ
(
Am(1−α)−αg2

g2

)
−1 < αg2−AΛg2−m(1−αΛ)

g2 < −mα[1−ΛA]
g2 +

Λ
(
Am(1−α)−αg2

g2

)
+ 1

20Under m > 0, we can rewrite gt−1 = m
gt−n and gt−2 = m

gt−1−n
, so that: gt−2 =

m(gt−n)
m−ngt+n2 . Relaxing the assumption m > 0 to m ≥ 0 and n + m > 0 would require a
dynamic system whose dimension is strictly superior to 4, and, thus, hard to analyze using
standard stability conditions on the Jacobian matrix.
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where Λ ≡
β2A2(1−α)α2k2α−2( m

g−n+m )
α−1

(
m(g−n)

m−ng+n2+m(g−n)

)α
(1+g)

gm
g−n [(1+β+β2)α(1+g)+(1−α)]

.

Proof. See the Appendix.
As in the myopic anticipations case, the conditions that are necessary and

suffi cient for the stability of a stationary equilibrium can be used to investigate
the sensitivity of economic dynamics to the timing of births.

Corollary 2 Assume rational expectations about factor prices. Assume u(c) =

log(c) and F (Kt, Lt) = AKα
t L

1−α
t . When n = 0 andm > 0, if

(1−α) 2
√
m[ 2
√
m+ 2
√
mβ−1]

Aα(1+ 2
√
m)

<

limk→∞
(2−α)k1−α

t m[(1+β+β2)α(1+ 2
√
m)+(1−α)]

β2A2α2
(

1+ 2√m
2√m

)α−1

(1+ 2
√
m)

, there exists a stationary equilib-

rium with k,X, g > 0. That equilibrium is not stable.

Proof. See the Appendix.
In the light of Corollary 2, the robustness of our results to the assumptions

made on expectations about factor prices can hardly be overemphasized. The
cyclical dynamics prevailing under n = 0 is not due to particular assumptions
about expectations, but is really due to the timing of births. Fluctuations in
the cohort growth factor gt lead to fluctuations in labour growth, and, also, in
the capital per head and in the output per head. The sensitivity of economic
dynamics to the timing of births is thus a general result, which is robust to
assumptions made on anticipations about future factor prices.

5.2 Endogenous fertility

Let us now check the robustness of our results to another major assumption:
the exogeneity of fertility and fertility timing. To answer that question, this
section develops a simple model of lifecycle fertility choices, and examines the
associated dynamics of the economy, as well as its long-run social optimum.21

Various motives were proposed to explain fertility choices, such as dynastic
altruism (Barro and Becker 1989), or children as consumption and/or investment
goods (Ehrlich and Lui 1991). For the sake of simplicity, we assume here that
children are pure consumption goods.22 Each early child has a cost θ > 0, while
each late child has a cost ϑ > 0.23 Thus the agent’s problem becomes:

max
ct,dt+1,bt+2,nt,mt+1

u(ct) + βu(dt+1) + β2u(bt+2) + v(nt) + βv(mt+1)

s.t. wt +
wt+1

Rt+1
= ct + θnt +

dt+1 + ϑmt+1

Rt+1
+

bt+2

Rt+1Rt+2

21For the sake of analytical simplicity, the analysis of dynamics relies here on the case of
myopic anticipations about future factor prices.
22On the study of the optimal fertility timing in an OLG model with dynastic altruism à

la Barro and Becker, see Pestieau and Ponthiere (2012).
23See also Pestieau and Ponthiere (2012) on another modelling, with time costs of children.
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where v(·) is the welfare from having children, with v′(·) > 0, v′′(·) < 0. FOCs
yield:

u′(ct)

u′(dt+1)
= βRt+1,

u′(dt+1)

u′(bt+2)
= βRt+2,

v′(nt)

v′(mt+1)
= βRt+1

θ

ϑ
(13)

The last equation characterizes the trade-off faced by parents between early
and late births. Impatience favours early births, while the interest rate favours
late births. Moreover, the cost differential between the two types of children
also affects the optimal fertility timing chosen by individuals.
Factor prices along the lifecycle (wt, wt+1, Rt+1, Rt+2) determine individual

savings and fertility choices. As in the baseline model, we solve here the dy-
namics under myopic anticipations about factor prices. Under that postulate,
we can rewrite second-period savings st and third-period savings zt+1, as well
as early and late fertility rates nt and mt+1, as functions of kt: st = σ (kt),
zt+1 = ζ(kt), nt = η(kt) and mt+1 = µ(kt), where the form of σ (·), ζ(·), η(·)
and µ(·) depends on the u(·), v(·), β, θ and ϑ.

5.2.1 Long-run dynamics

Substituting for st and zt in the capital accumulation equation Kt+1 = Nt−1st+
Nt−2zt, and substituting for nt and mt in gt+1 = nt + mt

gt
allows us to describe

the dynamics of the economy by means of the following system:

kt+1 ≡ Ĝ(kt,Ωt, gt) =
σ (kt)

gt
+

Ωt
gt

Ωt+1 ≡ Ĥ (kt) =
ζ(kt)

gt

gt+1 ≡ Î(kt,Ωt, gt) = η(G (kt,Ωt, gt)) +
µ(kt)

gt
(C)

Proposition 6 Denote Ξt ≡ η(G(kt,Ωt, gt) +
2

√
[η(G(kt,Ωt, gt))]

2
+ 4µ(kt).

Denote Πt ≡ 2[η(G(kt,Ωt,gt))]η
′(G(kt,Ωt,gt)G

′(·)+4′µ(kt)
2[Ξt−η(G(kt,Ωt,gt)]

.

• Assuming that:

limk→0
Ξt
2 +

kt[η′(G(kt,Ωt,gt)G
′(·)+Πt]

2 −σ′(kt) < limk→0
2ζ′(kt)[Ξt]−2ζ(kt)[η′(G(kt,Ωt,gt)G

′(·)+Πt]
Ξ2
t

,

limk→+∞
Ξt
2 +

kt[η′(G(kt,Ωt,gt)G
′(·)+Πt]

2 −σ′(kt) > limk→+∞
2ζ′(kt)[Ξt]−2ζ(kt)[η′(G(kt,Ωt,gt)G

′(·)+Πt]
Ξ2
t

there exists a stationary equilibrium with k,Ω, g > 0.

• That equilibrium is locally stable if and only if:

(i)
∣∣∣ ζ′(k)µ(k)−ζ(k)µ′(k)

g4

∣∣∣ < 1;

(ii) 1− ζ(k)η′(k)
g3 + σ′(k)µ(k)

g3 − µ′(k)[σ(k)+Ω]
g3 + ζ′(k)

g2

> −
[
ζ′(k)µ(k)−ζ(k)µ′(k)

g4

] [
σ′(k)
g − η′(k)

[
σ(k)+Ω
g2

]
− µ(k)

g2

]
+
[
ζ′(k)µ(k)−ζ(k)µ′(k)

g4

]2
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(iii) −
[
ζ(k)η′(k)+[−σ′(k)µ(k)+µ′(k)[σ(k)+Ω]]−ζ′(k)g

g3 + 1

]
< σ′(k)

g − η′(k)
[
σ(k)+Ω
g2

]
− µ(k)

g2 + ζ′(k)µ(k)−ζ(kt)µ′(k)
g4

<

[
ζ(k)η′(k)+[−σ′(k)µ(k)+µ′(k)[σ(k)+Ω]]−ζ′(k)g

g3 + 1

]
.

Proof. See the Appendix.
As in the case with exogenous fertility, the conditions stated here can be

used to examine whether the long-run dynamics of the economy is sensitive to
the fertility timing. In order to examine how endogenous fertility affects our
results, we focus here on the stability conditions when η = 0 at the equilibrium.

Corollary 3 Assume that there exists a stationary equilibrium with η(k) = 0
and µ(k) > 0. That equilibrium is locally stable if and only if:

(i)
∣∣∣ ζ′(k)µ(k)−ζ(k)µ′(k)

g4

∣∣∣ < 1;

(ii) 1− ζ(k)η′(k)
g3 + σ′(k)µ(k)

g3 − µ′(k)[σ(k)+Ω]
g3 + ζ′(k)

g2

> −
[
ζ′(k)µ(k)−ζ(k)µ′(k)

g4

] [
σ′(k)
g − η′(k)

[
σ(k)+Ω
g2

]
− µ(k)

g2

]
+
[
ζ′(k)µ(k)−ζ(k)µ′(k)

g4

]2
(iii) σ′(k)

g − ζ(k)η′(k)
g3 − µ′(k)σ(k)

g3 − µ′(k)ζ(k)
g4 + ζ′(k)

g2 − 1

< σ′(k)
g − ζ(k)η′(k)

g3 − η′(k)σ(k)
g2 − µ′(k)ζ(k)

g4 + ζ′(k)
g2 − 1

< −σ
′(k)
g + ζ(k)η′(k)

g3 + µ′(k)σ(k)
g3 + µ′(k)ζ(k)

g4 − ζ′(k)
g2 + 1.

Proof. Those conditions are obtained by fixing η(k) = 0 in the stability condi-
tions of Proposition 6.

Ceteris paribus, condition (i) is, in comparison to the case where fertility is
exogenous (i.e. µ′(k) = 0), now strengthened (resp. weakend) when µ′(k) < 0
(resp. µ′(k) > 0). Regarding condition (ii), the effect of endogenous fertility
is ambiguous: whether stability is more likely under endogenous fertility than
under exogenous fertility depends on the level of η′(k) and µ′(k). Finally, from
condition (iii), it is straightforward to see that, under exogenous fertility (i.e.
η′(k) = µ′(k) = 0), stability never holds when η = 0. However, once fertility
is endogenous, stability may prevail, depending on the relative levels of η′(k)
and µ′(k). When parents never have children early in their life (i.e. η′(k) = 0),
condition (iii) can only be satisfied if µ

′(k)σ(k)
g3 > 0. Thus, when η (k) = 0 and

η′(k) = 0, stability requires that late fertility grows when k increases.
In sum, introducing endogenous fertility has ambiguous effects on the neces-

sary and suffi cient conditions for the stability of a stationary equilibrium. There
exists, under particular circumstances, a locally stable stationary equilibrium
with all births being located during the second reproduction period. But fertility
timing has still a major impact on the stability of the stationary equilibrium.
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5.2.2 The long-run social optimum

The problem of the social planner can be written as:

max
c,d,b,k,n,m

u(c) + v(n) + βu(d) + βv(m) + β2u(b)

s.t. F
(
k, 1 +

1

g

)
− kg = c+ θn+

d

g
+
ϑm

g
+

b

g2

where g = n+ 2√n2+4m
2 . FOCs yield:

u′(c∗)

βu′(d∗)
=

u′(d∗)

βu′(b∗)
= g∗ =

n∗ + 2
√
n∗2 + 4m∗

2
(14)

Fk (k∗, ·) = g∗ =
n∗ + 2

√
n∗2 + 4m∗

2
(15)

g∗n

(
FL (·) 1

g∗2
+ k∗

)
+ θ =

v′(n∗)

u′(c∗)
+ g∗n

[
d∗

g∗2
+

2b∗

g∗3
+
ϑm∗

g∗2

]
(16)

g∗m

(
FL (·) 1

g∗2
+ k∗

)
+

ϑ

g∗
=
βv′(m∗)

u′(c∗)
+ g∗m

[
d∗

g∗2
+

2b∗

g∗3
+
ϑm∗

g∗2

]
(17)

As in the baseline model, the optimal consumption paths and capital are
determined by the optimal long-run cohort growth factor g∗. But a major
difference with respect to the baseline model is that the optimal age-specific
fertility rates are here fully determined, since the FOCs for n∗ and m∗ cannot
here be reduced to a condition characterizing g∗. That difference comes from
the fact that parents care here directly about fertility, unlike in the baseline
model, where fertility was valued only through consumption possibilities. One
corollary of this is that, in this extended model, a government imposing the op-
timal fertility rates n∗ and m∗ will not make the competitive economy converge
towards the long-run social optimum. Hence the Serendipity Theorem no longer
holds here.
The optimal fertility profile depends on the form of preferences, and on the

production process. To illustrate this, let us assume that u(c) = log(c) and
v(n) = ϕlog(n), where ϕ > 0 captures the parental taste for children, and that
the production function is a Cobb-Douglas: Yt = AKα

t L
1−α
t . Various calibra-

tions of parameters α, A, β, ϕ, θ and ϑ can rationalize the observed fertility
profile (U.S.), where about 4/5th of births occur in the early reproduction pe-
riod. Figures 7 and 8 show the long-run lifetime welfare under two distinct
calibrations compatible with the observed fertility profile.
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Fig. 7: β = 0.80, θ = 0.18,
ϑ = 2.10.
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Fig. 8: β = 0.60, θ = 0.22,
ϑ = 1.95.

Figure 7 shows that the existing fertility profile (in light color) is, from
the perspective of lifetime welfare maximization at the long-run equilibrium,
dominated by various alternative fertility profiles. Some dominating profiles
include fewer early children (n < 0.75, same m = 0.25), whereas others include
many more early children (i.e. n ≥ 1.5), and, above n = 2, more late children
(m = 0.5 > 0.25). That result comes from the existence of a local minimum at
n = 1.24 On the contrary, under the alternative parametrization with cheaper
late children but larger impatience (Figure 8), the optimal fertility profile takes
a quite distinct form: it involves the minimum number of early and late children
(n = 0.25,m = 0.25). The reason is that, because of the larger impatience, the
intergenerational redistribution effect is dominated by the capital dilution effect,
which supports low fertility.
In sum, the optimal fertility profile depends strongly on the postulated pref-

erences, since these determine the relative strengths of the capital dilution effect
(supporting low fertility) and the intergenerational redistribution effect (sup-
porting high fertility). But in any case, the postponement of births is not
welfare-improving. Indeed, if a high cohort size growth is socially beneficial, it
makes sense to concentrate births in the early in life, to obtain a large g. If, on
the contrary, cohort growth is a bad thing for long-run welfare, then minimum
fertility is the best, and postulating births does not help more.25

5.3 Three reproduction periods

The (im)possibility of asymptotic convergence of the age structure of an econ-
omy is significantly sensitive to how reproduction behavior is modelized. In a
continuous time model, Lotka (1939) showed that, under a fixed vector of age-
specific fertility rates and mortality rates, the age-structure of a closed economy
24The existence of an interior fertility rate that minimizes long-run lifetime welfare under

logarithmic utility and Cobb-Douglas technology was studied by Deardorff (1976) and Michel
and Pestieau (1993) in 2-period OLG models. The global optimum is achieved at n = 4.75,
m = 0.25.
25 Indeed, n = 0 would, by generating cyclical dynamics, lead to significant welfare losses.
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will necessary converge towards a constant age structure in the long-run, which
is independent from the initial one. In his attempt to derive the equivalent
of Lotka Theorem in a discrete time model, MacFarland (1969) assumed that
each cohort has descendants in at least two different cohorts.26 That condition
obviously rules out the case where n = 0 and m > 0.
In the light of this, it makes sense to explore the robustness of our results to

the precise modelling of fertility. For that purpose, let us now extend our model
to a 5-period OLG model with three reproduction periods (instead of two).27

Agents have n children in period 2, m children in period 3, and o children in
period 4.28 The total number of births at t is:

Nt = Nt−1n+Nt−2m+Nt−3o (18)

Dividing this by Nt−1, we obtain:

gt = n+
m

gt−1
+

o

gt−1gt−2
(19)

Defining `t+1 ≡ o
gt
allows us to study population dynamics through the system:

gt+1 = n+
m

gt
+
`t
gt

`t+1 =
o

gt
(D)

Proposition 7 summarizes our results.

Proposition 7 Assume three reproduction periods.

• If n > 0, there exists a stable equilibrium g.

• If n = 0, m = 0, o > 0, there exists no stable equilibrium g.

• If n = 0, m > 0, o = 0, there exists no stable equilibrium g.

• If n = 0, m > 0, o > 0, there exists a stable equilibrium g.

Proof. See the Appendix.
The timing of births is, here again, not neutral for population dynamics.

There exists no stable g under n = 0 when either o = 0 or m = 0. It is only
when both m > 0 and o > 0 that asymptotic convergence towards some g is
achieved. The existence of two strictly positive age-specific fertility rates is thus
a necessary condition for the asymptotic convergence of gt when n = 0. Note,

26See MacFarland (1969), Postulate 2, p. 305.
27The analysis focuses here exclusively on population dynamics, that is, on the identification

of the formal conditions under which the age structure of the economy can stabilize in the long-
run. The ‘economic’side of the analysis is not explored in that section, since the dimension
of the associated total eco-demographic dynamic system is too high (i.e. > 4).
28To insure a positive number of births at any time period, we assume initial conditions

N−2, N−1, N0 > 0.
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however, that the results of Proposition 7 tend to reduce the importance of
the first period of reproduction: when m > 0 and o > 0, there exists a stable
equilibrium cohort growth factor despite n = 0. Hence, within that broader
framework, it appears that the number of periods with strictly positive fertility
seems to be more important than the timing of fertility.
It should also be noted that, even though the asymptotic convergence of gt

is achieved when both m > 0 and o > 0, the duration of the convergence can
vary strongly, depending on the particular fertility timing. To illustrate this,
Figure 9 compares the dynamics of gt in two cases with at least two strictly
positive age-specific fertility rates, with, in each case, a TFR equal to 1.05.

1
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1,03

1,04

1,05

0 1000 2000 3000 4000 5000 6000 7000 8000

time

gt

n=0, m=1,049, o= 0,001 n=0,35, m=0,35, o=0,35

Figure 9: Convergence of gt.

When the fertility profile is smoothed, i.e. n = m = o = 0.35, the conver-
gence towards the equilibrium cohort growth factor is achieved after 16 periods,
whereas, under n = 0, m = 1.049 and o = 0.001, the convergence is only
achieved after 7,500 periods.29 Thus the timing of births remains important
here, despite the existence of asymptotic age structure convergence.
Because of space constraints, we do not provide here the resolution of the

complete eco-demographic model with three reproduction periods.30 But in the
light of what was shown in the two-period case, there is little doubt that cohort
growth fluctuations imply labour growth fluctuations, which prevent the con-
vergence of the economy towards a stationary equilibrium. Hence, the observed
sensitivity of economic dynamics to the timing of births for a given TFR is thus
robust to the number of reproduction periods.

29Accuracy requirement: 4 decimal digits.
30The reason is that, as stated above, the associated dynamic system would have a size

superior to 4.
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6 Conclusions

Birth postponement is a key stylized fact of the last four decades. In this paper,
we proposed to examine the consequences of that demographic trend on long-run
economics dynamics, as well as the influence of fertility timing on the long-run
social optimum. For that purpose, we developed a 4-period OLG model with
physical capital, whose specificity is to include not one, but two reproduction
periods. We firstly focused on an economy with exogenous age-specific fertility
rates, and relaxed that assumption later on.
The study of the long-run dynamics in that economy revealed that the tim-

ing of births is not neutral at all for economic dynamics. Even for a given total
fertility rate, the economy can exhibit quite different (stationary or cyclical)
dynamics, depending on the location of births along the lifecycle. In particular,
the economy exhibits long-run fluctuations when all births occur the late repro-
duction period.31 The reason is that, under that fertility profile, labour force
growth exhibits perpetual fluctuations. The only case where fertility timing
does not affect the economy is under replacement fertility.
We also characterized the long-run utilitarian social optimum, and showed

that the optimal consumptions and capital are determined by the optimal long-
run cohort growth factor, in which there is no one-to-one substitutability be-
tween early and late births. We also showed that, when fertility does not directly
affect parent’s welfare, the only demographic variable characterizing the social
optimum is the long-run cohort growth factor, whose level depends on how large
the capital dilution effect is in comparison to the intergenerational redistribution
effect. We also derived an extended version of Samuelson’s Serendipity Theo-
rem. Finally, the sensitivity of economic dynamics to the fertility timing was
shown to be robust to the introduction of rational expectations, of endogenous
fertility, and to the addition of a third reproduction period.
While those results highlight the importance of birth timing for the under-

standing of long-run economic dynamics, it should be stressed here that the
present framework suffers from some simplifying assumptions, which invite fur-
ther research. In the present model, the labour supply of each agent is inelastic,
and does not vary with fertility and fertility timing. But in the real world, the
labour supply of agents may be directly related to fertility behavior. In partic-
ular, the mere participation to the labour market may vary with fertility (e.g.
female labour participation). Another important aspect that was not taken into
account here consists of education. Undoubtedly, having children early in life
can prevent higher education, with a negative effect on wages during the career.
Moreover, our paper did not study the potential interactions between existing
pensions systems, wealth accumulation and fertility timing.32 Those additional

31Hence the present paper emphasizes that fertility behavior - in particular the timing of
births - can be at the origin of economic fluctuations. Note that cycles can also emerge from
the other end of the demographic chain (deaths), as recently shown by Goenka and Liu (2012).
32On wealth accumulation and PAYG pensions system in a dynamic OLG model under

exogenous population growth, see Pestieau and Thibault (2012), where the population is
heterogeneous in terms of preferences (altruism and taste for wealth).
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links between fertility, fertility timing and the economy would also be worth
being studied within a broader theoretical framework.
In sum, although often neglected by economists - who paid more attention

to the number of births -, the timing of births is a major determinant of the
evolution of economies over long periods of time. Moreover, given that there is,
from the perspective of long-run social welfare, no one-to-one substitutability
between early and late births, fertility timing also matters from a normative
point of view. Focusing on the total number of births - i.e. the TFR - is thus
a major simplification, whatever one is concerned with the study of long-run
dynamics or with the characterization of the long-run social optimum.
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9 Appendix

9.1 Proof of Proposition 1

Existence of a stationary equilibrium From the first equation of sys-
tem A, we can define the kk locus, along which kt is constant. Imposing

kt+1 = kt yields: Ωt = gt

(
kt − σ(kt)

gt

)
. From the second equation of system

A, we can define the ΩΩ locus: Ωt = ζ(kt)
gt
. Moreover, setting gt+1 = gt in the

third equation of system A, we obtain gt = n+ 2√n2+4m
2 , so that the gg locus is

a horizontal plan in the (kt,Ωt, gt) space, at a level gt = g∗ = n+ 2√n2+4m
2 .

Let us now study under which conditions the kk locus and the ΩΩ locus in-
tersect with each others at the cohort growth rate g∗ = n+ 2√n2+4m

2 . The kk locus
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can, at that cohort growth rate, be rewritten as Ωt =
(
n+ 2√n2+4m

2

) [
kt − 2σ(kt)

n+ 2√n2+4m

]
.

The ΩΩ locus can be rewritten as: Ωt = 2ζ(kt)

n+ 2√n2+4m
. Note that, as σ(0) = 0

and ζ(0) = 0, the two loci intersect at kt = 0. Moreover, assuming that

limk→0

(
n+ 2√n2+4m

2

) [
1− 2σ′(kt)

n+ 2√n2+4m

]
< limk→0

2ζ′(kt)

n+ 2√n2+4m
and

limk→+∞

(
n+ 2√n2+4m

2

) [
1− 2σ′(kt)

n+ 2√n2+4m

]
> limk→+∞

2ζ′(kt)

n+ 2√n2+4m
, it fol-

lows that the kk locus lies below the ΩΩ locus for low kt levels, but lies above
it for high kt levels. Hence, by continuity, the kk and ΩΩ loci must intersect
along the gg locus. That intersection is a stationary equilibrium (k,Ω, g).

Stability of a stationary equilibrium The Jacobian matrix is:

J ≡


∂G(kt,Ωt,gt)

∂kt

∂G(kt,Ωt,gt)
∂Ωt

∂G(kt,Ωt,gt)
∂gt

∂H(kt)
∂kt

∂H(kt)
∂Ωt

∂H(kt)
∂gt

∂I(gt)
∂kt

∂I(gt)
∂Ωt

∂I(gt)
∂gt


Estimating the entries of that matrix at the equilibrium, we obtain that the

determinant and the trace are: det(J) = mζ′(k)
g4 ≥ 0 and tr(J) = σ′(k)

g − m
g2 ≷ 0.

Following Brooks’s (2004) study of stability of first-order three-dimensional
dynamic systems, we know that all eigenvalues of a 3x3 Jacobian matrix are
lower than 1 in modulo (implying stability) if and only if the following three
conditions are satisfied:
(i) |det(J)| < 1

(ii) 1 > [
∑
Mi(J)]− [tr(J)] [det(J)] + [det(J)]

2

(iii) − [
∑
Mi(J) + 1] < tr(J) + det(J) < [

∑
Mi(J) + 1]

where det(J), tr(J) and
∑
Mi(J) denote respectively the determinant, the

trace and the sum of the principal minors of the Jacobian matrix.
Brooks’s (2004) conditions (i) is satisfied if and only if: 16mζ′(k)

(n+ 2√n2+4m)
4 < 1.

Condition (ii) amounts to:

1 >
[
− ζ
′(k)
g2 − mσ′(k)

g3

]
−
[
σ′(k)
g − m

g2

] [
mζ′(k)
g4

]
+
[
mζ′(k)
g4

]2
Condition (iii) amounts to:

−
[
− ζ
′(k)
g2 − mσ′(k)

g3 + 1
]
< σ′(k)

g − m
g2 + mζ′(k)

g4 <
[
− ζ
′(k)
g2 − mσ′(k)

g3 + 1
]

9.2 Proof of Corollary 1

The first part of Corollary 1 follows from imposing the restrictions n > 0 and
m = 0 in the baseline model. When m = 0, the cohort growth factor is constant
and equal to n, and the dynamic system becomes two-dimensional.
Regarding the existence of a stationary equilibrium, the conditions van-

ish to: limk→0

[
1− σ′(kt)

n

]
< limk→0

ζ′(kt)
n2 and limk→+∞

[
1− σ′(kt)

n

]
>

limk→+∞
ζ′(kt)
n2 . Those conditions guarantee, by continuity, that the kk locus

intersect the ΩΩ locus from below.
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Regarding stability, condition (i) is satisfied whenm = 0, since: ζ
′(k)

(n)4 ×0 < 1.

Condition (ii) amounts to: 1 > − ζ
′(k)
n2 , which is also satisfied. Finally, condition

(iii) amounts to: −
[
− ζ
′(k)
n2 + 1

]
< σ′(k)

n <
[
− ζ
′(k)
n2 + 1

]
.

Regarding the second part of Corollary 1, note first that, when n = 0, the gg
locus becomes: gt = m

gt
, so that g = 2

√
m. The existence part is thus obtained by

fixing n = 0 and g = 2
√
m in the existence conditions from Proposition 1. The

stability part can be proved as follows. When n = 0, Brooks’s condition (iii)

is: −
[
− ζ
′(k)
m − σ′(k)

g + 1
]
< σ′(k)

g − 1 + ζ′(k)
m <

[
− ζ
′(k)
m − σ′(k)

m1/2 + 1
]
. The first

inequality is violated. Therefore there exists no stable stationary equilibrium.

9.3 Proof of Proposition 2

Existence of cycles To study the conditions under which a stable cycle
arises, let us rewrite the variables as a function of their lagged past values. This
gives us the following dynamic system:

kt+2 ≡ G(kt+1,Ωt+1, gt+1) = gt
σ
(
σ(kt)
gt

+ Ωt
gt

)
m

+
ζ(kt)

m
≡ Γ (kt,Ωt, gt)

Ωt+2 ≡ H(kt+1) =
ζ(σ(kt)

gt
+ Ωt

gt
)

gt
≡ Θ (kt,Ωt, gt)

gt+2 ≡ I(gt+1) =
m

gt+1
= gt ≡ Λ (gt) (A’)

Given that gt+2 = gt for all t, it is easy to see that gt fluctuates between two
levels, given by g0 = N0

N−1
and m

g0
= g1. Indeed, g2 = m

g1
= g0 and g3 = m

g2
= g1 =

m
g0
. Hence, the gg locus takes, given g0 = N0

N−1
, the form of two horizontal planes

in the (kt,Ωt, gt) space, at gt = g0 and gt = m
g0
.

The kk locus consists of all combinations (kt,Ωt) such that: kt = gt
σ
(
σ(kt)
gt

+
Ωt
gt

)
m +

ζ(kt)
m . The ΩΩ locus consists of all combinations (kt,Ωt) such that: Ωt =

ζ(
σ(kt)
gt

+
Ωt
gt

)

gt
. At a stationary equilibrium, those two loci intersect. Moreover,

we know that the equilibrium cohort growth rate is either gt = g0 or gt = m
g0
.

At gt = g0, the two loci become: Ωt = g0

[
σ−1

(
m
(
kt− ζ(kt)m

)
g0

)
− σ(kt)

g0

]
and

Ωt =
ζ(
σ(kt)
g0

+
Ωt
g0

)

g0
. Let us denote g0

[
σ−1

(
m
(
kt− ζ(kt)m

)
g0

)
− σ(kt)

g0

]
as D̂(kt). Let

us assume that a non-negative solution Ωt to the equality Ωt =
ζ(
σ(kt)
g0

+
Ωt
g0

)

g0

exists for any level of kt. Let us denote that solution by Ωt ≡ Ê(kt). Given that
σ (·) and ζ (·) are monotonically increasing, we have that Ê′(kt) > 0.

We know that, when kt = 0, we have D̂(0) = g0

[
σ−1

(
0
g0

)
− 0
]
and Ê(0)

is the solution to Ωt =
ζ(

Ωt
g0

)

g0
, which is assumed to be strictly positive. Given
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that σ(0) = 0 and σ′(kt) > 0, it follows that D̂(0) = g0

[
σ−1

(
0
g0

)
− 0
]

= 0. We

thus have D̂(0) < Ê(0), that is, the kk locus lies below the ΩΩ locus for low
kt. If we now suppose that limk→∞D̂(kt) >limk→∞Ê(kt), it follows that the kk
locus lies below the ΩΩ locus for low kt, but above the ΩΩ locus for high kt.
Hence, by continuity of D̂(kt) and Ê(kt), the two loci must intersect at least
once along the 1st part of the gg locus, along which gt = g0. We can denote

that intersection as
(
k̂, Ω̂, g0

)
.

At gt = m
g0
, the two loci become: Ωt = m

g0

[
σ−1

((
kt − ζ(kt)

m

)
g0

)
− g0σ(kt)

m

]
and Ωt = g0

ζ(
g0σ(kt)
m +

g0Ωt
m )

m . Let us denote m
g0

[
σ−1

((
kt − ζ(kt)

m

)
g0

)
− g0σ(kt)

m

]
as Ď(kt). Let us assume that a non-negative solution Ωt to the equality Ωt =

g0
ζ(
g0σ(kt)
m +

g0Ωt
m )

m exists for any level of kt. Let us denote that solution by Ωt ≡
Ě(kt). Given that σ (·) and ζ (·) are monotonically increasing, we have that
Ě′(kt) > 0.
We know that, when kt = 0, we have Ď(0) = m

g0

[
σ−1 ((0) g0)− 0

]
and Ě(0)

is the solution to Ωt = g0
ζ(
g0Ωt
m )

m , which is assumed to be strictly positive. Given
that σ(0) = 0 and σ′(kt) > 0, it follows that Ď(0) = m

g0

[
σ−1 ((0) g0)− 0

]
= 0.

We thus have Ď(0) < Ě(0), that is, the kk locus lies below the ΩΩ locus for low
kt. If we now suppose that limk→∞Ď(kt) >limk→∞Ě(kt), it follows that the kk
locus lies below the ΩΩ locus for low kt, but above the ΩΩ locus for high kt.
Hence, by continuity of Ď(kt) and Ě(kt), the two loci must intersect at least
once along the 1st part of the gg locus, along which gt = m

g0
. That intersection

can be denoted as
(
ǩ, Ω̌, g0

m

)
.

Stability of the cycle Let us now consider whether the two equilibria(
k̂, Ω̂, g0

)
and

(
ǩ, Ω̌, g0

m

)
are stable. The Jacobian matrix is:

J ≡


∂Γ(kt,Ωt,gt)

∂kt

∂Γ(kt,Ωt,gt)
∂Ωt

∂Γ(kt,Ωt,gt)
∂gt

∂Θ(kt,Ωt,gt)
∂kt

∂Θ(kt,Ωt,gt)
∂Ωt

∂Θ(kt,Ωt,gt)
∂gt

∂Λ(gt)
∂kt

∂Λ(gt)
∂Ωt

∂Λ(gt)
∂gt


Computing those entries at the equilibrium, we obtain that the determinant

of the Jacobian matrix is: det(J) = 1
g
ζ′(k)
m

ζ′(σ(k)
g + Ω

g )

m > 0, while the trace of the

Jacobian matrix is: tr(J) = g
σ′(σ(k)

g + Ω
g )

m
σ′(k)
g + ζ′(k)

m +
ζ′(σ(k)

g + Ω
g )

m
1
g + 1.

Note that Brooks’s (2004) condition (iii) is here:

−
[
ζ′(σ(k)

g + Ω
g )

m
1
g + g

σ′(σ(k)
g + Ω

g )σ′(k)

mg + ζ′(k)
m + ζ′(k)

m

ζ′(σ(k)
g + Ω

g )

m
1
g + 1

]
< g

σ′(σ(k)
g + Ω

g )
m

σ′(k)
g + ζ′(k)

m +
ζ′(σ(k)

g + Ω
g )

m
1
g + 1 + 1

g
ζ′(k)
m

ζ′(σ(k)
g + Ω

g )

m

<

[
ζ′(σ(k)

g + Ω
g )

m
1
g + g

σ′(σ(k)
g + Ω

g )σ′(k)

mg + ζ′(k)
m + ζ′(k)

m

ζ′(σ(k)
g + Ω

g )

m
1
g + 1

]
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The first inequality is satisfied, but the second inequality is not. As a con-

sequence of this, the two equilibria
(
k̂, Ω̂, g0

)
and

(
ǩ, Ω̌, mg0

)
are not stable.

However, remind that the initial cohort growth factors g0 and g1 = m
g0
co-

incide with the equilibrium levels of gt. Therefore, the question of convergence
of the economy amounts to investigate whether kt and Ωt converge towards k̂
and Ω̂ when gt = g0, and whether kt and Ωt converge towards ǩ and Ω̌ when
gt = m

g0
. The first issue can be studied on the basis of the system:

kt+2 ≡ G(kt+1,Ωt+1) = g0

σ
(
σ(kt)
g0

+ Ωt
g0

)
m

+
ζ(kt)

m
≡ Γ (kt,Ωt)

Ωt+2 ≡ H(kt+1) =
ζ(σ(kt)

g0
+ Ωt

g0
)

g0
≡ Θ (kt,Ωt)

The Jacobian matrix is: J ≡
(

∂Γ(kt,Ωt)
∂kt

∂Γ(kt,Ωt)
∂Ωt

∂Θ(kt,Ωt)
∂kt

∂Θ(kt,Ωt)
∂Ωt

)
.

Estimating the entries at the equilibrium
(
k̂, Ω̂, g0

)
, we obtain that the de-

terminant and the trace are: det(J) = ζ′(k̂)
m

ζ′(
σ(k̂)
g0

+ Ω̂
g0

)

g2
0

and tr(J) =
σ′
(
σ(k̂)
g0

+ Ω̂
g0

)
σ′(k̂)

m +

ζ′(k̂)
m +

ζ′(
σ(k̂)
g0

+ Ω̂
g0

)

(g0)2 .

Hence the condition for stability |λ1| < 1 and |λ2| < 1 are thus:∣∣∣∣∣∣D +
ζ′(

σ(k̂)
g0

+ Ω̂
g0

)

2(g0)2 + 1
2

2

√√√√[2D +
ζ′(

σ(k̂)
g0

+ Ω̂
g0

)

(g0)2

]2

− 4
ζ′(

σ(k̂)
g0

+ Ω̂
g0

)ζ′(k̂)

g2
0m

∣∣∣∣∣∣ < 1

and∣∣∣∣∣∣D +
ζ′(

σ(k̂)
g0

+ Ω̂
g0

)

2(g0)2 − 1
2

2

√√√√[2D +
ζ′(

σ(k̂)
g0

+ Ω̂
g0

)

(g0)2

]2

− 4
ζ′(

σ(k̂)
g0

+ Ω̂
g0

)ζ′(k̂)

g2
0m

∣∣∣∣∣∣ < 1

where D ≡
σ′
(
σ(k̂)
g0

+ Ω̂
g0

)
σ′(k̂)+ζ′(k̂)

2m .
Regarding whether kt and Ωt converge towards ǩ and Ω̌ when gt = m

g0
, that

issue can be discussed on the basis of the system:

kt+2 ≡ G(kt+1,Ωt+1) =
σ
(
g0σ(kt)
m + g0Ωt

m

)
g0

+
ζ(kt)

m
≡ Γ (kt,Ωt)

Ωt+2 ≡ H(kt+1) = g0

ζ( g0σ(kt)
m + g0Ωt

m )

m
≡ Θ (kt,Ωt)

A rationale similar to the one developed in the first part of this proof can
be used to lead to the stability conditions:∣∣∣∣∣∣V +

ζ′(
g0σ(ǩ)
m +

g0Ω̌
m )

2m2 + 1
2

2

√[
2V +

ζ′(
g0σ(ǩ)
m +

g0Ω̌
m )

m2

]2

− 4 ζ
′(ǩ)
m

ζ′(
g0σ(ǩ)
m +

g0Ω̌
m )

m2

∣∣∣∣∣∣ < 1
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∣∣∣∣∣∣V +
ζ′(

g0σ(ǩ)
m +

g0Ω̌
m )

2m2 − 1
2

2

√[
2V +

ζ′(
g0σ(ǩ)
m +

g0Ω̌
m )

m2

]2

− 4 ζ
′(ǩ)
m

ζ′(
g0σ(ǩ)
m +

g0Ω̌
m )

m2

∣∣∣∣∣∣ < 1

where V ≡
σ′
(
g0σ(ǩ)
m +

g0Ω̌
m

)
σ′(ǩ)+ζ′(ǩ)

2m .

9.4 Proof of remark 1

When N−1 = N0, we have g0 = 1. Hence the cycle in gt has, as two values,
g0 = 1 and g1 = m

1 . Thus, if m = 1, we have g0 = g1 = 1. As a consequence,
the dynamic system becomes two-dimensional:

kt+1 ≡ G(kt,Ωt) = σ (kt) + Ωt

Ωt+1 ≡ H (kt) = ζ(kt)

From the first equation, we can define the kk locus. Imposing kt+1 = kt
yields: Ωt = kt − σ (kt). From the second equation, we can define the ΩΩ
locus: Ωt = ζ(kt). Note that, as σ(0) = 0 and ζ(0) = 0, the two loci intersect
at kt = 0. Moreover, assuming that limk→0 1 − σ′ (kt) < limk→0 ζ

′(kt) and
limk→+∞ 1 − σ′ (kt) > limk→+∞ ζ ′(kt), it follows that the kk locus lies below
the ΩΩ locus for low k levels, but lies above it for high k levels. Hence, by
continuity, the kk and ΩΩ loci must intersect at some point.
Regarding the stability of that equilibrium, the Jacobian matrix is:

J ≡
(

∂G(kt,Ωt)
∂kt

∂G(kt,Ωt)
∂Ωt

∂H(kt)
∂kt

0

)

When computing the entries of that matrix at the equilibrium, we obtain that
the determinant and the trace of the Jacobian matrix are: det(J) = −ζ ′(k) < 0
and tr(J) = σ′ (k) > 0. Hence it is straightforward to deduce that the eigenval-

ues are: λ1 =
σ′(kt)+

2
√

(σ′(kt))
2+4ζ′(kt)

2 > 0 and λ2 =
σ′(kt)− 2

√
(σ′(kt))

2+4ζ′(kt)

2 <
0. We are thus in a case where ∆ > 0, and where the two eigenvalues are of
opposite signs.

The condition for |λ1| < 1 is: 2

√
(σ′ (k))

2
+ 4ζ ′(k) < 2 − σ′ (k). The above

condition can be rewritten as: ζ ′(k) < 1−σ′ (k). We know that, at the stationary
equilibrium, the G(kt,Ωt) curve intersects the H(kt) curve from below, which
means that: 1− σ′ (k∗) > ζ ′(k∗). Hence the condition for |λ1| < 1 is satisfied.

The condition for |λ2| < 1, this can be rewritten as: ζ ′(k) < 1 + σ′ (k).
Given that, at the equilibrium, the G(kt,Ωt) curve intersects the H(kt) curve
from below, we have: 1− σ′ (k∗) > ζ ′(k∗). Hence the condition for |λ2| < 1 is
also satisfied at our equilibrium. Note that, while stability is guaranteed, the
convergence towards the stationary equilibrium takes a non-monotonic form,
due to the opposite signs of the eigenvalues.
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9.5 Proof of Proposition 3

As shown above, the equation:

g3 +
(FL (k, ·)− d)

k
g − 2b

k
= 0

characterizes the interior optimal cohort growth rate g. Given that this equa-
tion takes the form of a so-called "depressed cubic" equation, we can use the
resolution method develop by Cardano (1545). That method consists in first
introducing two new variables, whose sum equals g: s + t = g. We substitute
for it in the depressed cubic equation, and obtain:

(s+ t)
3

+ (
FL (k, ·)− d

k
)(s+ t)− 2b

k
= 0

s3 + t3 + (
FL (k, ·)− d

k
+ 3st)(s+ t)− 2b

k
= 0

Then, imposing the constraint FL(k,·)−d
k + 3st = 0, we get:

s3 + t3 =
2b

k

st = −FL (k, ·)− d
3k

=⇒ s3t3 = − (FL (k, ·)− d)
3

27k3

Thus s3 and t3 are the roots of the equation: m2 +m
(
− 2b
k

)
− (FL(k,·)−d)3

27k3 = 0.
Note that

∆ ≡
(
−2b

k

)2

+
4
(
FL(k,·)−d

k

)3

27
=

4b2

k2
+

4 (FL (k, ·)− d)
3

27k3
≷ 0

If ∆ > 0, we have the two roots: m1 = s3 =
2b
k +

2

√
4b2

k2 +
4(FL(k,·)−d)3

27k3

2 and

m2 = t3 =
2b
k −

2

√
4b2

k2 +
4(FL(k,·)−d)3

27k3

2 . Hence it follows that the optimal g is given
by:

g = s+ t =
3

√√√√ 2b
k +

2

√
4b2

k2 + 4(FL(k,·)−d)3

27k3

2
+

3

√√√√ 2b
k −

2

√
4b2

k2 + 4(FL(k,·)−d)3

27k3

2

If ∆ = 0, we need to choose a cubic root for s3. As there is no direct way to
choose the cubic root of t3, we need to use the relation t = −FL(k,·)−d

3ks , which

yields: s =
3

√
b
k −

2

√
b2

k2 + (FL(k,·)−d)3

27k3 . Hence the optimal cohort growth rate

g = s+ t is:

g =
3

√√√√ b

k
− 2

√
b2

k2
+

(FL (k, ·)− d)
3

27k3
− FL (k, ·)− d

3k
3

√
b
k −

2

√
b2

k2 + (FL(k,·)−d)3

27k3
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If ∆ < 0, one can obtain the complex cubic roots by multiplying one of the
two above cubic roots by −1

2 + i
2√3
2 , and the other by

−1
2 − i

2√3
2 . This yields:

m1 = s3 =
− 2b
k −

2

√
4b2

k2 +
4(FL(k,·)−d)3

27k3

4 + i 2
√

3
2b
k +

2

√
4b2

k2 +
4(FL(k,·)−d)3

27k3

4 and m2 = t3 =

− 2b
k +

2

√
4b2

k2 +
4(FL(k,·)−d)3

27k3

4 − i 2
√

3
2b
k −

2

√
4b2

k2 +
4(FL(k,·)−d)3

27k3

4 . Hence g = s+ t is:

g =

3

√
− 2b
k −

2

√
4b2

k2 +
4(FL(k,·)−d)3

27k3 + 2bi 2√3
k +i 2√3

2

√
4b2

k2 +
4(FL(k,·)−d)3

27k3

4

+
3

√
− 2b
k +

2

√
4b2

k2 +
4(FL(k,·)−d)3

27k3 − 2bi 2√3
k +i 2√3

2

√
4b2

k2 +
4(FL(k,·)−d)3

27k3

4

9.6 Proof of Proposition 5

Existence of a stationary equilibrium
Fixing gt+1 = gt in the third equation of system B leads to the long-run co-

hort growth factor g = n+ 2√n2+4m
2 . Fixing kt+1 = kt in the first equation of sys-

tem B allows us to write the kk locus as: Xt =
k2−α
t

gtm
gt−n [(1+β+β2)α(1+gt)+(1−α)]

β2A2α2( m
gt−n+m )

α−1
(

m(gt−n)

m−ngt+n2+m(gt−n)

)α
(1+gt)

−
m

gt−n
kt(1−α)( m

gt−n+m )[1+β− gt−nm ]
Aα
(

m(gt−n)

m−ngt+n2+m(gt−n)

)α .

The XX locus is: Xt = (1−α)kαt . Hence the existence of a stationary equi-
librium depends on whether the kk locus and XX locus intersect when gt equals
its long-run value g = n+ 2√n2+4m

2 . That intersection occurs when, for some kt,

we have: (1− α)kαt

(
g

1+g

)α
+ kt(1−α)g[g+gβ−1]

Aα(1+g) =
k2−α
t g2[(1+β+β2)α(1+g)+(1−α)]

β2A2α2( 1+g
g )

α−1
(1+g)

.

The LHS and the RHS are thus equal for kt = 0, which is a station-
ary equilibrium. In order to examine whether there exists another equilib-

rium, note that, given α < 1: limk→0(1 − α)αkα−1
t

(
g

1+g

)α
+ (1−α)g[g+gβ−1]

Aα(1+g) =

+∞ >limk→0
(2−α)k1−α

t g2[(1+β+β2)α(1+g)+(1−α)]
β2A2α2( 1+g

g )
α−1

(1+g)
= 0, and that limk→∞(1−α)αkα−1

t

(
g

1+g

)α
+

(1−α)g[g+gβ−1]
Aα(1+g) = (1−α)g[g+gβ−1]

Aα(1+g) ≶limk→∞
(2−α)k1−α

t g2[(1+β+β2)α(1+g)+(1−α)]
β2A2α2( 1+g

g )
α−1

(1+g)
.

Hence, provided: (1−α)g[g+gβ−1]
Aα(1+g) <limk→∞

(2−α)k1−α
t g2[(1+β+β2)α(1+g)+(1−α)]
β2A2α2( 1+g

g )
α−1

(1+g)
,

there exists a stationary equilibrium with k > 0.

Stability of a stationary equilibrium The Jacobian matrix is:

J ≡


∂G(kt,Xt,gt)

∂kt

∂G(kt,Xt,gt)
∂Xt

∂G(kt,Xt,gt)
∂gt

∂H(kt)
∂kt

0 0

0 0 ∂I(gt)
∂gt
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Estimating the entries at the equilibrium (k,X, g), we obtain that the deter-

minant and the trace are: det(J) =
β2A2α3(1−α)k2α−2( m

g−n+m )
α−1

(
m(g−n)

m−ng+n2+m(g−n)

)α
(1+g)

g3

g−n [(1+β+β2)α(1+g)+(1−α)]

and tr(J) =


Aα2kα−1(1−α)( m

g−n+m )
α

(1+g)

[
(β+β2)+

β2(g−n)
m

]
g[(1+β+β2)α(1+gt)+(1−α)]

+
β2A3(α−1)(1−α)α2k2α−2( m

g−n+m )
α−1

(
m(g−n)

m−ng+n2+m(g−n)

)α
(1+g)

gm
g−n [(1+β+β2)α(1+g)+(1−α)]

− m
g2

.
Hence Brooks’s condition (i) is:∣∣∣∣∣β2A2α3(1−α)k2α−2( m

g−n+m )
α−1

(
m(g−n)

m−ng+n2+m(g−n)

)α
(1+g)

g3

g−n [(1+β+β2)α(1+g)+(1−α)]

∣∣∣∣∣ < 1.

Reminding that, at equilibrium, we have: 1 =
Akα−1(1−α)α( m

gt−n+m )
α

(1+gt)

gt[(1+β+β2)α(1+gt)+(1−α)]

[
(β + β2) + β2(gt−n)

m

]
+

β2α2A3(1−α)k2α−2( m
gt−n+m )

α−1
(

m(gt−n)

m−ngt+n2+m(gt−n)

)α
(1+gt)

gtm
gt−n

[(1+β+β2)α(1+gt)+(1−α)]
,

it follows that condition (ii) can be written as:

1 > −αm
g3 [1−AΛ] + Λ

(
Am(1−α)

g2
t

− α
)
−
[
α− ΛA− m

g2

] [
Λαm
g2

]
+
[

Λαm
g2

]2
,

where Λ ≡
β2A2(1−α)α2k2α−2( m

g−n+m )
α−1

(
m(g−n)

m−ng+n2+m(g−n)

)α
(1+g)

gm
g−n [(1+β+β2)α(1+g)+(1−α)]

.

Using the same simplification, condition (iii) can be written as:
mα[1−ΛA]

g2 − Λ
(
Am(1−α)−αg2

g2

)
− 1 < αg2−AΛg2−m(1−αΛ)

g2 < −mα[1−ΛA]
g2 +

Λ
(
Am(1−α)−αg2

g2

)
+ 1

9.7 Proof of Corollary 2

Existence of a stationary equilibrium Fixing gt+1 = gt in gt+1 = n+m
gt

in system B under n = 0 leads to the long-run cohort growth factor, equal to g =

2
√
m. The kk locus can be rewritten as: Xt =

k2−α
t m[(1+β+β2)α(1+gt)+(1−α)]

β2A2α2( m
gt+m

)
α−1

(
m(gt)

m+m(gt)

)α
(1+gt)

−
m
gt
kt(1−α)( m

gt+m
)[1+β− gtm ]

Aα
(

m(gt)
m+m(gt)

)α .

The XX locus is Xt = (1−α)kαt . The existence of a stationary equilibrium
depends on whether the kk locus and XX locus intersect when gt equals its
long-run value g = 2

√
m. That intersection occurs when, for some kt, we have:

(1−α)kαt

(
2
√
m

1+ 2
√
m

)α
+
kt(1−α) 2

√
m[ 2
√
m+ 2
√
mβ−1]

Aα(1+ 2
√
m)

=
k2−α
t m[(1+β+β2)α(1+ 2

√
m)+(1−α)]

β2A2α2
(

1+ 2√m
2√m

)α−1

(1+ 2
√
m)

.

The LHS and the RHS are equal for kt = 0. In order to examine whether
there exists another stationary equilibrium, note that, given α < 1:

limk→0(1− α)αkα−1
t

(
2
√
m

1+ 2
√
m

)α
+

(1−α) 2
√
m[ 2
√
m+ 2
√
mβ−1]

Aα(1+ 2
√
m)

= +∞

>limk→0
(2−α)k1−α

t m[(1+β+β2)α(1+ 2
√
m)+(1−α)]

β2A2α2
(

1+ 2√m
2√m

)α−1

(1+ 2
√
m)

= 0.

Hence, provided:
(1−α) 2

√
m[ 2
√
m+ 2
√
mβ−1]

Aα(1+ 2
√
m)

<limk→∞
(2−α)k1−α

t m[(1+β+β2)α(1+ 2
√
m)+(1−α)]

β2A2α2
(

1+ 2√m
2√m

)α−1

(1+ 2
√
m)

,

35



there exists a stationary equilibrium with strictly positive k,X, g.

Stability of a stationary equilibrium Brooks’s condition (i) is:∣∣∣∣∣β2A2α3(1−α)k2α−2
(

m
2√m+m

)α−1( m 2√m
m+m 2√m

)α
(1+ 2
√
m)

m[(1+β+β2)α(1+ 2
√
m)+(1−α)]

∣∣∣∣∣ < 1.

Condition (ii) is: 1 > −αm
( 2
√
m)

3 [1−AΛ]+Λ

(
Am(1−α)

( 2
√
m)

2 − α
)
−[α− ΛA− 1] [Λα]+

[Λα]
2, where Λ ≡

β2A2(1−α)α2k2α−2
(

m
2√m+m

)α−1( m 2√m
m+m 2√m

)α
(1+ 2
√
m)

m[(1+β+β2)α(1+ 2
√
m)+(1−α)]

.

Condition (iii) is, after simplifications:
α−AΛ−1+αΛ < α−AΛ− (1− αΛ) < −α [1− ΛA]+Λ (A(1− α)− α)+1
The first inequality is not satisfied. Therefore condition (iii) breaks, and the

equilibrium is not stable.

9.8 Proof of Proposition 6

Existence of a stationary equilibrium Imposing kt+1 = kt in the first
equation of system C yields the kk locus: kt = σ(kt)

gt
+ Ωt
gt
, which can be rewritten

as: Ωt = gtkt − σ(kt). Imposing Ωt+1 = Ωt in Ωt+1 ≡ Ĥ (kt) yields the ΩΩ

locus: Ωt = ζ(kt)
gt
. Imposing gt+1 = gt in gt+1 ≡ Î (kt,Ωt, gt) yields the gg locus:

gt = η(G(kt,Ωt, gt)) + µ(kt)
gt
. Hence: gt − µ(kt)

gt
= η(G(kt,Ωt, gt)).

Assuming that η(kt) and/or µ(kt) is positive, it follows that, along the gg
locus, the cohort growth factor satisfies: g2

t −η(G(kt,Ωt, gt))gt−µ(kt) = 0, from

which it follows that: gt =
η(G(kt,Ωt,gt)+

2
√

[η(G(kt,Ωt,gt))]
2+4µ(kt)

2 .
At that sustainable cohort growth factor, the kk locus can be rewritten as:

Ωt =
η(G(kt,Ωt,gt)+

2
√

[η(G(kt,Ωt,gt))]
2+4µ(kt)

2 kt − σ(kt),
while the ΩΩ locus is:
Ωt = 2ζ(kt)

η(G(kt,Ωt,gt)+
2
√

[η(G(kt,Ωt,gt))]
2+4µ(kt)

Note that the kk locus takes a value of 0 at kt = 0. The same is also true for

the ΩΩ locus. Denote Ξt ≡ η(G(kt,Ωt, gt) +
2

√
[η(G(kt,Ωt, gt))]

2
+ 4µ(kt) and

Πt ≡ 2[η(G(kt,Ωt,gt))]η
′(G(kt,Ωt,gt)G

′(·)+4′µ(kt)
2[Ξt−η(G(kt,Ωt,gt)]

.
Assuming that:

limk→0
Ξt
2 +kt

η′(G(kt,Ωt,gt)G
′(·)+Πt

2 −σ′(kt) < limk→0
2ζ′(kt)[Ξt]−2ζ(kt)[η′(G(kt,Ωt,gt)G

′(·)+Πt]
[Ξt]

2 ,

limk→+∞
Ξt
2 +kt

η′(G(kt,Ωt,gt)G
′(·)+Πt

2 −σ′(kt) > limk→+∞
2ζ′(kt)[Ξt]−2ζ(kt)[η′(G(kt,Ωt,gt)G

′(·)+Πt]
[Ξt]

2

it follows that the kk locus lies below the ΩΩ locus for low kt, but that the
kk locus lies above the ΩΩ locus for high kt. Hence, by continuity, the kk and
ΩΩ loci must intersect at some point along the gg locus.
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Stability of a stationary equilibrium The Jacobian matrix is:

J ≡


∂Ĝ(kt,Ωt,gt)

∂kt

∂Ĝ(kt,Ωt,gt)
∂Ωt

∂Ĝ(kt,Ωt,gt)
∂gt

∂Ĥ(kt)
∂kt

0 ∂Ĥ(kt)
∂gt

∂Î(kt,Ωt,gt)
∂kt

∂Î(kt,Ωt,gt)
∂Ωt

∂Î(kt,Ωt,gt)
∂gt


Estimating the entries at the equilibrium, we obtain that: det(J) = ζ′(k)µ(k)−ζ(kt)µ′(k)

g4

and that the trace is: tr(J) = σ′(k)
g − η′(k)

[
σ(k)+Ω

(g)2

]
− µ(k)

(g)2 .

Brooks’s condition (i) can be written here as:
∣∣∣ ζ′(k)µ(k)−ζ(k)µ′(k)

g4

∣∣∣ < 1.

Brooks’s condition (ii) is:

1 >
ζ(kt)η

′(k)

g3 +
−σ′(k)µ(k)

g3 +
µ′(k)[σ(k)+Ω]

g3 − ζ
′(k)

g2

−
[
ζ′(k)µ(k)−ζ(kt)µ′(k)

g4

][
σ′(k)
g −η′(k)

[
σ(k)+Ω

(g)2

]
−µ(k)

(g)2

]
+
[
ζ′(k)µ(k)−ζ(kt)µ′(k)

g4

]2
Brooks’s condition (iii) is here:

−
[
ζ(kt)η

′(k)
g3 + −σ′(k)µ(k)+µ′(k)[σ(k)+Ω]

g3 − ζ′(k)
g2 + 1

]
< σ′(k)

g − η′(k)
[
σ(k)+Ω

(g)2

]
− µ(k)

(g)2 + ζ′(k)µ(k)−ζ(kt)µ′(k)
g4

<
[
ζ(kt)η

′(k)
g3 + −σ′(k)µ(k)+µ′(k)[σ(k)+Ω]

g3 − ζ′(k)
g2 + 1

]
.

9.9 Proof of Proposition 7

From the first equation of system D, and fixing gt+1 = gt, one can write
the gg locus as: gt (gt − n) − m = `t. From the second equation, and fixing
`t+1 = `t, one can write the `` locus as: `t = o

gt
. Hence the two loci in-

tersect when: gt (gt − n) − m = o
gt
. Let us denote the LHS by the function

Φ (gt) ≡ gt (gt − n)−m. We have Φ(0) = −m, Φ′(gt) = 2gt−n and Φ′′(gt) = 2.
Given that 2gt − n = n + 2mgt + 2 `tgt ≥ 0, the LHS is an increasing convex
curve starting at `t = −m. Regarding the `` locus, denoted by the function
Υ (gt) ≡ o

gt
, we have Υ(0) = +∞, Υ′(gt) = −o

g2
t
< 0 and Υ′′(gt) = o2

g3
t
> 0.

Hence the `` locus is a decreasing convex curve. Given that Υ(0) > Φ(0) and
Υ(∞) = 0 < Φ(∞) > 0, it follows, by continuity, that the two loci must inter-
sect. From the strict convexity of the two loci, that intersection is unique.

Regarding the stability, the Jacobian matrix is:

(
−(m+`)
g2

1
g

− o
g2 0

)
.

Hence the determinant and the trace are: det(J) = o
g3 and tr(J) = −(m+`)

g2 =

−m
g2 − o

g3 . Thus the eigenvalues are: λ1,2 =

(
− m
g2− o

g3

)
± 2

√(
− m
g2− o

g3

)2
− 4o
g3

2 . Sta-
bility requires |λ1| < 1 and |λ2| < 1.
Let us consider different reproduction schemes.

• n > 0, m = o = 0: |λ1| = 0 < 1 and |λ2| = 0 < 1.

• n > 0, m > 0, o = 0: |λ1| = 0 < 1 and |λ2| =
∣∣∣− 4m

2n2+4m+2n 2√n2+4m

∣∣∣ < 1.
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• n = 0, m > 0, o > 0. Note that, when n = 0, we have, at the equilibrium:
1 = m

g2 + o
g3 and 4− 4m

g2 = 4o
g3 . Hence stability is achieved if and only if:

|λ1| =
∣∣∣∣∣−1+ 2

√
−3+ 4m

g2

2

∣∣∣∣∣ < 1 and |λ2| =
∣∣∣∣∣−1− 2

√
−3+ 4m

g2

2

∣∣∣∣∣ < 1

When m = 0, we have: |λ1| =
∣∣∣−1+ 2√3i

2

∣∣∣ and |λ2| =
∣∣∣−1− 2√3i

2

∣∣∣ < 1, that is,

complex eigenvalues. Those two eigenvalues can be written as: λ1,2 = −1
2 ±

2√3
2 i.

Denoting r =
∣∣∣−1

2 ±
2√3
2 i
∣∣∣, we have: r =

2

√(−1
2

)2
+
(

2√3
2

)2

= 2
√

1. Hence, the

two eigenvalues lie exactly on the unit circle. Hence the equilibrium is unstable.
When m > 0, two cases can arise. If 3 > 4m

g2 , then eigenvalues are complex

numbers. We have: λ1,2 =
−1±i 2

√(
3− 4m

g2

)
2 . Denoting r =

∣∣∣∣∣−1
2 ±

2
√

3− 4m
g2

2 i

∣∣∣∣∣, we
have: r =

2

√√√√(−1
2

)2
+

(
2
√

3− 4m
g2

2

)2

= 2

√
1− m

g2 . The condition r < 1 is satisfied

when 3 > 4m
g2 . If 3 ≤ 4m

g2 , the eigenvalues are real numbers. Thus the conditions

for stability are: 2

√
−3 + 4m

g2 < 3 for |λ1| < 1 and 2

√
−3 + 4m

g2 < 1 for |λ2| < 1.

Hence we need: 1 > m
g2 . When o = 0, that condition is not satisfied, since

g = 2
√
m. When o > 0, that condition is satisfied. Indeed, at the equilibrium,

we have: g = m
g + o

g2 =⇒ g2 = m+ o
g , so that g

2 > m, insuring convergence.
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