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a b s t r a c t

Despite their moderately sized surface area, continental marginal seas play a significant role in the

biogeochemical cycles of carbon, as they receive huge amounts of upwelled and riverine inputs of

carbon and nutrients, sustaining a disproportionate large biological activity compared to their relative

surface area. A synthesis of worldwide measurements of the partial pressure of CO2 (pCO2) indicates

that most open shelves in the temperate and high-latitude regions are under-saturated with respect to

atmospheric CO2 during all seasons, although the low-latitude shelves seem to be over-saturated. Most

inner estuaries and near-shore coastal areas on the other hand are over-saturated with respect to

atmospheric CO2. The scaling of air–sea CO2 fluxes based on pCO2 measurements and carbon mass-

balance calculations indicate that the continental shelves absorb atmospheric CO2 ranging between 0.33

and 0.36 Pg C yr�1 that corresponds to an additional sink of 27% to �30% of the CO2 uptake by the open

oceans based on the most recent pCO2 climatology [Takahashi, T., Sutherland, S.C., Wanninkhof, R.,

Sweeney, C., Feely, R.A., Chipman, D., Hales, B., Friederich, G., Chavez, F., Watson, A., Bakker, D., Schuster,

U., Metzl, N., Inoue, H.Y., Ishii, M., Midorikawa, T., Sabine, C., Hoppema, M., Olafsson, J., Amarson, T.,

Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., De Baar, H., Nojiri, Y., Wong, C.S., Delille, B., Bates, N.,

2009. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the

global oceans. Deep-Sea Research II, this issue [doi: 10.1016/j.dsr2.2008.12.009].]. Inner estuaries, salt

marshes and mangroves emit up to 0.50 Pg C yr�1, although these estimates are prone to large

uncertainty due to poorly constrained ecosystem surface area estimates. Nevertheless, the view of

continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 allows

reconciling long-lived opposing views on carbon cycling in the coastal ocean.

& 2009 Elsevier Ltd. All rights reserved.
1. Background

Land, rivers, open ocean, atmosphere, sediments and biota
interact in coastal and shelf seas, leading to substantial spatial and
temporal heterogeneity in carbon flows. Although the continental
margins, considered here to extend from the coastline to a depth
of 200 m, occupy only a little over 7% of the seafloor and less than
0.5% of the ocean volume, they play a major role in oceanic
biogeochemical cycling. Significantly higher rates of new primary
production occur in the continental margins than in the open
oceans because of the higher supply of nutrients from cross-shelf
break upwelling and riverine input, in addition to the rapid
remineralization of organic matter due to enhanced pelagic and
ll rights reserved.
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benthic coupling (Walsh, 1988, 1991; Mackenzie et al., 1998a, b;
Wollast, 1998; Liu et al., 2000; Muller-Karger et al., 2005).

Recognizing the importance of the continental margins in
terms of the cycling of carbon and associated elements, the Joint
Global Ocean Flux Study (JGOFS, established in 1988 as a core
project under the International Geosphere Biosphere Program,
IGBP) adopted continental margin studies as one of its operational
elements. Five years later, another IGBP core project, the Land–
Ocean Interaction in the Coastal Zone (LOICZ), was established to
study in detail carbon and nutrient flows in coastal ecosystems.
The first of four over-arching objectives of LOICZ was to determine
the fluxes of materials between land, sea and atmosphere.

The first two of the six LOICZ foci were: Is the coastal zone a
sink or source of CO2 and What are mass balances of carbon,
nitrogen and phosphorus in the coastal zone? (Crossland et al.,
2005). The very first LOICZ report was entitled ‘‘Coastal seas: a net
source or sink of atmosphere carbon dioxide?’’ (Kempe, 1995).
These questions arise because it is not clear how much of the

www.sciencedirect.com/science/journal/dsrii
www.elsevier.com/locate/dsr2
dx.doi.org/10.1016/j.dsr2.2009.01.001
mailto:ctchen@mail.nsysu.edu.tw
mailto:alberto.borges@ulg.ac.be


ARTICLE IN PRESS

C.-T.A. Chen, A.V. Borges / Deep-Sea Research II 56 (2009) 578–590 579
organic carbon transported to the coastal seas by rivers and new
production on the continental shelves is permanently sequestered
by export to the deep oceans or to sediments on the shelves and
shallow marginal seas.

In order to determine the contribution of continental margins
and seas to CO2 sequestration and the horizontal fluxes of carbon,
nitrogen and phosphorus across the ocean–continental margin
boundary, the JGOFS/LOICZ Continental Margins Task Team
(CMTT) was established (Chen et al., 1994).

Unfortunately, even now there is still a great deal of discussion
about very basic questions on whether coastal waters are net
sources or sinks of atmospheric CO2, and whether primary
production in coastal seas is exported or recycled. For instance,
Smith and Mackenzie (1987) and Smith and Hollibaugh (1993)
claimed that the oceans as a whole are net heterotrophic, and that
they release more CO2 into the atmosphere than they take up.
Their argument was based on the imbalance between the total
river transport of about 0.40 Pg C yr�1 and the oceanic organic
carbon burial rate of around 0.14 Pg C yr�1. The difference of
0.26 Pg C yr�1 would be most likely returned to the atmosphere.
Ver et al. (1999a, b) and Mackenzie et al. (2000) also concluded
that, in spite of an increased invasion of CO2 from the atmosphere
to the continental margins driven by the rise in atmospheric CO2,
continental margin waters are heterotrophic or, simply restated,
sources of CO2 to the atmosphere.

Upon the conclusion of the JGOFS project, Fasham et al. (2001)
adopted the same view and reported a net CO2 sea-to-air flux of
0.5 Pg C yr�1 for continental margins. Noteworthy is that these
authors, nevertheless, literally inserted a question mark alongside
this value, which is larger than not only the value of 0.1 Pg C yr�1

reported by Ver et al. (1999a, b) but also than the total river
transport of 0.4 Pg C yr�1 cited by Smith and Mackenzie (1987)
and Smith and Hollibaugh (1993). As for LOICZ, the synthesis of
first decade’s activities ending in 2002 did not seem to answer
properly the question as to whether the coastal zones are sources
or sinks of carbon (Crossland et al., 2005). The chapter on ‘‘C, N, P
fluxes in the coastal zone’’ did not provide any data on the
atmosphere–marginal sea or on the shelf-open ocean fluxes of
carbon but nevertheless concluded that ‘‘Smith and Hollibaugh
(1993) estimated that there is about 7�1012 mol yr�1 of net
carbon oxidation in the coastal zone and 16�1012 mol yr�1 in the
open ocean. The LOICZ analysis does nothing to alter this essential
picture’’. And, the ‘‘Preface’’ of the synthesis volume simply states
that ‘‘The question of whether the coastal zone is a source or sink
of carbon is examined’’.

Despite some uncertainties (Borges, 2005; Borges et al., 2005;
Cai et al., 2006), mounting evidence based on pCO2 measurements
and mass-balance calculations (Chen et al., 2003; Chen, 2004)
seems to indicate that the continental shelves are actually sinks of
atmospheric CO2. A chapter in the JGOFS synthesis volume
concluded that the shelves take up 25�1012 mol yr�1 of atmo-
spheric CO2 based mainly on the mass-balance approach (Chen
et al., 2003). A chapter in the assessment organized by the Global
Carbon Project gave an air-to-sea CO2 flux of 30�1012 mol yr�1 for
the shelves (Chen, 2004). These fluxes, however, do not include
inner estuaries, salt marshes or mangroves, which release CO2 to
the atmosphere (Borges, 2005; Borges et al., 2005). This emission
of CO2 is fuelled by inputs of terrestrial organic matter.

There is increasing evidence that a very large fraction of
terrestrial/riverine organic matter is degraded and emitted as CO2

to the atmosphere in these near-shore systems, and never reaches
the continental shelves let alone the open ocean (e.g. Middelburg
and Herman, 2007, and references therein). Hence, the ‘‘coastal’’
net heterotrophy postulated by Smith and Mackenzie (1987) and
Smith and Hollibaugh (1993) is confined to these near-shore
ecosystems, which allows one to reconcile their mass-balance
approach with the wealth of evidence showing that marginal seas
are net autotrophic and net sinks for atmospheric CO2.

It will be shown below that the available data of pCO2

measurements in about 60 continental shelves of the world
allows the conclusion that continental shelves are indeed sinks for
atmospheric carbon. The present work updates previous compila-
tions of pCO2 measurements in coastal environments (Borges,
2005; Borges et al., 2005; Cai et al., 2006) and attempts to
reconcile long-lived opposing views on C cycling in marginal seas,
either as net heterotrophic and potential sources of CO2 to
the atmosphere (e.g. Smith and Mackenzie, 1987; Smith and
Hollibaugh, 1993) or as autotrophic and potential sinks for
atmospheric CO2 (e.g. Gattuso et al., 1998; Wollast, 1998; Chen,
2004).
2. Air–sea CO2 fluxes in inner estuaries, salt marshes
and mangroves

Table 1 compiles available air–water CO2 fluxes in near-shore
ecosystems (inner estuaries, salt marshes and mangrove sur-
rounding waters) and updates previous global compilations by
Abril and Borges (2004), Borges (2005) and Borges et al. (2005),
with an increase of almost 50% in available data. Notable
differences with previous compilations are that data for some
major inner estuaries are now available such as the Changjiang
(ranked 4th river in the world in terms of freshwater discharge,
Gao et al., 2005; Zhai et al., 2007) and the Mekong (ranked 10th
river in the world in terms of freshwater discharge, Borges,
unpublished), and for previously undocumented lagoons (four
systems in The Ivory Coast (Koné et al., 2009) and Aveiro lagoon
(Borges and Frankignoulle unpublished)). Also, information on the
seasonality of CO2 fluxes in mangrove surrounding waters is now
available (Koné and Borges, 2008) and CO2 fluxes in salt marshes
are available at an additional site.

Inner estuaries act as sources of CO2 to the atmosphere due to
their heterotrophic ecosystem metabolic status (Odum and
Hoskin, 1958; Odum and Wilson, 1962; Heip et al., 1995; Kemp
et al., 1997; Gattuso et al., 1998; Gazeau et al., 2004; Hopkinson
and Smith, 2005). The input of dissolved CO2 from the upstream
river contributes to about 10% of the emission of CO2 from macro-
tidal inner estuaries, the remaining fraction of the emission of CO2

is then due to heterotrophy or lateral inputs of CO2 (Borges et al.,
2006). The net heterotrophy of inner estuaries is sustained by
terrestrial/riverine organic carbon inputs (freshwater phytoplank-
ton and soil carbon), and in populated areas by waste water.

Mangroves surrounding waters act as CO2 sources to the
atmosphere also due to the heterotrophic nature of the water
column and inter-tidal sediments. Heterotrophy is sustained by
inputs of organic carbon that has several sources, either
autochtonous (mangrove detritus and microphytobenthos) or
allochtonous (phytoplankton, seagrass-derived material and ter-
restrial non-mangrove forests), and the relative contribution of
these sources varies considerably from one site to another
(Bouillon and Boschker, 2006). The emission of CO2 from
mangrove surrounding waters is also sustained by the input of
CO2-rich pore waters during ebbing (Ovalle et al., 1990; Borges et
al., 2003; Bouillon et al., 2007c). Tidal pumping of pore water
makes creeks waters act as conduits for the emission of CO2

produced by diagenetic organic carbon degradation, leading to an
under-estimate of traditional measurements of benthic metabo-
lism (Bouillon et al., 2007c, 2008). The aquatic compartment of
salt marshes is also a source of CO2 to atmosphere due to its net
heterotrophic status sustained by allochtonous and autochtonous
organic carbon inputs (Cai et al., 2003; Wang and Cai, 2004), with
a strong contribution of dissolved inorganic carbon (DIC) inputs
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Table 1
Longitude, latitude, pCO2 range (ppm), air–water CO2 fluxes (FCO2 in mol C m�2 yr�1) in near-shore ecosystems.

Site (country code) 1E 1N pCO2 range FCO2 References

Inner estuaries

Aby lagoon (CI) �3.3 4.4 60–325 3.9 Koné et al. (2009)

Altamaha Sound (US) �81.3 31.3 390–3380 �32.4 Jiang et al. (2008a)

Aveiro lagoon (PT) �8.7 40.7 143–11,335 �12.4 Borges and Frankignoulle (unpublished)

Betsiboka (MG) 46.3 �15.7 270–1530 �3.3 Ralison et al. (2008)

Bothnian Bay (FI) 21.0 63.0 150–550 �3.1 Algesten et al. (2004)

Changjiang (Yantze) (CN) 120.5 31.5 200–4600 �24.9 Gao et al. (2005), Zhai et al. (2007)

Chilka (IN) 85.5 19.1 70–6350 �25.0 Gupta et al. (2008)

Doboy Sound (US) �81.3 31.4 390–2400 �13.9 Jiang et al. (2008a)

Douro (PT) �8.7 41.1 1330–2200 �76.0 Frankignoulle et al. (1998)

Ebrié lagoon (CI) �4.3 4.5 1365–3575 �31.1 Koné et al. (2009)

Elbe (DE) 8.8 53.9 580–1100 �53.0 Frankignoulle et al. (1998)

Ems (DE) 6.9 53.4 560–3755 �67.3 Frankignoulle et al. (1998)

Gironde (FR) �1.1 45.6 465–2860 �30.8 Frankignoulle et al. (1998)

Godavari (IN) 82.3 16.7 220–500 �5.5 Bouillon et al. (2003)

Guadalquivir (ES) �6.0 37.4 520–3606 �31.1 de la Paz et al. (2007)

Hooghly (IN) 88.0 22.0 80–1520 �5.1 Mukhopadhyay et al. (2002)

Loire (FR) �2.2 47.2 630–2910 �64.4 Abril et al. (2003)

Mandovi-Zuari (IN) 73.5 15.3 500–3500 �14.2 Sarma et al. (2001)

Mekong (VN) 106.5 10.0 280–4105 �30.8 Borges (unpublished)

Potou lagoon (CI) �3.8 4.6 1235–5120 �40.9 Koné et al. (2009)

Randers Fjord (DK) 10.3 56.6 220–3440 �2.2 Gazeau et al. (2005)

Rhine (NL) 4.1 52.0 545–1990 �39.7 Frankignoulle et al. (1998)

Sado (PT) �8.9 38.5 575–5700 �31.3 Frankignoulle et al. (1998)

Sapelo Sound (US) �81.3 31.6 390–2400 �13.5 Jiang et al. (2008a)

Saja-Besaya (ES) �2.7 43.4 264–9728 �52.2 Ortega et al. (2005)

Satilla River (US) �81.5 31.0 360–8200 �42.5 Cai and Wang (1998)

Scheldt (BE/NL) 3.5 51.4 125–9425 �63.0 Frankignoulle et al. (1998)

Tagba lagoon (CI) �5.0 4.4 800–4250 �18.4 Koné et al. (2009)

Tamar (UK) �4.2 50.4 380–2200 �74.8 Frankignoulle et al. (1998)

Tendo lagoon (CI) �3.2 4.3 90–3600 �5.1 Koné et al. (2009)

Thames (UK) 0.9 51.5 505–5200 �73.6 Frankignoulle et al. (1998)

York River (US) �76.4 37.2 350–1900 �6.2 Raymond et al. (2000)

Non-estuarine marshes

Duplin River (US) �81.3 31.5 500–3000 �21.4 Wang and Cai (2004)

Rio San Pedro (ES) �5.7 36.6 380–3760 �39.4 Ferrón et al. (2007)

Mangroves

Gaderu creek (IN) 82.3 16.8 1380–4770 �20.4 Borges et al. (2003)

Kidogoweni creek (KE) 39.5 �4.4 1480–6435 �23.7 Bouillon et al. (2007a)

Itacurac-a creek (BR) �44.0 �23.0 660–7700 �41.4 Ovalle et al. (1990), Borges et al. (2003)

Kiên Vàng creeks (dry season) (VN) 105.1 8.7 705–4605 �11.8 Koné and Borges (2008)

Kiên Vàng (wet season) (VN) 105.1 8.7 1435–8140 �56.5 Koné and Borges (2008)

Matolo/Ndogwe/Kalota/Mto Tana creeks (KE) 40.1 �2.1 490–10,035 �25.8 Bouillon et al. (2007b)

Mooringanga creek (VN) 89.0 22.0 800–1530 �8.5 Ghosh et al. (1987), Borges et al. (2003)

Nagada creek (IN) 145.8 �5.2 540–1680 �15.9 Borges et al. (2003)

Norman’s Pond (BS) �76.1 23.8 385–750 �5.0 Borges et al. (2003)

Ras Dege creek (TZ) 39.5 �6.9 430–5050 �12.4 Bouillon et al. (2007c)

Saptamukhi creek (IN) 89.0 22.0 1080–4000 �20.7 Ghosh et al. (1987), Borges et al. (2003)

Shark River (US) �81.1 25.2 920–2910 �18.4 Millero et al. (2001), Clark et al. (2004), Koné and Borges (2008)

Tam Giang creeks (dry season) (IN) 105.2 8.8 770–11,480 �51.6 Koné and Borges (2008)

Tam Giang creeks (wet season) (IN) 105.2 8.8 1210–7150 �46.9 Koné and Borges (2008)

Tana (KE) 40.1 �2.1 2240–5305 �47.9 Bouillon et al. (2007b)

Negative FCO2 values indicate an emission of CO2 from the water to the atmosphere.

BE: Belgium; BR: Brazil; BS: Bahamas; CI: Ivory Coast; CN: China; DE: Germany; DK: Denmark; ES: Spain; FI: Finland; FR: France; IN: India; KE: Kenya; MG: Madagascar;

NL: The Netherlands; PT: Portugal; TZ: Tanzania; UK: United Kingdom; US: United States; VN: Vietnam.
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from the inter-tidal and sub-tidal benthic compartments
(Neubauer and Anderson, 2003; Ferrón et al., 2007).

It should be noted that mangrove and salt marsh ecosystems as
a whole (including the aquatic compartment, the benthic
compartment and above-ground biomass) act as sinks for atmo-
spheric CO2 due to the important above-ground primary produc-
tion. A recent data compilation in mangrove ecosystems yields an
above-ground net primary production (including litter fall, wood
production and fine root production) of 114 mol C m�2 yr�1

(Bouillon et al., 2008), a sink for atmospheric CO2 that is higher
than the emission of CO2 to the atmosphere from the aquatic
compartment of �27.1 mol C m�2 yr�1. Similarly, in the Duplin
River salt marsh ecosystem, net primary production from above-
ground vegetation is about 149.2 mol C m�2 yr�1 (Hopkinson,
1988), a sink of atmospheric CO2 higher than the reported
emission of CO2 to the atmosphere from the aquatic compartment
of �21.4 mol C m�2 yr�1 (Wang and Cai, 2004). However, we only
envisage in the present paper the coastal ocean CO2 fluxes, hence
we only consider the CO2 exchange between the atmosphere and
the aquatic compartment.
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Based on Table 1, average CO2 emissions to the atmosphere are
32.1, 30.4 and 27.1 mol C m�2 yr�1 for inner estuaries, salt marsh
waters and mangrove waters, respectively. Scaling of these
average values yields CO2 emissions of 0.36, 0.09 and 0.05 Pg C
yr�1 for inner estuaries, salt marsh waters and mangrove waters,
respectively, using the Woodwell et al. (1973) estimate of surface
area of inner estuarine surface area (0.943�106 km2), total
surface area of salt marshes and mangroves (0.384�106 km2),
and the FAO (2003) estimate of mangroves (0.147�106 km2).

The potential emission of CO2 from inner estuaries can be
roughly estimated indirectly from a mass balance of terrestrial/
riverine organic carbon. Assuming an input of terrestrial/riverine
particulate organic carbon (POC) ranging from 0.17 Pg C yr�1

(Ludwig et al., 1996) to 0.50 Pg C yr�1 (Richey, 2004), and the
degradation of POC during estuarine transit ranging from 50%
(Abril et al., 2002) to 70% (Keil et al., 1997), we compute a
potential emission of CO2 from POC degradation by inner
estuaries ranging from 0.09 to 0.35 Pg C yr�1. Assuming a 10%
removal of river dissolved organic carbon (DOC) during estuarine
transit (Moran et al., 1999; Raymond and Bauer, 2000; Wiegner
and Seitzinger, 2001), and the global DOC input of 0.21 Pg C yr�1

(Ludwig et al., 1996) brings the potential emission of CO2 from
total organic carbon (TOC) removal by inner estuaries to a range
between 0.11 and 0.37 Pg C yr�1. If the emission of CO2 due to
ventilation of riverine CO2 of 10% (Borges et al., 2006) is added, the
overall potential emission of CO2 by inner estuaries ranges from
0.12 to 0.41 Pg C yr�1.

The CO2 emission by inner estuaries based on pCO2 measure-
ments falls within the range of values estimated by mass balance,
but is nevertheless 3-fold higher than the lowest estimate from
the mass-balance computations. As discussed in detail by Abril
and Borges (2004) and Borges (2005), the value of inner estuary
surface area given by Woodwell et al. (1973) is probably over-
estimated. Also noteworthy is that most available data were
obtained in macro-tidal estuaries, which have a vertically mixed
water column and a long residence time. These physical
characteristics promote TOC degradation with subsequent emis-
sion of CO2 to the atmosphere compared to other ecotypes of
estuaries such as micro-tidal estuaries (Borges, 2005). This is
illustrated by the fact that the only system reported in Table 1 that
behaves as a net annual sink for atmospheric CO2 is the Aby
lagoon, which is a permanently stratified system with a long
residence time of the water mass, allowing the sedimentation of
organic carbon across the pycnocline, making the upper mixed
layer an effective carbon sink (Koné et al., 2009).
3. Air–sea CO2 fluxes in continental shelves

Tsunogai et al. (1999) coined the term ‘‘continental shelf
pump’’, which would account for a net uptake of CO2 of
1.0 Pg C yr�1, if the world continental shelves would absorb
atmospheric CO2 at the same rate computed from data obtained
from a single transect in the East China Sea. This value, however, is
almost certainly an overestimate, as more recent studies in the
East China Sea have yielded lower fluxes. Indeed, based on pCO2

data from several cruises, Chen and Wang (1999) computed an air-
to-sea flux of 2.0 mol C m�2 yr�1, lower than the value of 3.0 mol
C m�2 yr�1 estimated by Chen and Tsunogai (1998) and Tsunogai
et al. (1999). This points out the need for high-resolution
coverage, both temporal and spatial, to provide robust and
unbiased estimates of CO2 air–sea fluxes in continental shelves.

Another example is the air–sea CO2 flux estimates in the US
South Atlantic Bight (SAB); based on five cruises Cai et al. (2003)
estimated that the SAB was a strong source of CO2 to the
atmosphere at a rate of 2.5 mol C m�2 yr�1, but based on six
cruises, Jiang et al. (2008b) recently reported that the SAB is a sink
for atmospheric CO2 at a rate of 0.5 mol C m�2 yr�1. The difference
between these two studies is that Cai et al. (2003) obtained their
pCO2 data along one single linear transect perpendicular to the
coast, while Jiang et al. (2008b) surveyed the entire SAB, providing
the necessary spatial coverage required to produce a robust
estimate of air–sea CO2 fluxes. Besides covering adequately the
spatial heterogeneity, high temporal coverage is also required to
estimate reliably air–sea CO2 fluxes in highly dynamic coastal
environments.

For instance, Thomas et al. (2004) reported that the Southern
Bight of the North Sea (SBNS) was a source of CO2 at a rate of
0.2 mol C m�2 yr�1. More recently, Schiettecatte et al. (2007)
showed that the SBNS is actually a sink for atmospheric CO2 at a
rate of 0.7 mol C m�2 yr�1. Both the Thomas et al. (2004) and
Schiettecatte et al. (2007) studies covered satisfactorily the spatial
variability of the SBNS but the first estimate was based on only
four cruises while the second was based on 10 cruises. The
disagreement in net annual CO2 flux estimates between the two
studies is due to the fact that the ‘‘spring cruise’’ of the data set of
Thomas et al. (2004) was carried out in May, during the declining
phase of the phytoplankton bloom, implying that this data set did
not adequately account for the strong CO2 under-saturation in the
SBNS typically observed in mid-April (Borges and Frankignoulle,
1999, 2002a) during the peak of the phytoplankton bloom.

In absence of long time-series of pCO2 measurements in
continental shelves, a not quantified potential bias in air–sea CO2

flux estimates relates to inter-annual variability and long-term
changes. In the California upwelling system, Friederich et al.
(2002) reported a shift from an annual source to an annual sink of
CO2 due to the El Niño Southern Oscillation. Strong inter-annual
variability in the sink of CO2 in Tasman continental shelf has been
recently reported due to changes in mixing related to the
Southern Annular Mode (Borges et al., 2008). In coastal areas in
the vicinity of the Bering and Okhotsk Seas a long-term increase in
the sink of CO2 has been reported (Takahashi et al., 2006), while
in the North Sea a long-term decrease in the sink of CO2 has been
reported (Thomas et al., 2007). The causes of these long-term
trends remain unclear.

During the past few years, the number of studies reporting
air–sea CO2 fluxes based on pCO2 measurements worldwide has
significantly increased, amounting to about 60 continental shelves
listed in Table 2 according to the season, which also includes the
annual average flux when available. The histogram of daily CO2

fluxes during the different seasons is shown in Fig. 1. Although
there is a large scatter, most studies report that the continental
shelves are sinks for atmospheric CO2 during most of the seasons.
In spring, 14 studies reported that there is a net sink of CO2 while
only 4 reported a source of CO2. In summer, a higher number of
studies (25) reported a source of CO2 to the atmosphere compared
with 12 studies reporting otherwise. This is probably due to the
thermodynamic increase of pCO2 due to warming of surface
waters, and due to the degradation of organic matter produced
during the spring bloom. The surface seawater temperature starts
to decrease in autumn, inducing a drop in pCO2 values because of
the change in the CO2 solubility coefficient. As a result, marginal
seas tend to be CO2 sinks in autumn and winter.

Overall, the number of studies that reported continental
shelves as CO2 sinks outweigh those that reported continental
shelves as CO2 sources. Because of the small number of
observations for each season, the distribution is not normal. The
annually integrated CO2 fluxes, however, show a more normal
distribution, and the numerical average is �1.1 mol C m�2 yr�1.
This value, if scaled to the global surface area of continental
shelves of 26�106 km2, yields an annual CO2 uptake of about
29�1012 mol C yr�1 (0.35 Pg C yr�1).
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Table 2
Air–sea fluxes of CO2 in various continental marginsa.

Area Springb

(mmol m�2 d�1)

Summer

(mmol m�2 d�1)

Fall (mmol m�2 d�1) Winter (mmol m�2 d�1) Annual

(mol C m�2 yr�1)

References

Amazon River Plume 0.5–1.7 Ternon et al. (2000), Körtzinger (2003)

Antarctic Shelves 11–341 2.22 1. Chen et al. (2004a, b); 2. Carrillo and

Karl (1999)

Arabian Sea �0.9 Goyet et al. (1998)

Arctic Sea 0.211, 0.512 1. Anderson and Jones (1981), Anderson

et al. (1990); 2. Bates (2006)

Shelves 0.14 Anderson et al. (1998)

Atlantic Bight 0.5–1.3 DeGrandpre et al. (2002)

Baffin Bay �0.3 0.45 �0.3 �0 0.43 Miller et al. (2002)

Baltic Sea 0.91, 3.02 1. Thomas et al. (2008); 2. Kuss et al.

(2006)

Barrents Sea 2.71 0.552, 3.63 1. Kaltin et al. (2002); 2. Fransson et al.

(2001); 3. Borges et al. (2005)

Bay of Bengal �0.4 Goyet et al. (1998)

Beaufort Shelves 2.91 1.22 1. Murata and Takizawa (2003); 2. Cai et

al. (2006)

Benguela Current 11 5.5 0–11, 1.622 1. P. Monterio, personal communication

(2007)

2. Santana-Casiano and González-Dávila

(2009)

Bering Sea Basin �4.7 Fransson et al. (2006)

Bering Sea Shelf 1.21 0.662 4.33 1.Nedashkovsky et al. (1995); 2.

Codispoti et al. (1986); 3. Walsh and

Dieterle (1994)

Black Sea 20 Goyet et al. (1991)

Brazil Shelf �9.81
�4.21

�0.31
�1.82 1. Ito et al. (2005); 2. Borges et al. (2005)

Bristol Bay 0.2 Borges et al. (2005)

California Coast �2.2 to �0.7 Friederich et al. (2002)

Chukchi Sea o0.1–15 2.91, 13–522,3, 30–905 124 4.85, 3.16 1.Murata and Takizawa (2003); 2. Wang

et al. (2003); 3. Li et al. (2004); 4. Pipko

et al. (2002); 5. Bates (2006); 6. Kaltin

and Anderson (2005)

E. China Sea 1.661,2.172.82, 1.83,

5.0471.599

1.23, �2.5271.819
�0.651, 2.03, 1739 3.13 2.13, 3.34, 2 (1.1–2.5)5,

36, 17, 0.038

1. Ma et al. (1999); 2. Peng et al. (1999);

3. Wang et al. (2000); 4. Tsunogai et al.

(1997); 5. Chen and Wang (1999); 6.

Tsunogai et al. (1999); 7. Zhang et al.

(1999); 8. Zhang (1999); 9. Shim et al.

(2007)

E. Mediterranean 0.78–4�10�4 de Madron et al. (2008)

Ecuador–Chile �0.6 Cai et al. (2006)

English Channel 01, �0.32 1. Borges and Frankignoulle, 2003; 2.

Thomas et al. (2008)

Funka Bay (Japan) Mean

DpCO2 ¼ �75matm

Nakayama et al. (2000)

Galician Coast 2.2 Borges et al. (2005)

Gulf of Biscay 2.01 5.51 0.51 �0.31 1.7–2.91 Frankignoulle and Borges (2001)

Gulf of California �5.4 Hidalgo-González et al. (1997)

Gulf of Cadiz �18.6 Aı̈t-Ameur and Goyet (2006)

Gulf of Lion 7.1 de Madron et al. (2008)

Gulf of Mexico Shelf 2–4.21 0.52 1.Lohrenz and Cai, 2006; 2.Cai et al.,

2006

Hudson Bay 3.9 Else et al. (2008)

Iberian 0.41
�0.071, 4.52 0.21, 0.92 1.6 (1.3–2.6)2 1.Pérez et al. (1999); 2. Borges and

Frankignoulle (2002a, b)

Japan Sea 3.8 Cai et al. (2006), Kang et al. (2008)
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Jiaozhou Bay �9.4 �22.2 �10.8 1.9 �3.7 Li et al. (2007)

Kara Sea 0.011 Fransson et al. (2001)

Laptev Sea 0.011 Fransson et al. (2001)

Mediterranean Sea 0.52–2.8�10�4 de Madron et al. (2008)

New Jersey Coast 40 o0 o0 b0 0.44–0.84 Boehme et al. (1998)

NE Greenland 1.3 Yager et al. (1995)

North Sea 141 131, 1.42
�0.91 1.33, 1.5–2.24 1.385 1. Frankignoulle and Borges (2001); 2.

Kempe and Pegler (1991); 3. Thomas et

al. (2008); 4. Bozec et al. (2005); 5.

Thomas et al. (2005)

Nova Scotia, Maine 0.7 Cai et al. (2006)

Okhotsk Sea 2.7–5.5 (May–Sept.)1 2.52, 0.833 1. Chen et al. (2003); 2. Otsuki et al.

(2003); 3. Wakita et al. (2003)

Omani Coast �2.5 Goyet et al. (1998)

Oregon Coast 20 Hales et al. (2005)

Patagenian Shelf 1.5 Bianchi et al. (2005)

Prydz Bay 751 2.22 1. Wang et al. (1998); 2. Borges et al.

(2005)

Ross Sea 251, 4–102 1.53, 0.07–1.554 1. Wang et al. (1998); 2. Bates et al.

(1998); 3. Borges et al. (2005); 4. Arrigo

and Van Dijken (2007)

S. Atlantic Bight �2.5 Cai et al. (2003)

S. China Sea 4.81, �0.732 0.52
�0.182, 1.03, �1.34 1. Rehder and Suess (2001); 2. Chen et al.

(2006a, b); 3. Chen et al. (2003); 4. Zhai

et al. (2005)

Strait of Gibraltar 5.572 �378 1976 2.5 Santana-Casiano et al. (2002)

Sulu Sea 0 Chen et al. (2006b)

Taiwan St. 17.6 Ma et al. (1999)

Tasmania 7.14c 7.09c 6.21c 5.14c 2.3 Borges et al. (2008)

Vancouver Is. Coast 1.2 Borges et al. (2005)

W. European Shelves 1.1–18.3 3.4–24.4 0.4–2.4 –0.5��0.9 4.8–7.9 Frankignoulle and Borges (2001)

Weddell Sea �0.3c Stoll et al. (2002)

W. Florida Shelf DpCO2 ¼ �43 to

�64matm

Wanninkhof et al. (1997)

W. Mediterranean o0 b0 40 o0 0.570.18 Begovic and Copin-Montégut (2002)

1.5–8�10�4 de Madron et al. (2008)

4 Copin-Montégut and Bégovic (2002)

Yellow Sea 4.41
�1.81 4.41 131 2.41, 270.72 1.Oh et al. (2000); 2. Wang et al. (2001)

Global Coral Reefs (0.6�106 km2) 401, o02 o03
�02 403

�0.1 to �3.24,�1.1 to

�2.65

1. Smith (1973); 2. Kawahata et al.

(1999); 3. Kayanne et al. (2005); 4.

Borges et al. (2005); 5. Frankignoulle et

al. (1996)

Global Coastal (to �40 m depth) �1.8 Rabouille et al. (2001)

Global Shelves (�40 m–200 m depth) 1.05 Rabouille et al. (2001)

GLOBAL 2.21, 2.42, 0.33, 1.94, 15,

1.8–2.06,1.157, 1.178,

1.629, 0.7210

1. Sabine and Mackenzie (1991a, b); 2.

Walsh and Dieterle (1994); 3. Liu et al.

(2000); 4. Yool and Fasham (2001); 5.

Chen et al. (2003); 6. Ducklow and

McCallister (2004); 7. Chen (2004); 8.

Borges (2005); 9. Borges et al. (2005);

10. Cai et al. (2006)

a The most recent values are used, a positive flux is directed from air to sea, a negative flux is directed from sea to air.
b Spring: March–May; Summer: June–August; Fall: September–November; Winter: December–February.
c Austral seasons.
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Fig. 1. Histogram of reported daily fluxes of CO2 during different seasons as well as the annual flux.
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Fig. 2. Histogram of reported annual fluxes of CO2 in different latitudinal bands.
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Fig. 2 shows the histogram of reported daily fluxes of CO2 by
different latitude bands. High-latitude and temperate continental
shelves are sinks for atmospheric CO2, while tropical and sub-
tropical shelves tend to act as sources of CO2 to the atmosphere.
This latitudinal variability in air–sea CO2 fluxes is related to the
fact that biological activity over continental shelves modulates a
background CO2 signal imposed by oceanic waters circulating over
the continental shelf. Open oceanic waters are generally under-
saturated in CO2 at high- and mid-latitudes (Takahashi et al.,
2002, 2009), where continental shelves are highly productive (e.g.,
Walsh, 1988), hence increasing the background open-ocean CO2

under-saturation. At sub-tropical and tropical latitudes open
oceanic waters are generally over-saturated in CO2 (Takahashi
et al., 2002, 2009), and non-upwelling continental margins are
less productive, tending to be oligotrophic (e.g. Walsh, 1988), and
receive massive inputs of terrestrial organic matter (up to 60% of
the global TOC river inputs, e.g., Ludwig et al., 1996), leading to an
enhancement of the background open ocean CO2 over-saturation.

Continental shelves were divided into various biogeochemical
regions (Polar, Subpolar, Western Boundary Current, Eastern
Boundary Current, Tropical and Monsoonal) for each ocean basin
following the classification of Jahnke (2009), and we scaled the
air–sea CO2 fluxes for the 27 regions (Table 3) based on the air–sea
CO2 fluxes compiled in Table 2. The scaled CO2 fluxes by
biogeochemical provinces yield a CO2 sink of 27.3�1012 mol C
yr�1 (0.33 Pg C yr�1 or 0.91 mol C m�2 yr�1) for a total continental
shelf area of 30�106 km2, in agreement with the CO2 sink based
on the scaled numerical average of 0.35 Pg C yr�1 (or 1.1 mol C
m�2 yr�1) given above for a smaller area. The largest contributions
to this sink of CO2 are from subpolar and polar biogeochemical
provinces, respectively, 17.9 and 12.1�1012 mol C yr�1. Monsoonal
and tropical biogeochemical provinces act as moderate CO2

sources of similar amount, respectively, 0.5 and 0.3�1012 mol C
yr�1. Eastern Boundary Current and Western Boundary Current
biogeochemical provinces act, respectively, as a CO2 sink
(1.2�1012 mol C yr�1) and as a CO2 source (3.1�1012 mol C yr�1).
Note that some western boundary current systems act as CO2

sinks, namely those located in Atlantic Ocean basin (Arı́stegui
et al., 2005) such as the Galician upwelling system (Borges and
Frankignoulle, 2002b) and the Benguela upwelling system
(Santana-Casiano and González-Dávila, 2009). Among the ocean
basins, the largest coastal CO2 sink is for the Atlantic Ocean
(8.4�1012 mol C yr�1) due to its large surface area (12.8�106 km2,
42.6% of total continental shelf surface area), followed by the
Arctic Ocean (7.7�1012 mol C yr�1) due to large areal CO2 fluxes
(2.2 mol C m�2 yr�1 compared to 0.7 mol C m�2 yr�1 in the Atlantic
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Table 3
Air–sea exchanges of CO2 in continental shelves by biogeochemical provinces and ocean basins.

Region Biogeochemical province Areaa (106 km2) Air-sea flux

(mol CO2 m�2 yr�1)

Total air–sea exchange

(1012 mol CO2 yr�1)

Arctic Polar 3.51 2.2 7.72

Antarctic Polar 2.19 2.0 4.38

NW Atlantic Subpolar 2.25 1.0 2.25

NW Atlantic Western Boundary Current 1.54 �0.5 �0.77

W Atlantic Tropical 0.62 �0.1 �0.06

SW Atlantic Western Boundary Current 1.68 �1.0 �1.68

SW Atlantic Subpolar 2.33 1.5 3.50

NE Atlantic Subpolar 2.34 1.6 3.74

NE Atlantic Eastern Boundary Current 1.68 0.8 1.34

E Atlantic Tropical 0.18 �0.1 �0.02

SE Atlantic Eastern Boundary Current 0.22 0.5 0.11

Atlantic Subtotal 12.84 0.66 (ave.) 8.41

W Indian Monsoonal 0.50 �1.4 �0.70

W Indian Tropical 0.08 �0.1 �0.01

W Indian Western Boundary Current 0.18 �1.0 �0.18

E Indian Monsoonal 0.62 0.4 0.25

E Indian Tropical 0.23 �0.1 �0.02

E Indian Eastern Boundary Current 0.25 �0.1 �0.02

E Indian Subpolar 0.38 1.8 0.68

Indian Subtotal 2.24 0.00 (ave.) 0.00

NW Pacific Subpolar 2.91 2.5 7.28

NW Pacific Western Boundary Current 1.36 1.1 1.50

W Pacific Tropical 2.15 �0.1 �0.22

SW Pacific Western Boundary Current 2.01 �1.0 �2.01

NE Pacific Subpolar 0.22 1.8 0.40

NE Pacific Eastern Boundary Current 0.40 �0.5 �0.20

E Pacific Tropical 0.10 �0.1 �0.01

SE Pacific Eastern Boundary Current 0.20 �0.1 �0.02

SE Pacific Subpolar 0.03 1.8 0.05

Pacific subtotal 9.38 0.72 (ave.) 6.77

Grand totals 30.16 0.90 (ave.) 27.28

a Taken from Jahnke (2009).
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and Pacific Oceans). The Pacific Ocean and the Antarctic Ocean
also significantly contribute 6.8 and 4.4�1012 mol C yr�1, respec-
tively, to the global continental shelf CO2 sink, while the Indian
Ocean continental shelf has a nearly neutral status with regards to
the CO2 exchange between the continental shelf and the atmo-
sphere.
4. Carbon mass balance

The global carbon pools can be divided into several compart-
ments, representing the atmosphere, rivers, shelf and slope
waters, sediments, upper-ocean and deep-ocean organic carbon
(both dissolved and particulate) as well as upper-ocean and deep-
ocean inorganic carbon (Fig. 3). Fluxes among these compart-
ments must balance each other out in order to conserve mass. In
fact, the crux of the so-called Box Model is that the mass of
various elements must be in balance even though the chemical
forms of the elements under study may change, e.g., DOC may be
oxidized to DIC.

As the amount of carbon entering the coastal ocean must equal
the amount leaving it, values of C fluxes across the air–sea
interface can thus be constrained based on various known inputs,
offshore exports and burial across other boundaries on the
shelves. Most of these fluxes were tabulated in Chen et al.
(2003) based on 27 studies. Chen (2004) made slight modifica-
tions to the box model of Chen et al. (2003) mainly because of a
better quantification of new productivity on continental shelves
taking into account DOC (Hansell and Carlson, 1998) in addition to
POC production. Further, on account of the lower DOC values
reported in subsurface waters in the open oceans in recent years,
the flux of DOC from the open ocean to the shelves is reduced.

Fig. 3 is a schematic diagram summarizing the fluxes across
boundaries, as indicated by various arrows. Values in the
‘‘shelves’’ box are for various species derived from primary and
new production. There is a net off shelf transport of 50�1012 mol
C yr�1 of DOC, compared to a terrestrial input of 27�1012 mol C
yr�1. At least 23�1012 mol C yr�1 of DOC is produced on the shelf,
which represents 35% of new organic carbon production or 27% of
the total new carbon production. A net air-to-sea flux of carbon is
needed to support such an offshore transport of organic carbon.
The net CO2 sink in continental shelves computed to close the
budget is 0.36 Pg C yr�1, close to values of 0.33 and 0.35 Pg C yr�1

based on scaled estimates from pCO2 measurements given above.
As discussed earlier, some investigators have taken the view

that the continental margins are net sources of CO2 to the
atmosphere (Smith and Mackenzie, 1987; Smith and Hollibaugh,
1993; Ver et al., 1999a, b; Mackenzie et al., 2000; Fasham et al.,
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Fig. 3. Mass balance of carbon in continental shelves (flows are in 1012 mol C yr�1; modified from Chen, 2004).
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2001). This view is based on the simple global mass balance of
terrestrial/riverine organic carbon inputs and carbon burial in
sediments (Smith and Mackenzie, 1987). However, terrestrial/
riverine organic carbon inputs are profoundly modified (and
largely degraded) during estuarine transit based on the net
heterotrophic ecosystem metabolic state of inner estuaries (Odum
and Hoskin, 1958; Odum and Wilson, 1962; Heip et al., 1995;
Kemp et al., 1997; Gattuso et al., 1998; Gazeau et al., 2004;
Hopkinson and Smith, 2005), and based on organic carbon
characterization both in the water column (e.g. Middelburg and
Herman, 2007 and references therein) and sediments (Mayer
et al., 2007 and references therein) of inner estuaries and near-
shore coastal environments. Hence, inner estuaries and near-
shore coastal ecosystems are effective filters for terrestrial/
riverine organic inputs and impose a by-pass of carbon towards
the atmosphere for the global carbon cycle. This is in agreement
with the large CO2 emission from inner estuaries we report and
allows us to explain the apparent paradox that little terrestrial
organic carbon can be accounted for in sediments or the water
column of continental shelves and open oceanic waters based on
tracer approaches (e.g. Hedges et al., 1997).

The view of a heterotrophic coastal ocean reported in earlier
literature might have changed more recently. For instance, Yool
and Fasham (2001) changed their view expressed in Fasham et al.
(2001) and stated that, ‘‘yResults of simulations find modeled
pump activity very variable between shelf regions, with the East
China Sea shelf behaving very similarly to the global average’’, and
‘‘yshould shelf regions absorb CO2 at the rate of the East China
Sea, the pump would account for a net oceanic uptake of
0.6 Pg C y�1’’. Mackenzie and colleagues also recently changed
their view on net CO2 fluxes in the coastal ocean. For instance,
they stated in earlier papers that before anthropogenic activities,
the global coastal ocean was a net autotrophic system with a net
export of organic carbon to sediments and the open ocean of
20 T mol C yr�1 (Ver et al., 1999a, b; Mackenzie et al., 2000).
However, their later results (Rabouille et al., 2001) conclude that
although the proximal coastal zones are CO2 sources (8.4�1012

mol C yr�1), the distal coastal zones are CO2 sinks (28.4�1012 mol
C yr�1). As a result, the continental margins are found to be a net
CO2 sink of 20�1012 mol C yr�1 (0.24 Pg C yr�1) in the pre-
anthropogenic state, which differs from the CO2 source of
0.2 Pg C yr�1 reported by Ver et al. (1999a, b) and Mackenzie
et al. (2000).

In order to adjust the results of Ver et al. (1999a, b) and
Mackenzie et al. (2000) with regard to the pre-anthropogenic CO2

fluxes, a correction of 0.44 Pg C yr�1 needs to be made (to correct
for a pre-anthropogenic source of CO2 of 0.20 Pg C yr�1 given by
Ver et al. (1999a, b) and Mackenzie et al. (2000), and so also for a
pre-anthropogenic sink of 0.24 Pg C yr�1 given by Rabouille et al.,
2001). As a consequence, this renders the continental margins as
CO2 sinks of 0.34 Pg C yr�1 in the present time (year 2000).

The carbon flows through the land/ocean/atmospheric system
are far more complicated and diverse than the above simple
algebra would suggest, but it is nevertheless worth underscoring
the fact that the corrected air–sea CO2 flux of Ver et al. (1999a, b)
and Mackenzie et al. (2000) of 0.34 Pg C yr�1 agrees with the
values reported here ranging from 0.33 to 0.36 Pg C yr�1 based on
scaled pCO2 measurements and carbon mass balance in con-
tinental shelves.
5. Conclusions

The first LOICZ report asserted that whether coastal seas are
net sinks or sources of CO2 could not be determined (Kempe,
1995). Based on carbon mass-balance calculations as well as
scaled estimates based on pCO2 measurements, it is firmly
established that most open shelf areas are sinks for atmospheric
CO2, although many inner estuaries, near-shore coastal waters and
intensive upwelling areas are over-saturated in CO2. On the whole,
continental shelves are significant sinks for atmospheric CO2,
ranging from 0.33 to 0.36 Pg C yr�1, which corresponds to an
additional sink of 27% to �30% of the CO2 uptake by the open
oceans based on the most recent pCO2 climatology of Takahashi
et al. (2009). On the other hand, inner estuaries, salt marshes and
mangroves emit CO2 to the atmosphere of �0.50 Pg C yr�1,
although these estimates are prone to large uncertainty.

The concept of marginal seas as sinks and near-shore coastal
ecosystems as sources of atmospheric CO2 allows reconciling
diverging views on carbon cycling in the coastal ocean. The fact
that the inputs of terrestrial/riverine organic carbon would be
in excess of carbon burial in marine sediments (Smith and
Mackenzie, 1987) does not necessarily imply a net heterotrophy of
marginal seas that is in contradiction with the high offshore
export rates of POC and DOC consistently reported across
continental margins (e.g. overview by Chen, 2003; Liu et al.,
2000). Also, tracer-based analysis of water column and sediment
organic carbon in inner estuaries, continental shelves and open
ocean confirm high removal rates of terrestrial organic carbon.
Hence, inner estuaries and near-shore ecosystems are effective
filters for terrestrial/riverine organic inputs and impose a by-pass
of carbon towards the atmosphere for the global carbon cycle.
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R., Talaue-McManus, L. (Eds.), Carbon and Nutrient Fluxes in Continental
Margins: A Global Synthesis. Springer, New York, unpublished.

Kaltin, S., Anderson, L.G., 2005. Uptake of atmospheric carbon dioxide in Arctic
shelf seas: evaluation of the relative importance of processes that influence
pCO2 in water transported over the Bering–Chukchi Sea shelf. Marine
Chemistry 94, 67–79.

Kaltin, S., Anderson, L.G., Olsson, K., Fransson, A., Chierici, M., 2002. Uptake of
atmospheric carbon dioxide in the Barents Sea. Journal of Marine Systems 38,
31–45.

Kawahata, H., Suzuki, A., Goto, K., 1999. Coral reefs as sources of atmospheric
CO2—spatial distribution of pCO2 in Majuro Atoll. Geochemical Journal 33,
295–303.

Kayanne, H., Hata, H., Kudo, S., Yamano, H., Watanabe, A., Ikeda, Y., Nozaki, K., Kato,
K., Negishi, A., Saito, H., 2005. Seasonal and bleaching-induced changes in coral
reef metabolism and CO2 flux. Global Biochemical Cycles 19, GB3015.

Keil, R.G., Mayer, L.M., Quay, P.D., Richey, J.E., Hedges, J.I., 1997. Loss of organic
matter from riverine particles in deltas. Geochimica et Cosmochimica acta 61
(7), 1507–1511.

Kemp, W.M., Smith, E.M., Marvin-DiPasquale, M., Boynton, W.R., 1997. Organic
carbon-balance and net ecosystem metabolism in Chesapeake Bay. Marine
Ecology Progress Series 150, 229–248.

Kempe, S., 1995. Coastal seas: a net source or sink of atmospheric carbon dioxide?
LOICZ Report and Studies, No. 1, LOICZ International Project Office, Texel, 27pp.

Kempe, S., Pegler, K., 1991. Sinks and sources of CO2 in coastal seas: the North Sea.
Tellus 43, 224–235.
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Pérez, F.F., Rı́os, A.F., Rosón, G., 1999. Sea surface carbon dioxide off the Iberian
Peninsula (North Eastern Atlantic Ocean). Journal of Marine Systems 19,
27–46.

Pipko, I.I., Semiletov, I.P., Tishchenko, P.Y., Pugach, S.P., Christensen, J.P., 2002.
Carbonate chemistry dynamics in Bering Strait and the Chukchi Sea. Progress
in Oceanography 55, 77–94.

Rabouille, C., Mackenzie, F.T., Ver, L.M., 2001. Influence of the human perturbation
on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal
ocean. Geochimica et Cosmochimica Acta 65, 3615–3641.

Ralison, O.H., Borges, A.V., Dehairs, F., Middelburg, J.J., Bouillon, S., 2008. Carbon
biogeochemistry of the Betsiboka Estuary (north-western Madagascar).
Organic Geochemistry 39(12), 1649–1658, doi:10.1016/j.orggeochem.2008.
01.010.

Raymond, P.A., Bauer, J.E., 2000. Bacterial consumption of DOC during transport
through a temperate estuary. Aquatic Microbial Ecology 22 (1), 1–12.

Raymond, P.A., Bauer, J.E., Cole, J.J., 2000. Atmospheric CO2 evasion, dissolved
inorganic carbon production, and net heterotrophy in the York River estuary.
Limnology and Oceanography 45 (8), 1707–1717.

Rehder, G., Suess, E., 2001. Methane and pCO2 in the Kuroshio and the South China
Sea during maximum summer surface temperatures. Marine Chemistry 75
(1–2), 89–108.

Richey, J.E., 2004. Pathways of atmospheric CO2 through fluvial systems. In: Field,
C.B., Raupach, M.R. (Eds.), The Global Carbon Cycle, Integrating Humans,
Climate, and the Natural World. Island Press, Washington, Covelo, London,
pp. 329–340.

Sabine, C.L., Mackenzie, F.T., 1991a. Oceanic sinks for anthropogenic CO2. Journal
Energy, Environment and Economics 1, 119–127.

Sabine, C. L., Mackenzie, F.T., 1991b. Oceanic sinks for anthropogenic CO2. In:
Energy and Environmental Progress Series F, Environment and Energy. Nova
Science, pp. 367–382.

Sarma, V.V.S.S., Kumar, M.D., Manerikar, M., 2001. Emission of carbon dioxide from
a tropical estuarine system, Goa, India. Geophysical Research Letters 28 (7),
1239–1242.
Santana-Casiano, J.M., Gonzalez-Davila, M., Laglera, L.M., 2002. The carbon dioxide
system in the Strait of Gibraltar. Deep-Sea Research II 49, 4145–4161.
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